Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) - Хоакин Наварро на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

arctg (x) = x — (x3/3) + (x5/5) — …

выводятся быстро сходящиеся ряды, с помощью которых Мэчин рассчитал π до сотого знака. Вне всякого сомнения, большой заслугой Мэчина является полученная им формула, записываемая в тригонометрическом виде, которую можно быстро преобразовать в ряд. Далее, когда мы будем рассказывать о Захариусе Дазе, то упомянем еще один любопытный факт, имеющий отношение к Мэчину.

Формулы, подобные той, что вывел Мэчин (так называемые формулы Мэчина), очень распространены, их изучением занимались многие исследователи независимо друг от друга. Мэчин стал первым среди них.

В девятом томе первого издания Французской энциклопедии, созданной силами Дени Дидро, упоминается Том Фанте де Ланьи (1660–1734), преподаватель гидрографии и математики, чей некролог редактировал сам Фонтенель. В 1719 году де Ланьи вычислил (сущая безделица!) 112 знаков π, использовав тот же степенной ряд, что и Шарп.

ЗАДАЧА, ПЕРЕД КОТОРОЙ НЕЛЬЗЯ УСТОЯТЬ

Математик Том Фанте де Ланьи (1660–1734), родившийся во французском городе Лионе; занял свое, пусть скромное, место в истории благодаря тому, что первым верно вычислил 112 знаков числа π — абсолютный мировой рекорд в то время. С ним также связан занимательный эпизод, произошедший незадолго до его смерти. Рассказывают, что его коллега Мопертюи пришел навестить его на смертном одре и обнаружил тело без признаков жизни. Чтобы удостовериться в этом, Мопертюи еле слышно прошептал: «Сколько будет 12 в квадрате?», предполагая, что ни один математик не устоит перед подобной задачей. Де Ланьи вскочил, громко воскликнул: *144!* — и умер.

* * *

На самом деле де Ланьи вычислил 127 знаков, но лишь 112 из них были верными, что подтвердил Георг Вега (1754–1802). Этот немецкий математик к концу жизни был удостоен высокого титула барона в Австрийской империи, что не спасло его от судьбы простолюдина: он был убит неким вором из-за денег и часов. В 1794 году Вега использовал одну из формул Мэчина, которую вывел Эйлер, чтобы вычислить 137 знаков π, на этот раз без ошибок. Он использовал следующую формулу:

π/4 = 5∙arctg (1/7) + 2∙arctg (3/79).


Банкнота в 50 словенских толаров, на которой изображен Гэорг Вега, а также геометрические построения и фазы Луны. На обороте слева от изображения Солнечной системы можно увидеть фасад Словенской академии наук в Любляне.

Между 1760 и 1800 годами параллельно были получены заслуживающие упоминания результаты. Так, Иоганн Генрих Ламберт (1728–1777), создатель неевклидовой геометрии, в 1761 или 1767 году (точная дата неизвестна) доказал иррациональность числа π. Адриен Мари Лежандр (1752–1833) несколькими годами позже показал, что π2 также иррационально. Возможно, наиболее значимым является достижение великого Леонарда Эйлера (1707–1783), который искал многочисленные ряды для вычисления π и предположил, что число π является трансцендентным. Гипотеза Эйлера тем примечательнее, что само существование трансцендентных чисел доказал Жозеф Лиувилль (1809–1882) лишь много лет спустя, в 1840 году! Лиувилль также нашел первое трансцендентное число.

ИОГАНН ГЕНРИХ ЛАМБЕРТ (1728–1777)

Этот немецкий математик, астроном и врач изобрел гигрометр и фотометр. Он также первым доказал иррациональность числа тс, но этим его вклад в математику не ограничивается. Он изучал гиперболические функции и связал их с неевклидовой геометрией. Также он внес заметный вклад в картографию, и его имя носит одна из географических проекций. Ламберт был самоучкой, но когда речь заходила о признании его собственных заслуг, скромность покидала его. Фридрих II, сделав математика членом Прусской академии наук, спросил Ламберта, в каких же науках он преуспел. «Во всех», — последовал ответ, близкий к истине. Король с иронией заметил: «Значит, вы разбираетесь и в математике?» — «И в ней тоже», — честно ответил Ламберт. Несколько раздосадованный, Фридрих II продолжил: «И кто же был вашим учителем?» — «Я сам, Ваше Величество!» — и снова Ламберт не погрешил против истины. Король иронично сказал: «Ну и ну! Я стою перед вторым Паскалем!» — «По меньшей мере», — был ответ. Его доказательство иррациональности числа тс достаточно изобретательно и доступно для понимания. С помощью цепных дробей Ламберт показал (это наиболее сложная часть его доказательства), что если х — ненулевое рациональное число, то tg х иррационально. Так как tg π/4 = 1, а единица является рациональным числом, следовательно, π/4 и π являются иррациональными.

* * *

Говоря о вычислении π, мы специально не упоминаем об Эйлере, так как он никогда не добивался рекордной точности вычислений. Вероятно, это случилось лишь потому, что он не уделял этому достаточно внимания: как-то раз, используя формулы Мэчина, он вычислил 20 знаков π всего за час!

В 1841 году Уильям Резерфорд (1798–1871) использовал формулу Мэчина

π/4 = 4∙arctg (1/5) — arctg (1/79) + arctg (1/99).

и получил 208 знаков π, из которых 152 были верными. В 1853 году он вернулся к этой задаче и с помощью формулы Мэчина установил новый рекорд — 440 знаков.

ЧТО ТАКОЕ ТРАНСЦЕНДЕНТНОЕ ЧИСЛО?

Число называется алгебраическим, если оно является корнем многочлена

anxn + an-1xn-1 +… + a1x + a0

все коэффициенты которого аn, аn-1…., a1, а0 являются рациональными числами. В высшей математике доказывается, что любое число, которое можно получить, используя лишь циркуль и линейку конечное число раз, обязательно является алгебраическим. Неалгебраическое число называется трансцендентным. Таким образом» очевидно, что трансцендентное число нельзя получить построением с помощью циркуля и линейки.

* * *

Иоганн Мартин Захариус Дазе (1824–1861) занимает особое место в истории математики. Его друг Шульц фон Штрасницкий (1803–1852) показал ему следующую формулу Мэчина:

π/4 = arctg (1/2) + arctg (1/5) + arctg (1/8).

и в 1844 году Дазе вычислил с ее помощью 200 знаков π. Невероятно, но на это ему потребовалось лишь два месяца, и все расчеты он производил в уме. Он был настоящим человеком-компьютером и обладал невероятной способностью к вычислениям. Сам Гаусс, известнейший математик своего времени, советовал властям использовать Дазе для расчетов. Была учреждена премия, вручаемая тому, кто получит список делителей чисел N таких, что 7 000 000 < N < 10 000 000. Дазе начал работать над этой задачей, но смерть помешала ему найти решение. Дазе страдал синдромом саванта: он был поразительно одарен в математике, имел невероятную память, но в остальном был весьма и весьма средних способностей. Например, он мог перемножить два восьмизначных числа меньше чем за минуту. Для перемножения 100-значных чисел ему требовалось около девяти часов. Он обладал почти фотографической памятью, что позволяло ему с удивительной точностью пересчитывать любые предметы, будь то овцы, буквы или костяшки домино. Писатель и ученый Артур Кларк в письме к палеонтологу Стивену Джею Гулду задавался вопросом, какую пользу для эволюции биологического вида может иметь способность вычислить в уме 200 знаков числа π. Ответ на этот вопрос нам неизвестен.

В 1847 году датский астроном и математик-самоучка Томас Клаусен (1801–1885), используя две формулы Мэчина:

(1/4)∙π = 2∙arctg (1/3) + arctg (1/7),

(1/4)∙π = 4∙arctg (1/5) — arctg (1/239).

точно вычислил 248 знаков Я. Он также ошибся в вычислениях, но допустил ошибку в самом конце расчетов, всего вычислив 250 знаков.

В 1853 году его немецкий коллега Якоб Гейнрих Вильхельм Леманн (1800–1863) рассчитал 261 знак Я, что принесло ему известность в математике. Его именем также назван кратер на Луне. В следующем году немецкий профессор Рихтер вычислил 330, затем 400 и, наконец, 500 знаков.

Английский математик-любитель Уильям Шэнкс (1812–1882) посвятил свою жизнь вычислениям. Наряду с расчетами других констант в 1875 году он получил 707 знаков π, что увековечено на знаменитом фризе Дворца открытий в Париже. Но это стоило музею немалых затрат: фриз был построен в 1937 году, а в 1946 году Дэниел Фергюсон в статье в журнале Nature показал, что верными являются лишь первые 527 знаков. Огастеса де Моргана (1806–1871) крайне удивил тот факт, что цифра 7 встречается в записи числа π заметно чаще остальных.

Подобно многим ученым, занимавшимся объемными расчетами, Шэнкс допускал ошибки. Он не располагал правильным ответом, с которым можно было бы свериться, поэтому считал свои вычисления верными. Не стоит забывать, что в те времена не было ни компьютеров, ни калькуляторов, все расчеты выполнялись на листах бумаги, испещренных бесчисленными цифрами. Теперь во Дворце открытий можно посмотреть на исправленное значение π. Такова дань уважения объяснимой человеческой ошибке. В наши дни было обнаружено, где именно ошибся Шэнкс, который вычислял π поэтапно.

Не стоит умалчивать о достижении Фергюсона — последнего, о котором мы расскажем, прежде чем перейдем к повествованию о компьютерной эре. В 1947 году он опубликовал 808 знаков π. Для расчетов ему понадобился целый год, арифмометр, много терпения и следующая формула:

π/4 = 3∙arctg (1/4) + arctg (1/20) + arctg (1/1985)

В 1882 году немецкий математик фон Линдеман изрядно охладил пыл тех, кто занимался расчетами числа π, доказав, что оно не является алгебраическим, поэтому не может быть найдено построением с помощью циркуля и линейки. Линдеман доказал трансцендентность числа π. Следует отметить, что в его объемном доказательстве ни разу не использовались геометрические методы. Таким образом, число π покинуло мир геометрии, и это произошло точно в тот день, когда была доказана его трансцендентность.

Оригинальное доказательство Линдемана основано на тех же примерах, которые за несколько лет до того использовал Шарль Эрмит (1822–1901) для доказательства трансцендентности числа е — еще одной известной константы. Линдеман пришел к выводу, что линейная комбинация степеней е с коэффициентами Ak и показателями степени Bk (вещественными или комплексными)

А1ев1 + А2ев2 + … + Аnевn

не может быть равной нулю (за исключением случая, когда все коэффициенты нулевые). Так как знаменитая формула Эйлера может быть записана в следующем виде:

eπi + 1 = eπi + e0 = 0,

она удовлетворяет условиям Линдемана (А1 = A2 = 1, B1 = πi, В2 = 0), поэтому πi не может являться алгебраическим числом, равно как и само π. Число π не является алгебраическим, следовательно, оно трансцендентно. Так как оно трансцендентно, его нельзя получить построением с помощью циркуля и линейки. Конечно, за этим последовали новые, менее сложные доказательства, но и приведенных выкладок было достаточно, чтобы снять завесу тайны с числа π. До Линдемана было известно, что трансцендентность числа π означает, что задача о квадратуре круга нерешаема. Доказательство Линдемана положило конец поискам решения этой легендарной задачи. Было окончательно установлено: задача о квадратуре круга не имеет решения.

Глава 2

Бесконечная незначительность и трансцендентность числа π

Лицо π было скрыто маской. Все понимали, что сорвать ее, оставшись при этом в живых, не сможет никто. Сквозь прорези маски пронзительно, безжалостно, холодно и загадочно смотрели глаза.

Бертран Рассел

Мы подробно, знак за знаком, проследили путь числа π в поисках трансцендентности. Линдеман завершил поиски и расставил все по местам. Теперь мы знаем, что π трансцендентно, его нельзя построить с помощью циркуля и линейки, поэтому задача о квадратуре круга не имеет решения.

Чтобы лучше понять значимость и важность π в мире математики, совершим небольшую экскурсию в неспокойный мир бесконечности. Это отдельная вселенная, очень обширная и запутанная, полная вопросов, лежащих между философией и реальным миром. Этот мир настолько необычен, что некоторыми его аспектами занимается высшая математика, в которой действия с бесконечностью предельно упрощаются. Мы рассмотрим эту область лишь поверхностно, особенно не углубляясь. Тем не менее обзор бесконечности в математике нетривиален, требует определенных усилий, а иногда просто скучен и повергает в уныние.

Предупредив читателя, мы начинаем нашу экскурсию в мир бесконечности с почти что абсурдного вопроса: «Что такое число?» Чтобы ответить на него, начнем с рассмотрения самого представления о числах.

Числа и множества

В основе практически всех основных понятий лежат множества — простые совокупности объектов, которые мы будем перечислять в фигурных скобках, разделяя запятыми. Например,

А = {а, Ь, с, d}

обозначает множество А, образованное символами а, Ь, с и d. Вместо букв могут использоваться животные, люди, музыкальные инструменты и так далее. Это не принципиально. Будем использовать наиболее простое определение, которое эксперты называют «наивным»: будем считать множество совокупностью объектов, называемых «элементами множества».

Множества могут соответствовать друг другу — так обычно говорят о множествах, между которыми установлено взаимно однозначное соответствие. Например, множества

{а, Ь, с} и {Наполеон, , автор этой книги}

соответствуют друг другу, так как между их элементами можно установить взаимно однозначное соответствие и при этом не останется лишних элементов. Напротив, множества

{а, Ь} и {Наполеон, , автор этой книги}

не могут соответствовать друг другу, поскольку в правом множестве всегда будет оставаться один элемент, которому не будет соответствовать никакой элемент левого множества. Из этого следует, что определение числа имеет отношение к множествам. Современное рекурсивное определение числа может выглядеть так:

1 = {0}

2 = {0, 1}

3 = {0, 1, 2}

4 = {0, 1, 2, 3}

5 = {0, 1, 2, 3, 4}

n = {0, 1, 2, 3, 4…. n — 1}

Говорят, что множество А имеет n элементов, если А соответствует n, иными словами, если между А и n имеется взаимно однозначное соответствие. Так, множество игроков футбольной команды на поле содержит 11 элементов, множество апостолов содержит 12 элементов. Согласно вышеприведенному перечню, множество 11 выглядит так:

11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Нет никаких сомнений в том, что между этим множеством и любым множеством футболистов на поле можно установить взаимно однозначное соответствие.

Как же мы определим ноль? Когда говорят, что множество содержит 0 элементов? В «наивной» теории множеств множество является совокупностью объектов. Поэтому логично, что среди таких совокупностей встречаются пустые, которые не содержат ничего — как пустые коробки.

Не стоит путать пустое множество и ничто — метафизический объект, больше подходящий для философских споров. Пустое множество — это как раз то, внутри чего находится ничто. Это множество, которое не содержит элементов, но это не «ничто».

Для обозначения подобного множества (оно единственно, так как все пустые множества равны), французский математик Андре Вейль (1906–1998) предложил использовать датскую букву . Вайль был прекрасно знаком с алфавитами скандинавских языков, поскольку во время Второй мировой войны находился в заключении в Финляндии.

Будем обозначать символом пустое множество, которое не содержит элементов. Его можно определить многими способами, от забавных до вовсе абсурдных, например

 = {летающие коровы}.

Обозначим ноль так:

0 =

и будем говорить, что множество содержит 0 элементов, если между ним и множеством  можно установить взаимно однозначное соответствие.

Для обозначения числа элементов множества А используется следующее выражение: |А|. Также число элементов множества называется его кардинальным числом. Таким образом,

число элементов А = кардинальное число А = |А|.

В целом различают конечные и бесконечные множества, и понятие «число элементов» используется для конечных множеств. Так, конечное множество может иметь 6241 или 123456789012 элементов.

Конечные множества имеют одну особенность: их кардинальное число больше, чем кардинальное число любой из частей множества. Например, если А содержит 7 элементов, любая часть А имеет меньше 7 элементов. Если

А = {гномы из сказки про Белоснежку},

то |A| = 7. Любое подмножество или подгруппа гномов В будет удовлетворять условию |B| < |A| и будет содержать меньше 7 гномов. Эта особенность, которая может показаться тривиальной, на самом деле отличает конечные и бесконечные множества: часть бесконечного множества и само множество целиком могут иметь одинаковые кардинальные числа. Как бы удивительно это ни было, существуют объекты, часть которых содержит столько же элементов, что и целое.

ГОСТИНИЦА С БЕСКОНЕЧНЫМ ЧИСЛОМ НОМЕРОВ

В качестве примера многие математики приводят парадокс гостиницы с бесконечным числом номеров, придуманный немецким математиком Давидом Гильбертом. Он формулируется так. Есть гостиница, владельца которой не пугает толпа народа. Все номера гостиницы пронумерованы от 1 и далее в порядке возрастания. В сезон отпусков гостиница оказалась полностью заполнена, к радости ее владельца. Однако внезапно китайский туроператор прислал срочное сообщение: на следующий день должно приехать множество китайских путешественников. Для всех них нужно найти номера, но никого из уже заселившихся постояльцев выселять нельзя. Владелец отеля прекрасно знает математику и без труда нашел решение. Он попросил всех постояльцев переехать в комнату, номер которой в два раза больше, чем номер прежней комнаты, как показано на рисунке.


В гостинице снова появилось бесконечное число комнат, и всем новоприбывшим путешественникам хватило мест. Счастливый владелец гостиницы с бесконечным числом номеров продолжает работу благодаря своим знаниям о бесконечности.

* * *

Рассмотрим простейший пример бесконечности, образуемой всеми целыми положительными числами, так называемыми натуральными:

 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …}.

Множество натуральных чисел обозначается латинской буквой .

Мы с удивлением обнаружим, что часть N, множество четных чисел, соответствует самому :


Поэтому

|{четные числа}| = ||.



Поделиться книгой:

На главную
Назад