Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Физике становится тепло. Лорд Кельвин. Классическая термодинамика - Antonio М. Lallena Rojo на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

«Если мои идеи верны, то математическое определение кривых линий индукции и условий для их выявления во всех возможных сочетаниях тел, подверженных электрическому заряду, не представит никаких сложностей».

Томсон таким образом продолжал одну из своих примечательных работ. В 1847 году в «Математическом журнале Кембриджа и Дублина» он опубликовал статью под названием «Механическое представление электрической, магнитной и гальванической силы», которая значительно меняла представление об электромагнитных силах, устанавливая связь между опытами Фарадея и теорией Максвелла. Ключевой в работе Томсона была математическая аналогия между распределением электричества в проводниках и силами притяжения и отталкивания, действующими на заряженные тела, а также теорией упругих твердых тел, в которую внес значительный вклад Стокс. Аналогия была установлена на экспериментальных данных, полученных Фарадеем при изучении воздействия электромагнитных сил на поляризованный свет, пересекающий прозрачные твердые тела. Томсон написал Фарадею:

«[В статье] проводится аналогия между электрической и магнитной силами в терминах напряжений, которые распространяются в твердой и упругой среде, [... ] что подтверждает теорию, которая [...] в итоге неизбежно ведет к тому, что существует тесная связь между силами, и показывает, что чисто статические явления магнетизма могут происходить либо от электричества в движении, либо от инертной массы, как у железняка».

Математический формализм позволял пойти намного дальше идей Фарадея, породив такие отношения, как отношение магнитной силы к ротору электрической силы, то есть уравнения Максвелла. Итак, Томсон вплотную подошел к принятой сегодня электромагнитной теории; как написал он сам, был необходим «специальный анализ тех состояний твердого тела, которые представляют собой различные проблематичные аспекты электричества, магнетизма и гальванизма; анализ, следовательно, должен быть оставлен для будущей работы». Эта будущая работа появилась намного позже, в 1890 году.

Электромагнитная теория шотландца Джеймса Клерка Максвелла (1831-1879) увидела свет в 1865 году, хотя Томсон так и не был убежден в ее справедливости. Максвелл приходился кузеном Джемиме, супруге Хью Блэкберна - товарища Томсона, и они часто встречались в доме этой супружеской пары, однако между учеными никогда не было тесных отношений. Возможно, наибольшее сближение произошло в 1854 году, когда Максвелл, едва окончив Кембридж, написал Томсону с просьбой о совете:

«Как человек, имеющий базовые знания об опытах по электричеству и некоторую антипатию к «электричеству» Мерфи [учебнику], может действовать, читая и работая, чтобы приобрести небольшое представление о теме, которая будет ему полезна для последующего чтения? Если бы он хотел почитать Ампера, Фарадея и так далее, как бы ему следовало организовать эти работы и когда и в каком порядке читать их статьи в «Кембриджском журнале»?»

Однако отсутствие дружбы не мешало Максвеллу и Томсону уважать друг друга. Первый признался второму: «вам очень помогла аналогия с теплопроводностью, которую я считаю Вашим изобретением, по крайней мере я не нашел ее ни в каком другом месте. [ ... ] Это очень долгий вопрос, касающийся электричества, но [ ...] я надеюсь, что Вам будет несложно проследить за моей идеей». И когда в 1855 году Максвелл начал публиковать свои работы, он уделял большое внимание тому, чтобы избежать даже случайных научных столкновений с Томсоном:

«Мне бы очень помогло, если бы Вы могли сказать мне, есть ли у Вас черновик всего этого среди каких-то бумаг, потерянных или забытых только потому, что Вы работали над теплом, но у Вас было мало свободного времени. [...] Поскольку у меня нет сомнений в том, что математическая часть Вашей теории находится у Вас в письменном столе, то все, что Вам нужно сделать, — это объяснить свои результаты об электричестве. Думаю, если Вы сделаете это публично, это введет новый набор электрических понятий в оборот и сэкономит много бесполезных умозаключений».

УРАВНЕНИЯ МАКСВЕЛЛА

Джеймса Клерка Максвелла многие считают физиком XIX столетия, который больше всего повлиял на физику XX века. В 1871 году он получил должность преподавателя физики в Кембридже и взялся за строительство знаменитой Кавендишской лаборатории — исключительного научного учреждения: со времени создания в 1874 году ее исследователи получили 29 нобелевских премий. В 1862 году Максвелл сформулировал свои знаменитые уравнения:


Здесь символы, выделенные жирным, соответствуют векторным величинам, а символы курсивом - скалярным величинам. Дифференциальные операторы (перевернутая Δ∙) и (перевернутая Δx) обозначают «дивергенцию» и «ротор», и это два различных способа дифференцирования относительно пространственных координат. Также появляется производная от времени, ∂/∂t. Первое уравнение — это закон Гаусса, он описывает отношение между векторным электрическим полем Е и общим зарядом, который его производит, представленным плотностью общего заряда р. Второе уравнение — это закон Гаусса для магнетизма, в котором указано, что не существует магнитных зарядов, или монополей. Третье уравнение — это закон индукции Фарадея, в котором установлено, что переменное магнитное поле индуцирует электрическое поле. Последнее уравнение — это закон Ампера, в котором установлено, что магнитное поле может быть образовано двумя способами: с помощью электрического тока (представленного общей плотностью тока J) или переменного электрического поля. Последнее уравнение — единственное, которое Максвелл изменил: он добавил новый член, устанавливающий аналогию между электрическими и магнитными полями. Величины ε0 и μ0 — это универсальные константы: диэлектрическая проницаемость и магнитная проницаемость свободного пространства (или вакуума) соответственно. Эти две величины связаны соскоростью электромагнитного излучения в свободном пространстве (с = (ε0 μ0)-1/2), которая совпадает со скоростью света в вакууме. В 1931 году в связи со столетием со дня рождения Максвелла Альберт Эйнштейн отметил его работу как «самую глубокую и полезную, которую проделала физика со времен Ньютона».

Но Томсон оставил эту исследовательскую линию, и Максвелл погрузился в работы по электричеству. Первая, озаглавленная «О фарадеевых силовых линиях», была опубликована в 1855 году. Ее теоретическая часть разрабатывалась в течение десяти лет. Целью работы было математическое оформление взаимосвязи между распределением зарядов и магнитов, полями, которые они создают, и их колебаниями во времени. В некотором смысле идея Томсона была той же, но его подход был другим. Для Томсона математический аппарат имел смысл только в том случае, когда он следовал из четко определенной физической модели и мог вылиться в механическую модель. Так же как и для других аналогий, разработанных до этого ученым, он думал, что аналогия между электромагнетизмом и теорией упругих твердых тел, которая появилась в его работе 1847 года, имеет глубокие следствия, связанные с рассматриваемыми явлениями. Томсон стремился найти твердое тело с соответствующими свойствами, чтобы сформулировать полную, непротиворечивую модель, охватывающую одновременно все эффекты электромагнитного характера. А затем, как только будет найдено такое тело, достаточно будет сформулировать выражения, описывающие его поведение, и при внесении необходимых изменений получить уравнения электромагнетизма.

Именно такие рассуждения стали причиной недооценки Томсоном теории Максвелла. Некоторые ее элементы не имели соответствия в физике твердых тел, и это оказалось решающим для Уильяма, принимавшего только взаимосвязь, которую Максвелл установил между электромагнитными волнами и светом. Вначале Максвелл уверял, что именно первые работы Томсона дали ему идеи для исследований, но со временем он так описывал произошедшее в письме к Фарадею в 1857 году:

«Насколько я знаю, Вы первый человек, которому пришла в голову мысль о телах, взаимодействующих на расстоянии и приводящих окружающую среду в силовое состояние, — мысль, которой действительно надо верить. [...] Нет ничего более ясного, чем Ваши описания всех источников силы, которые поддерживают одно состояние энергии у всего, что их окружает».

Под словами «состояние энергии» Максвелл имел в виду электромагнитное поле. Когда он закончил разработку своей теории, жизнь Фарадея подходила к концу, и исследователь, умерший в 1867 году, так и не понял, как Максвелл смог трансформировать его догадку об электромагнитном поле в набор математических уравнений, не лишенных элегантности. Однако многочисленные ученые, включая Томсона, имели много предубеждений относительно новой теории. Она начала приниматься только в 1888 году, через девять лет после смерти Максвелла и после того, как немецкий физик Генрих Рудольф Герц (1857-1894) смог получить электромагнитные волны в своей лаборатории.

ТЕОРИЯ ТЕПЛОРОДА

В течение XVIII и значительной части XIX века большинство ученых для описания явлений, связанных с теплом, использовали теорию теплорода. Эта теория, улучшенная Лапласом и Пуассоном, позволяла удовлетворительно объяснить почти весь эмпирический опыт. Значительная часть работ Томсона, посвященных теплоте, опиралась на понятие теплорода - невесомого флюида, присутствующего в каждом теле, окружая его атомы, и способного течь сквозь любое вещество.

С другой стороны, в соответствии с принятой в то время гипотезой считалось, что атомы взаимно притягиваются из-за силы тяготения. При нагревании тела расширяются, поглощая теплород, что приводит к увеличению расстояния между атомами материи. При охлаждении тело испускает теплород, одновременно сжимаясь, поскольку его атомы под воздействием гравитационной силы сближаются.


Лорд Кельвин со своими студентами в лаборатории в Университете Глазго.


Фон Гельмгольц, немецкий врач и физик, внесший значительный вклад в сохранение энергии.


Джеймс Джоуль, английский физик, чьи работы привели к формулировке первого закона термодинамики.


Уильям Томсон. Снимок сделан в 1860-х годах.

Кроме того, с помощью теплорода объяснялось существование твердых, жидких и газообразных тел. Без этой субстанции вся материя была бы организована в однородных твердых телах, поскольку все атомы притягивались бы друг к другу и соединялись бы. Следовательно, жидкая и газообразная материя формировались в результате воздействия отталкивающей силы — теплорода. В твердых телах количества теплорода недостаточно, чтобы препятствовать гравитационному притяжению атомов. Жидкости, наоборот, обладают достаточно высоким количеством теплорода, из-за этого их атомы не находятся в устойчивом положении. В газах гравитационное притяжение практически равно нулю, и из-за теплорода они стремятся расширяться, пока не заполнят все свободное пространство.

Теплопередача от теплых тел к холодным также прекрасно вписывалась в теорию. Чем меньше теплорода в теле, тем больше его атомы «желают» его получить. Если нагреть твердый брусок с одной стороны, то атомы, расположенные на этом конце, получают больше теплорода, чем соседние, и для удовлетворения «жажды» последних образовывается поток теплорода от одних атомов к другим, пока количество этой субстанции во всем теле не уравновесится.

Однако у этой теории были и свои критики. Несколько открытий Бенджамина Томпсона, графа Румфорда ( 1753-1814), американского врача и физика, поставили под сомнение ее справедливость. Например, Румфорд указал, что если кусок льда нагреть до его превращения в воду, то она будет занимать минимальный объем примерно при +5 °С, то есть нагревание не всегда предполагает расширение. Это же происходит и с другими веществами, однако ученые сочли, что подобные возражения не могут поколебать теорию теплорода.

В 1798 году Бенджамин Томпсон опубликовал доклад под названием «Исследование источника тепла, вызываемого трением», в котором рассказал о том, как сверло, с помощью которого высверливается канал в пушечном стволе, нагревается во время работы так сильно, что позволяет почти довести до кипения воду, используемую для охлаждения. Это явление могло быть объяснено тем, что при отделении металлической стружки часть теплорода, содержащегося в веществе металла, высвобождается, нагревая все элементы, задействованные в процессе. Но после этого граф Румфорд провел другой эксперимент, использовав тупое сверло, которое не могло снять никакой стружки, однако производило при работе примерно столько же тепла. Кроме того, ученый подсчитал, что если бы все тепло, выделившееся при сверлении ствола, было передано пушке, она бы просто расплавилась. Тепло не может исходить из пушки, следовательно, оно образовывается в процессе трения между сверлом и металлом. Однако современники этот факт проигнорировали.

ВКЛАД ДЖОУЛЯ

Джеймс Прескотт Джоуль — физик-любитель, родился 24 декабря 1818 года в Солфорде (Англия), рядом с Манчестером. Его родители владели пивным заводом, и сам Джоуль руководил его работой вплоть до продажи предприятия в 1854 году. Опыт, полученный при изготовлении пива, позволил ему в дальнейшем решить многие практические вопросы, которые встали перед ним во время физических экспериментов в лаборатории, оборудованной в собственном доме Джоуля.

Два основных закона

В 1840 году он сформулировал два закона, имевших огромное значение. Согласно первому, тепло, образованное электрическим проводником, когда по нему проходит постоянный ток, пропорционально квадрату этой силы, электрическому сопротивлению проводника и времени, в течение которого проходил ток. Согласно второму закону, внутренняя энергия идеального газа не зависит от его давления или от объема - только от температуры. В 1843 году исследователь смог установить, что эффект от нагревания проводников при прохождении через них тока является не результатом теплопередачи от какой-либо части экспериментальной установки, а происходит от образования тепла на месте. Это открытие популярная на тот момент теория теплорода объяснить не могла. В последующие годы Джоуль работал над определением механического эквивалента тепла, то есть связи между единицами измерения механической энергии и тепла, что было основополагающим шагом для установления законов термодинамики и сохранения энергии. В 1850 году он получил значение в 4, 159 джоуля на калорию, что очень близко значению, принятому сегодня (4, 1868 джоуля на калорию). Использованное устройство схематически изображено на рисунке. Оно представляет собой груз (справа), связанный с помощью провода с осью, вращающей лопасти внутри сосуда, наполненного водой и термически изолированного. Благодаря вращению лопастей температура воды увеличивалась на величину, которую Джоуль смог измерить с точностью в 3/1000 градуса, что в то время было невероятно. Исследованиям Джоуля были возданы многочисленные почести; среди прочих наград он получил медаль Королевского общества в 1852 году и медаль Копли в 1878 году. Также ученый возглавлял Британскую ассоциацию развития науки в 1872 и 1887 годах. В его честь единица энергии в Международной системе единиц носит название джоуль.


Потребовалось много времени, прежде чем наука поняла, что тепло на самом деле — это тип энергии и для объяснения связанных с ним явлений не требуется никакого теплорода. Эксперименты, которые ставил с 1843 года английский физик Джеймс Джоуль (1818-1889), означали конец теории теплорода. Однако это понятие оставило в науке очень глубокий след, и сегодня все еще используются термины, ставшие порождением этой теории, - такие как тепловой поток от одного тела к другому, количество теплоты, удельная теплоемкость, скрытая теплота или единица измерения «калория».

ДЖОУЛЬ И МЕХАНИЧЕСКИЙ ЭКВИВАЛЕНТ ТЕПЛА

В июле 1847 года в Оксфорде прошло собрание Британской ассоциации развития науки. На нем Томсон опять встретился с Фарадеем и познакомился с Джоулем, который вновь представил свои работы. Надо сказать, что Джоуль отличался крайней настойчивостью. Он уже представлял результаты своих экспериментов, начатых в 1838 году, на собрании ассоциации четыре года назад, в Корке. Еще тогда Джоуль уверял, что «в магнитоэлектричестве есть участник, способный посредством простых механических средств разрушать или вырабатывать тепло». Из этого следовало, что возможно «превращение тепла в механическую мощность и наоборот в соответствии с числовыми отношениями», которые Джоуль и определил. Ученый доказал преобразование работы в тепло (но не тепла в работу), однако его наблюдения не встретили отклика.

Два года спустя, на собрании в Кембридже, он сделал вторую попытку. В секции химии Джоуль представил работу, озаглавленную «О механическом эквиваленте теша», где предложил новую оценку этой величины. Но, как и в Корке, эта работа не вызвала никаких обсуждений. На конгрессе в Оксфорде он наконец-то смог привлечь внимание некоторых присутствующих к своим открытиям. В 1885 году Джоуль так вспоминал произошедшее тогда:

«Когда я снова поднял ее [тему механического эквивалента тепла] на конгрессе [в Оксфорде] в 1847 году, ведущий предложил, чтобы я, так как программа заседания очень плотная, не читал свою статью, а ограничился кратким словесным описанием своих экспериментов. Я попытался сделать это, и так как не было приглашения к дискуссии, сообщение прошло бы незамеченным, если бы не один молодой человек, который своими умными замечаниями вызвал оживленный интерес к новой теории. Этим молодым человеком был Уильям Томсон, который [...] сейчас, возможно, является самым большим авторитетом в науке нашего времени».

Через несколько лет, в 1882 году, Томсон также вспоминал этот момент:

«Я познакомился с Джоулем на конгрессе в Оксфорде, и у нас сразу завязалась дружба из тех, что длятся всю жизнь. Я услышал его выступление и почувствовал себя обязанным встать и сказать ему, что он ошибается, поскольку истинное механическое значение тепла должно быть, при маленьких разницах в температуре, пропорционально квадрату его количества. Я знал по закону Карно, что это именно так. Но по мере того как я слушал, я видел, что Джоуль действительно описывает великую истину и великое открытие. Следовательно, вместо того чтобы встать с возражением в течение заседания, я дождался его конца и сказал это Джоулю лично в конце собрания. [...] Затем мы долго разговаривали на эту тему. Я получил идеи, которые никогда до этого не приходили мне в голову, и также, думаю, предложил что-то, достойное рассмотрения Джоуля, рассказав ему о теории Карно. С тех пор мы стали друзьями. Статья Джоуля оказалась большой сенсацией. Фарадей был там, и она очень его впечатлила, хотя он полностью не осознал нового видения. И через совсем небольшое время Стокс сказал мне, что чувствует в себе стремление стать джоулитом».

Следует понимать, что Томсон в те минуты оказался на распутье. С одной стороны, он был убежден в истинности теории Карно: некоторое количество тепла может проходить через машину Карно и производить при этом механическую работу без потерь; в машине Карно, работающей противоположным образом, некоторое количество механической работы используется для перемещения некоторого количества тепла от полюса низкой температуры к полюсу высокой температуры. Однако на него произвели сильное впечатление точные экспериментальные техники Джоуля, которые четко указывали на возможность выработки тепла с помощью механической работы. В письме отцу Уильям сообщал:

«Я уверен, что многие идеи Джоуля ошибочны, но, похоже, я открыл несколько фактов чрезвычайной важности, например то, что тепло развивается от трения движущихся флюидов».

Он также послал работы Джоуля своему брату Джеймсу: «Прилагаю статьи Джоуля, которые тебя удивят».

МАШИНА КАРНО

Машина Карно — это идеальная машина, представляющая собой цилиндр, заполненный идеальным газом, который приводит в действие поршень. Машина работает между двумя источниками постоянной температуры. Как видно, она работает между двумя кривыми «давление - объем» для двух различных температур, Т1 > Т2. Эти кривые иллюстрируют закон, который связывает давление (Р), объем (V), число молей (n) и температуру (T) идеального газа: PV = nRT, где R = 8, 314472 м3 Па К-1 моль-1 — константа. Кроме того, чем выше температура газа, тем больше его кинетическая энергия, то есть энергия, вызванная скоростью его молекул.

Четыре этапа цикла Карно

На первом этапе газ испытывает изотермическое расширение, вступая в контакт с полюсом температуры Т1 (обозначен белой структурой, окружающей поршень); его давление уменьшается с Р1 до Р2, объем увеличивается с V1 до V2 и он приобретает тепло от этого полюса. Однако температура газа не меняется, и его кинетическая энергия остается прежней, а все переданное газу тепло используется для совершения механической работы в поршне (который толкается газом вверх). Следующий этап — это адиабатическое расширение, то есть без теплообмена с внешней средой. Температура газа уменьшается с Т1 до Т2, его объем увеличивается до V3, а давление уменьшается до Р3. Работа поршня осуществляется за счет кинетической энергии газа, которая уменьшилась, поскольку это же произошло с температурой. Третий этап — это изотермическое сжатие. Газ вступает в контакт с источником температуры Т2, его объем уменьшается до V4, давление увеличивается до Р4. Поскольку температура не меняется, то не меняется и кинетическая энергия газа, и работа производится благодаря теплу, переданному газом источнику низкой температуры. Последний этап — это адиабатическое сжатие. Объем газа сокращается, его давление и температура растут до первоначальных значений, и за счет увеличения кинетической энергии осуществляется работа. Машина может работать, извлекая тепло из теплого источника (при этом получается тепловой насос) или из холодного (тогда получается охлаждающая машина). Производительность (то есть частное между произведенной работой и теплом, поглощенным из теплового полюса Т1 машины Карно равна


Формула устанавливает максимальный предел производительности любой тепловой машины, работающей между Т± и Т2. Здесь W— произведенная работа, Q — тепло, переданное от источника тепла газу.


АБСОЛЮТНАЯ ТЕМПЕРАТУРНАЯ ШКАЛА

Существовал один вопрос, связанный с опытами Джоуля и теорией Карно, который имел для Томсона большое значение — как теоретическое, так и практическое: измерение температуры и, конкретнее, установление температурной шкалы, основанной на известных физических законах, а не на тепловых свойствах материалов, из которых производили термометры. Точка зрения Томсона отличалась от общепринятой.

ТЕМПЕРАТУРНЫЕ ШКАЛЫ

Температуру измеряют с помощью термометров — инструментов, в которых используются свойства веществ, способных достаточно сильно менять свою температуру. В 1592 году Галилей сконструировал термоскоп, в котором использовалось свойство воздуха (давящего на столбик воды) сжиматься или расширяться при охлаждении или нагревании. В 1612 году итальянский врач Санкториус Санторио добавил ктермоскопу шкалу. В 1714 году немецкий физик Даниель Габриель Фаренгейт изобрел ртутный термометр. Относительные температурные шкалы присваивают заданные значения двум неподвижным отправным точкам. Фаренгейт воспользовался смесью воды и хлорида аммония и установил О °F и 212 °F для замерзания и кипения смеси. В 1730 году французский физик и энтомолог Рене Антуан Фершо Реомюр изобрел спиртовой термометр со шкалой в 80 градусов: 0°R — для замерзания воды, и 80°R — для ее кипения.


В 1742 году шведский физик и астроном Андерс Цельсий установил шкалу, носящую его имя, назначив 0 и 100 градусов температуре замерзания и кипения чистой воды. Шкала была инвертирована в 1743 году Жаном Кристеном, французским эрудитом, и в 1745 году — Карлом Линнеем, шведским натуралистом. Абсолютные шкалы основаны на единственной точке — абсолютном нуле — и не зависят от свойств веществ. В 1852 году Томсон предложил одну из таких шкал, в которой использовал градус Цельсия. В 1859 году шотландский физик Уильям Джон Макуорн Ранкин предложил абсолютную шкалу, основанную на градусе Фаренгейта. Следующие выражения (они соответствуют шкалам Фаренгейта, Реомюра, Цельсия и Ранкина) связывают эти исторические шкалы со шкалой Кельвина:


Кельвин, единица измерения температуры в Международной системе, определяется как 1/273, 16 части температуры тройной точки воды. В тройной точке вещества одновременно существуют в равновесии при заданном давлении три состояния этого вещества. В случае с водой это происходит при 273, 16 К при парциальном давлении пара в 611, 73 Па. Важность тройной точки — в том, что ее можно установить экспериментально с большей точностью, чем другие, и это облегчает калибровку приборов. С помощью тройных точек различных веществ в 1990 году была установлена международная шкала МТШ-90, позволяющая сравнить измерения температуры, осуществленные в любой лаборатории.

В первые годы XVIII века французский физик Гийом Амонтон (1663-1705) понял, что при охлаждении газов при поддержании постоянного давления их объем уменьшается в линейной зависимости от температуры. Это уменьшение температуры не может дойти до предела, в котором объем газа был бы равен нулю, поскольку любая реальная физическая система должна иметь объем. Следовательно, можно сделать вывод о существовании минимальной температуры - абсолютного нуля, ниже которого температура не сможет опуститься. Амонтон с помощью воздушного термометра при постоянном давлении сделал вывод, что абсолютный ноль должен соответствовать примерно 230-240 °С ниже точки таяния льда.

Позже проблемой заинтересовались другие исследователи. Швейцарский математик и физик Иоганн Генрих Ламберт ( 1728-1777), пользуясь термометром постоянного объема, получил значение, равное -270, 3 °С. На конгрессе в Кембридже 1845 года Джоуль, основываясь на собственных экспериментах, привел значение минимальной температуры, равное приблизительно 250 °С ниже точки замерзания воды. В 1847 году опубликовал свою оценку и Реньо: -272, 75 °С.

Неизвестно, насколько эти результаты или их обсуждение с Джоулем могли повлиять на интерес Томсона к проблеме. Однако поставленный вопрос означал большой сдвиг для физики. Ученого не удовлетворяло, что все определения были основаны на измерении температуры газов. Как он знал по своему личному опыту, в лабораториях его времени очень часто использовались газовые термометры. Априори они могли показаться подходящими для установления абсолютной температурной шкалы, поскольку предполагалось, что поведение всех газов, которые в них использовались, соответствует модели идеальных газов: если поддерживать давление газа постоянным, то его объем будет увеличиваться или уменьшаться линейно и прямо пропорционально температуре. Следовательно, это казалось идеальным механизмом для измерения температур и, что еще более важно, давало возможность установить единую температурную шкалу.

Однако реальные газы только похожи на идеальные, но не являются таковыми, и закон идеальных газов не всегда описывает их поведение с достаточной точностью. Каждый газовый термометр, в зависимости от конкретного используемого в нем газа, измерял температуру по-разному, и хотя эти приборы можно было откалибровать между собой, отсутствие независимого метода измерения температур не позволяло понять, показания какого из них наиболее достоверны.

В октябре 1848 года Томсон опубликовал в «Философском журнале» работу под названием «Об абсолютной температурной шкале, основанной на теории движущей силы тепла Карно и вычисленной на основе наблюдений Ренъо», в которой подошел к проблеме с неожиданной стороны. Томсон писал:



Поделиться книгой:

На главную
Назад