Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Измерения и меры - Александр Филиппович Плонский на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В 1889 году Международное бюро мер и весов изготовило 34 эталона метра и 43 эталона килограмма. Они были сделаны из сплава платины с 10 % металла иридия. Такой сплав химически устойчив (не растворяется в кислотах), достаточно твёрд и почти не расширяется при повышении температуры. Эталон метра изображён на рис. 5. Эталон килограмма (помещённый для хранения под два стеклянных колпака) — на рис. 6.

В том же году были утверждены международные эталоны метра и килограмма, а также эталоны для государств, подписавших метрическую конвенцию (соглашение). Россия получила по жребию эталоны метра № 28 и № 11 и эталон килограмма № 12. Эталон метра № 28 и эталон килограмма № 12, хранящиеся в Ленинграде, во Всесоюзном научно-исследовательском институте метрологии им. Д. И. Менделеева, признаны основными эталонами длины и веса (массы) СССР. Насколько же различаются между собой эталоны различных стран? Исследования показали, что эталоны метра отличаются друг от друга не более чем на 0,1 микрона (микрон — тысячная доля миллиметра). Эталоны килограмма, судя по измерениям, сделанным спустя 50 лет с момента их изготовления, отличаются друг от друга не более чем на 0,2 миллиграмма.


Рис. 6. Эталон килограмма.

Сохранить такую точность в течение долгого времени удаётся благодаря исключительно тщательному «уходу» за эталонами. Эталоны нуждаются в абсолютном покое. Пользуются ими очень редко, чтобы они не изнашивались и не изменяли своего значения. По этой же причине эталоны хранятся под стеклянными колпаками или в специальных футлярах. Температура в хранилищах поддерживается постоянной, чтобы размеры эталонов не менялись. Кроме того, при изменении температуры воздух в помещении начинает циркулировать, а это способствует накоплению пыли. Известно, например, что стеклянные колпаки-абажуры для ламп особенно сильно пылятся изнутри. И вот почему. Когда лампа горит, воздух, нагреваясь, расширяется и частично выходит из-под колпака наружу. Когда же лампа выключается, колпак остывает и засасывает воздух извне. При этом содержащаяся в воздухе пыль оседает на внутренней поверхности колпака. Такая же картина наблюдается в помещениях, где температура колеблется.

Но почему нужно оберегать эталоны от пыли? Пыль вредна тем, что при удалении её на поверхности эталона могут появляться мельчайшие царапины, а это понизит его точность.

ОТ ЭТАЛОНА К «РАБОЧЕЙ» МЕРЕ

В технике и в быту находят применение сотни тысяч различных мер. Ясно, что поверять каждую из них непосредственно по государственному эталону практически невозможно, не говоря уже о том, что от частого употребления он быстро бы износился и утратил первоначальную точность. Как же быть?

Оказывается, вопрос решается сравнительно просто. Между государственным эталоном и рядовой «рабочей» мерой существует ещё ряд промежуточных звеньев.

Обычно у каждого основного государственного эталона есть несколько «двойников» — эталонов-копий, которые применяются для поверки так называемых «рабочих эталонов». Рабочие эталоны используются в свою очередь для поверки образцовых мер меньшей точности. А уже с образцовыми мерами сличается вся масса рабочих мер, применяемых для практических измерений.

Кроме эталонов-копий, имеются ещё «эталоны-свидетели». С ними сравнивают государственный эталон, если в его правильности возникает какое-либо сомнение. Таким образом, единственное назначение «эталонов-свидетелей» — создать уверенность в неизменности основного эталона.

Государственный эталон, эталоны-копии и эталоны-свидетели — это «хранители» единицы измерений. Рабочий же эталон и другие образцовые меры служат для «передачи» и «размножения» единицы. Наконец, обычные рабочие меры предназначены для повседневного пользования.

ДЛЯ ЧЕГО НУЖНЫ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Только немногие меры сами по себе достаточны для измерений. Таковы, например, меры длины. Приложив линейку к измеряемому телу, мы сразу узнаем его длину. А как быть, если нужно измерить, положим, вес тела?

Всякий знает, что для этой цели, помимо гирь, нужны ещё и весы, то есть измерительный прибор.

Таким образом, измерительные приборы служат как бы посредниками между измеряемой величиной и мерой.

На рис. 7 показаны простые рычажные весы. На одну чашку кладётся гиря, а на другую — взвешиваемое тело. Если оно весит столько же, сколько и гиря, то чашки весов уравновесятся.


Рис. 7. Простые рычажные весы.

Но не все единицы измерений имеют свои меры. Нет их у единиц скорости, времени и т. д. Эти меры невозможно осуществить. В таких случаях применяются так называемые «показывающие» приборы, которые позволяют обойтись вовсе без мер. Показывающие приборы очень удобны в обращении, поэтому ими часто пользуются даже когда возможно применение мер. По такому принципу устроены, например, пружинные весы (рис. 8).

Если подвесить на пружине груз, то пружина растянется тем сильнее, чем больше он весит. Значит, чтобы измерить вес груза, достаточно определить, насколько растянулась пружина. Это делают с помощью шкалы — линейки с делениями, по которой движется стрелка, прикреплённая к пружине.

Прежде чем пользоваться пружинными весами, их нужно проградуировать. Градуировка состоит в следующем. К пружине подвешиваются гири различного веса, скажем, 1 килограмм, 2 килограмма, 3 килограмма и т. д., причём всякий раз на шкале против стрелки делается соответствующая пометка. Промежутки между пометками делятся на равное число более мелких частей. В дальнейшем стоит посмотреть, на какое деление шкалы показывает стрелка весов, и мы уже знаем вес взвешиваемого предмета[3].

Каждый из нас часто пользуется такими показывающими приборами, как часы, термометр и барометр.

При езде в автомобиле мы наблюдаем за стрелкой спидометра — так называется показывающий прибор для измерения скорости (по-английски спид — скорость).

Во многих квартирах есть электрический счётчик — прибор, показывающий расход электроэнергии.

Альпинист, взбираясь на вершину горы, измеряет высоту по альтиметру. Этот прибор устанавливается также на самолётах, аэростатах и т. д.

Существуют приборы для измерения глубины моря, влажности воздуха, твёрдости различных тел, величины кровяного давления и многие другие. С каждым годом человек создаёт всё новые и новые измерительные приборы, облегчающие его труд и способствующие дальнейшему росту науки и техники.


Рис. 8. Пружинные весы.

Приборы очень разнообразны, но все они имеют общие «черты», позволяющие характеризовать работу любого прибора. Они обычно указываются в специальном «аттестате», прилагаемом к прибору. Об этом мы сейчас и расскажем.

«ЧЕРТЫ» ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Пусть на гире обозначено «5 кг». Это её номинальное (то есть указанное, обозначенное) значение. В действительности же вес гири может быть несколько иным, например 5 килограммов и 10 граммов.

Правильна ли такая гиря? Можно ли ею пользоваться?

Правильность любой меры или измерительного прибора оценивается значением их погрешности. Погрешностью называют разницу между номинальным и действительным значениями меры, то есть между тем, что должно быть, и тем, что есть на самом деле.

Значит, в нашем случае погрешность равна 10 граммам. Это составляет 0,2 % от номинального значения меры; для точных технических измерений такая гиря не годится, а для более грубых вполне подходит.

А если бы номинальное значение гири равнялось, скажем, 50 граммам, то погрешность в 10 граммов составила бы уже 20 %, что вообще недопустимо.

В зависимости от назначения меры или измерительного прибора устанавливают пределы допустимой погрешности. Если при поверке оказывается, что погрешность не выходит из этих пределов, мера или прибор считаются правильными. Чем меньше погрешность, тем мера точнее.

На рис. 9 изображена обычная чертёжная линейка. Деления на ней отстоят друг от друга на миллиметр (говорят, что «цена» деления равна одному миллиметру). На глаз каждое деление можно разбить ещё пополам. Значит, такой линейкой можно мерить с погрешностью до 0,5 миллиметра. Измерив, например, спичку, мы скажем, что её длина равна 47 миллиметрам. А на самом деле в ней может быть, например, 47,2 миллиметра или 46,7.


Рис. 9. Чертёжная линейка с «миллиметровыми» делениями.


Рис. 10. Штангенциркуль.


Рис. 11. Микрометр.

Если же нужна большая точность, пользуются штангенциркулем (рис. 10), микрометром (рис. 11) или миниметром (рис. 12). Всё это измерительные приборы для точного определения длины. Погрешность штангенциркуля не превышает 0,1 миллиметра, микрометра — 0,01 миллиметра, а миниметра — всего 0,001 миллиметра (1 микрон).


Рис. 12. Миниметр.

Рассмотрим еще один признак, характеризующий измерительные приборы. Это — чувствительность.

Допустим, что нам нужно измерить вес… песчинки. Если бросить её на чашку торговых весов, какие мы привыкли видеть в магазинах, то их стрелка даже не шелохнётся — весы не почувствуют веса песчинки (рис. 13, а). Другое дело, если ту же песчинку положить на чашку аптекарских весов (рис. 13, б). Под тяжестью песчинки чашка сразу же опустится.

Говорят, что аптекарские весы чувствительнее торговых. Чем более чувствителен прибор, тем меньшую величину можно измерить с его помощью.

Отметим ещё такой признак мер и измерительных приборов, как их изменчивость. Иногда бывает так: измеряя какую-либо величину, мы всякий раз получаем близкие, но всё же не совпадающие значения. При этом измерения происходят в одних и тех же условиях и ведутся очень тщательно. В чём тут дело?

Оказывается, причина скрыта в самом измерительном приборе. Трение подвижных частей, изменение упругости пружин, тепловое расширение деталей приводят к тому, что между отдельными показаниями прибора при одном и том же действительном значении измеряемой величины всегда наблюдается некоторая разница.

Наибольшая разница между отдельными значениями меры или показаниями измерительного прибора и называется изменчивостью.


Рис. 13. Взвешивание песчинки на торговых и аптекарских весах.

Изменчивость — это свойство самого прибора, в неё не входят ошибки и погрешности, зависящие от человека, производящего измерение. А между тем такие погрешности неизбежны. Их можно снизить, так что они окажутся значительно меньше изменчивости, но совершенно устранить их нельзя. Об этом стоит рассказать подробнее.

КАК ЧЕЛОВЕК УЧАСТВУЕТ В ИЗМЕРЕНИЯХ

Что происходит при измерении? Мы сравниваем измеряемую величину с единицей измерений при помощи меры или измерительного прибора. Происходящие при этом явления (например, перемещение стрелки весов) через органы чувств воздействуют на наш мозг. Следовательно, оценивая достоверность измерений, нельзя не учитывать погрешностей, которые возникают именно за счёт органов чувств (обманы зрения, слуха и т. д.).


Рис. 14. Параллельны ли вертикальные линии?

Убедиться в возможности таких ошибок нетрудно. Посмотрите на рис. 14. Нам кажется, что вертикальные линии на нём идут вкось и вкривь. На самом деле они строго параллельны.

Если рассматривать на просвет рис. 15, то вертикальные линии кажутся искривленными. Но переверните страницу, и вы убедитесь, что они прямые.

Или взгляните на рис. 16. Какие отрезки равны между собой: АБ и БВ или ГД и ДЕ? А теперь возьмите линейку и измерьте длину каждого отрезка.

Как видите, заключения, сделанные «на глаз», далеко не всегда бывают верны.


Рис. 15. Взгляните на просвет. Прямолинейны ли вертикальные линии?

Не всегда можно доверяться и слуху. Вот что говорит по этому поводу известный метролог проф. М. Ф. Маликов: «…Достаточно поставить наблюдателя в условия, не совсем обычные для восприятия звука, чтобы он сделался жертвой самых грубых ошибок… Если мы почему-либо вообразим, что источник какого-либо слабого звука находится не вблизи нас, а значительно дальше, то звук будет нам казаться гораздо громче… Звуки падения капель из крана водопровода, находящегося недалеко от наблюдателя, если он не знает причины их происхождения, могут показаться столь же громкими, как удары молота по наковальне, раздающиеся где-либо вдали…» Значит, силу звука на слух оценить трудно.


Рис. 16. Какие отрезки равны между собой: АБ и БВ или ГД и ДЕ?

Таких примеров можно привести очень много. Наши органы чувств, если им слишком доверяться, могут привести к досадным ошибкам.


ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

Мы видели, что результат измерений никогда не бывает абсолютно правилен. Всегда есть какие-то погрешности измерений, которые возникают за счёт изменчивости и неточности прибора, непостоянства условий (температуры, влажности, атмосферного давления), а также из-за несовершенства наших органов чувств и неверных действий человека, производящего измерение. Вот почему погрешность измерения всегда больше погрешности самого прибора.

Полностью устранить погрешности невозможно. Однако их можно уменьшить до чрезвычайно малой величины. В этом и заключается одна из важнейших задач метрологии. Чтобы решить такую задачу, нужно разобраться во множестве причин, вызывающих различные погрешности; необходимо также установить классификацию погрешностей, то есть разбить их на несколько групп по какому-либо признаку. Вот об этом мы и поговорим сейчас. Совершим экскурсию… в тир.

Вы стреляете по мишени, стремясь попасть в её центр. Проверим результаты вашей стрельбы (рис. 17). Попадания разбросаны вокруг центра мишени, причём в центре они наиболее скучены.

Посмотрим, как стреляет ваш товарищ. На его мишени видна совсем иная картина (рис. 18). Попадания здесь смещены к краю мишени; место, где их больше всего, лежит в стороне от центра. Расстояние между точкой, куда попала пуля, и центром мишени характеризует погрешность стрельбы. Погрешность зависит от многого: от самого стрелка, от качества оружия, от силы ветра и т. д.




Поделиться книгой:

На главную
Назад