Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Математика и искусство - Александр Викторович Волошинов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Вот как описывает этот день римский философ и сенатор Северин Боэций (480- 524): "И вот однажды, под влиянием какого-то божественного наития, проходя мимо кузниц, он слышит, что удары молотков из различных звуков образуют некое единое звучание. Тогда, пораженный, он подошел вплотную к тому, что долгое время искал, и после долгого размышления решил, что различие звуков обусловлено силами ударяющих, а для того чтобы уяснить это лучше, велел кузнецам поменяться молотками. Однако выяснилось, что свойство звуков не заключено в мышцах людей и продолжает сопровождать молотки, поменявшиеся мерами. Когда, следовательно, Пифагор это заметил, то исследовал вес молотков. Тих молотков было пять, причем обнаружилось, что один из них был вдвое больше Другого и эти два отвечали друг другу соответственно созвучию октавы. Вес вдвое большего был на 4/3 больше веса третьего, а именно того, с которым он звучал в кварту...

Вернувшись домой, Пифагор путем различного исследования стал выяснять, заключается ли в этих пропорциях вся причина созвучия (Трактат о музыке)".

Пифагор со своими учениками. Иллюстрация из книги Франкино Гафурио 'Теория музыки'. Милан. 1492. Гравюры изображают акустические опыты Пифагора и Филолая на сосудах, струнах и трубках, находящихся в отношениях 4:6: :8:9:12:16

Только что появившаяся на свет пифагорейская наука еще не могла отделить абстрактное понятие числа от конкретного материального объекта. Видя в числах сущность явлений, начало начал, пифагорейцы считали, что реальные тела состоят из "единиц бытия" — "математических атомов", различные комбинации которых и представляют конкретные объекты. Даже вселенная мыслилась ими как совокупность чисел. Сами же числа пифагорейцы представляли наглядно и материально: единица трактовалась как абсолютная и неделимая единичность, т. е. точка, "геометрический атом" или первооснова всех чисел; два — как уход в неопределенную даль, т. е. прямая линия, простирающаяся в одном измерении; три — треугольник, образующий плоскость двух измерений, и возврат к определенности; четыре — пирамида, дающая представление о пространстве трех измерений. Вообще, числа 1, 2, 3, 4 играли у пифагорейцев особую роль и образовывали тетрактис, или четверку. По преданию, клятва пифагорейцев гласила: "Клянусь именем Тетрактис, ниспосланной нашим душам. В ней источник и корни вечно цветущей природы". Особая роль тетрактиса, видимо, была навеяна законами музыкальных созвучий, после чего все объекты природы виделись пифагорейцам состоящими из четверок: четверка геометрических элементов — точка, линия, поверхность, тело; четверка физических элементов — земля, вода, огонь, воздух. (Учение Платона о четырех физических элементах, четырех стихиях, мы рассмотрим в главе 7.) Сумма же чисел, образующих тетрактис, равная десяти (10 = 1 + 2+ 3 + 4), считалась священным числом и олицетворяла всю вселенную.

Так родился знаменитый пифагорейский тезис: "Все вещи суть числа". Этот тезис, если забыть о его внутреннем содержании, а тем более если числа отождествлять с цифрами, многим представлялся попросту абсурдным. Далее, считая, что материальный мир состоит из чисел, т. е. из идей, пифагорейцы, сами того не сознавая, становились на позиции философского идеализма, и не случайно именно на почве пифагореизма возникло учение основоположника объективного идеализма в философии Платона. Наконец, интерес к числу часто носил у пифагорейцев религиозно-мистический характер[10]. Но всякое явление следует рассматривать в его историческом окружении "Идеалистическая мистификация чисел у пифагорейцев была следствием неразвитости науки и философии и строя мышления, близкого к мифологическому,- пишет современный болгарский философ Е. Данков.- Но за этой формой нельзя не видеть рационального содержания значение которого все яснее проступает на современном уровне развития научного познания".

Наиболее страстно и убежденно роль числа в познании мира определил знаменитый пифагореец V века до н. э. Филолай. В одном из сохранившихся фрагментов сочинения Филолая "О природе" говорится: "В число же никогда не проникает ложь, потому что она противна и ненавистна его природе, истина же родственна числу и неразрывно связана с ним с самого начала".

Заканчивая разговор о философских аспектах пифагорейского учения о числе, хочется вспомнить и слова великого Гёте. Будучи не только гениальным поэтом, но и выдающимся мыслителем и разносторонним ученым; Гёте стряхнул с пифагорейской мудрости идеалистическую пыль: "Числа не управляют миром, но показывают, как управляется мир".

Перейдем теперь к математической стороне пифагорейского учения о числе. Числа пифагорейцы изображали в виде точек (возможно, камешками, расположенными на песке), которые они группировали в геометрические фигуры. Так возникли числа, сегодня именуемые фигурными:

линейные числа (в современной терминологии это простые числа), т. е. числа, которые делятся на единицу и на самих себя и, следовательно, представимы только в виде последовательности точек, выстроенных в линию (линейное число 5);

плоские числа — числа, представимые в виде произведения двух сомножителей (плоское число 6);

телесные числа, выражаемые произведением трех сомножителей (телесное число 8);

треугольные числа (треугольные числа 1, 3, 6, 10);

квадратные числа (квадратные числа 1, 4, 9);

пятиугольные числа (пятиугольные числа 1, 5, 12)

и т. д. Именно от фигурных чисел пошло выражение "возвести число в квадрат или куб".

Такое фигурное представление чисел часто помогало найти различные числовые закономерности. Например, написав последовательность квадратных чисел, легко увидеть (именно увидеть глазами!)

доказательство следующего математического утверждения:

Аналогичное рассмотрение n-го треугольного числа приводит к равенству

Фигура (обозначенная черными точками), которая, будучи приложенной к основной фигуре (белые точки), образует ей подобную, была названа Аристотелем гномоном. Первоначально слово "гномон" означало солнечные часы — прибор, позволяющий по линиям, которые пересекает тень от вертикального столбика, разделять беспредельность времени на очевидные части. Число для пифагорейцев и есть такой гносеологический гномон, дающий возможность различать вещи и тем самым овладевать ими в сознании. Живые организмы растут именно методом гномона, что позволяет сохранять присущую этим организмам форму.

Вообще, с изучения фигурных чисел, т. е. сумм некоторого числа единиц-точек (камешков), поставленных в виде определенной фигуры, началось изучение сумм числовых рядов. Это в свою очередь позволило Архимеду (ок. 287-212 гг. до н. э.) развить методы нахождения площадей и объемов фигур и тел и вплотную подойти к созданию интегрального исчисления, появившегося, однако, лишь 2000 лет спустя.

Рассмотрение чисел привело пифагорейцев к рассмотрению отношений между ними, т. е. пропорций. Пропорция с равными средними членами определяет среднее значение. По преданию, Пифагору были известны три вида средних значений, которые называли "древними":

арифметическое среднее

геометрическое среднее

гармоническое среднее

Обратим внимание на то, что среднее гармоническое величин а, b, с есть среднее арифметическое обратных величин 1/а, 1/b, 1/с. Пропорции и средние значения пифагорейцы наполняли не только математическим, но и философским и эстетическим содержанием, объясняя с их помощью и музыкальные созвучия, и даже всю вселенную.

Однако история науки, как и сама жизнь, полна неожиданных и драматических событий: среднее геометрическое таило в себе сокрушительный удар по всей пифагорейской системе; более того, нанести этот удар пифагорейцы, истинные рыцари науки, вынуждены были сами себе. Именно пифагорейцы обнаружили, что среднее геометрическое к числам 1 и 2 (в современных обозначениях ) не выражается в виде отношения натуральных чисел, а других чисел древние греки не знали. Говоря языком геометрии, пифагорейцы установили, что диагональ квадрата, сторона которого равна 1, несоизмерима с этой стороной, т. е. отношение диагонали к стороне не выражается никаким целым или дробным числом. Выражаясь языком алгебры, пифагорейцы доказали, что уравнение m2=2n2 не имеет решений во множестве рациональных чисел[11], что и потребовало введения чисел новой природы — иррациональных.

Иррациональность отношения стороны и диагонали квадрата пифагорейцы объясняли тем, что оба этих отрезка состоят из бесчисленного множества точек и поэтому отношение сводится к отношению двух бесконечно больших целых чисел. Хотя эта мысль не выдерживает критики для геометрических объектов, находящихся в рациональных отношениях (ведь они также состоят из бесчисленного множества точек!), по отношению к иррациональным числам она является справедливой. Действительно, всякое иррациональное число можно с любой степенью точности представить в виде отношения двух целых чисел, причем чем больше будут эти числа, тем точнее их отношение будет выражать иррациональное число.

Открытие несоизмеримости (для диагонали квадрата со стороной 1 не было соответствующего числа!) опрокидывало всю философскую систему пифагорейцев, которые были убеждены, что "элементы чисел являются элементами всех вещей и весь мир в целом является гармонией и числом". Это открытие долго держалось в тайне, а ученик Пифагора Гиппас из Метапонта за то, что он открыл недостойным участия в учениях природу пропорции и несоизмеримости, был изгнан из школы Пифагора. Позднее, когда Гиппас погиб во время кораблекрушения, его противники видели в этом наказание богов за разглашение тайны. Следует сказать, что пифагорейцы, не в пример иным ученым, после отчаянной борьбы против открытия, опрокидывавшего символ их "веры" признали свое поражение. Пытаясь выйти из тупика, они стали представлять величины не арифметически — числами, геометрически — отрезками. Так возникла геометрическая алгебра.

Между тем исторически именно это неосознанное открытие иррациональных чисел является наивысшим достижением пифагорейской школы; ему было суждено пережить тысячелетия и стать поворотным этапом в развитии математики, истоком современного математического анализа. С этого открытия начинается эра теоретической математики, ибо обнаружить несоизмеримые величины с помощью опыта невозможно.

Наконец, рассмотрим "музыкальную" сторону пифагорейского учения о числе. Как уже отмечалось, открытие математических закономерностей в музыкальных созвучиях послужило первым "экспериментальным" подтверждением пифагорейской философии числа. "Открытие Пифагора... было первым примером установления числовых связей в природе,- читаем мы в "Фейнмановских лекциях по физике".- Поистине должно быть было удивительно вдруг неожиданно обнаружить, что в природе есть факты, которые описываются простыми числовыми отношениями".

С этого времени музыка, точнее теория Музыки или учение о гармонии, занимает Почетное место в пифагорейской системе Знаний. "Музыкантов"-пифагорейцев интересует не столько музыкальное искусство, реальная музыка звуков, сколько е математические пропорции и соотношения, которые, как считалось, лежат в основе музыки. Многие греческие математики, в том числе Евклид (III в. до н. э.) и Клавдий Птолемей (85? -165?), посвятили музыкальным созвучиям и построению музыкальной шкалы специальные сочинения. Впрочем, поиски математических закономерностей в музыкальных созвучиях вели и через два тысячелетия такие великие математики, как Иоганн Кеплер, Готфрид Лейбниц, Леонард Эйлер.

Титульный лист книги Грегора Райха 'Маргарита философи-ка'. Фрайбург. 1503

Идея музыкальных соотношений настолько увлекла пифагорейцев, что они пытались обнаружить их всюду. В конце концов эта идея приняла "космические масштабы" и переросла в идею "всеобщей гармонии". Пифагорейцы утвердились в том, что вся Вселенная устроена на основе музыкальных, т. е. простых числовых, соотношений, что движущиеся планеты издают "музыку небесных сфер", а обычная музыка является лишь "отзвуком" царящей всюду "всеобщей гармонии" (см. гл. 7).

Таким образом, музыка и астрономия были сведены пифагорейцами к анализу числовых закономерностей, т. е. к арифметике и геометрии. Все четыре дисциплины стали считаться математическими и называться одним словом — "математа". Пифагорейское отношение к музыке как точной науке сохранилось и в средние века. Так, квадривиум (буквально — пересечение четырех дорог) — повышенный курс светского образования в средневековых университетах — состоял из четырех предметов: музыки, арифметики, геометрии и астрономии. "Высшая наука — математика — подразделяется на следующие искусства: арифметику, музыку, геометрию и астрономию — это определение римского писателя VI века Кассиодора (ок. 487- ок. 578).- Арифметика — учение о количестве, выражаемом числом, музыка же — учение, которое рассматривает числа по отношению к явлениям наблюдаемым в звуке". Вместе с тривииумом, содержавшим грамматику, риторику и диалектику, квадривиум составлял так называемые "семь свободных искусств" Это был, по мнению Кассиодора, своп элементарных знаний, необходимых монахам для понимания Библии, которму суждено было на протяжении целого тысячелетия представлять систему средневекового образования.

Как видим, термины "наука" и "искусство" в далекие времена античности практически не различались. Пифагорейцы называли математику и музыку родными сестрами. С тех пор дороги математики и музыки разошлись настолько, что их сопоставление сейчас многим покажется просто недоразумением. А ведь музыка пронизана математикой, как и математика полна поэзии и музыки! Это прекрасно чувствовали древние греки, и доказательство тому — содержание следующей главы.

6. Пифагорова гамма

Почтенный Пифагор отвергал оценку музыки, основанную на свидетельстве чувств. Он утверждал, что достоинства ее должны восприниматься умом, и потому судил о музыке не по слуху, а на основании математической гармонии и находил достаточным ограничить изучение музыки пределами одной октавы.

Плутарх

Строго говоря, речь здесь пойдет о пифагоровом строе, а слово "гамма" вынесено в заголовок потому, что оно у всех ассоциируется с музыкой. Что же такое гамма и строй в музыке?

Гаммой, или звукорядом, называется последовательность звуков (ступеней) некоторой музыкальной системы (лада), расположенных, начиная от основного звука (основного тона), в восходящем или нисходящем порядке. Название "гамма" происходит от греческой буквы Гγ (гамма), которой в средние века обозначали крайний нижний тон звукоряда, а затем и весь звукоряд.

Важнейшей характеристикой музыкального звука является его высота, представляющая отражение в сознании частоты колебания звучащего тела, например струны. Чем больше частота колебаний струны, тем "выше" представляется нам звук.

Каждый отдельно взятый звук не образует музыкальной системы и, если он не слишком громкий, не вызывает у нас особой реакции. Однако уже сочетание двух звуков в иных случаях получается приятным и благозвучным, а в других, наоборот "режет" ухо. Согласованное сочетание двух звуков называется консонансом, несогласованное — диссонансом. Ясно, что консонанс или диссонанс двух тонов определяются высотным расстоянием между этими тонами или интервалом.

Интервалом между двумя тонами назовем порядковый номер ступени верхнего тона относительно нижнего в данном звукоряде, а интервальным коэффициентом I21 двух тонов — отношение частоты колебаний верхнего тона к частоте нижнего[12]:

(6.1)

Рассмотрим теперь некоторую совокупность звуков, нажав, например, на фортепиано последовательно несколько клавиш. Скорее всего, у нас получится бессвязный набор звуков, как говорится, ни складу ни ладу. В других случаях звуки вроде бы подходят, ладятся между собой, но их совокупность покажется оборванной, незаконченной. Эту последовательность так и хочется продолжить до определенной ноты, которая в данной системе звуков кажется наиболее устойчивой, основной и называется тоникой. Итак, звуки в музыкальной системе связаны между собой определенными зависимостями, одни из них являются неустойчивыми и тяготеют к другим — устойчивым.

Но не только тоника и совокупность Устойчивых и неустойчивых звуков определяют характер музыкальной системы. Легко убедиться, нажав подряд восемь белых клавиш от ноты до (гамма до мажор натуральный) и от ноты ля (ля минор натуральный), что эти гаммы звучат по-разному: первая — мажор — звучит бодро и светло, а вторая — минор — грустно и пасмурно[13]. Следовательно, существует и другая характеристика системы звуков — наклонение: мажорное или минорное. Таким образом, мы приходим к одно^ му из самых сложных понятий в теории музыки — понятию лада.

Ладом называется приятная для слуха взаимосвязь музыкальных звуков, определяемая зависимостью неустойчивых звуков от устойчивых, и прежде всего от основного устойчивого звука — тоники, и имеющая определенный характер звучания — наклонение. История музыкальной культуры знает множество ладов, свойственных разным народам и разным временам. Древние греки знали с десяток ладов, а лады некоторых восточных стран и Индии чрезвычайно сложны, своеобразны и непривычны для европейского слуха. Наиболее распространенные современные лады состоят из семи основных ступеней, каждая из которых может повышаться или понижаться, что дает еще пять дополнительных звуков. Таким образом, диатоническая (7-ступенная) гамма лада превращается в хроматическую (12-звуковую). Первой ступенью лада является тоника. Законы строения лада — это целая наука, краеугольный камень музыкознания, а изучению этих законов многие ученые и композиторы посвятили всю свою жизнь.

Парфенон — храм богини Афины Парфенос в Афинах. Возведенный в 447-438 до н. э. зодчими Иктином и Каллистра-том в ознаменование победы над персами, украшенный бессмертными работами скульптора Фидия, Парфенон третье тысячелетие несет в себе поразительную загадку гармонии и величия. Этот шедевр архитектуры, названный Ле Корбюзье грандиозной скульптурой, вписанной в прекрасный ландшафт Пирея, остается прекрасным даже в развалинах

Нас же будут в первую очередь интересовать математические закономерности, описывающие строение лада, т. е. музыкальный строй. Музыкальным строем называется математическое выражение определенной системы звуковысотных отношений. Помимо чисто теоретического интереса строй находит применение при настройке музыкальных инструментов с фиксированной высотой звуков, таких, как фортепиано или орган.

В заключение заметим, что наши эксперименты с нажатием клавиш на фортепиано могут закончиться самым редким и самым приятным феноменом, когда взятая система звуков будет не только принадлежать к какому-либо ладу, но и будет носить осмысленный характер. Такой художественно осмысленный последовательный ряд звуков разной высоты называется мелодией. Это как раз то, что мы так любим напевать в зависимости от нашего настроения — бодрого, грустного, веселого...

После такого кратчайшего экскурса в теоретическое музыкознание мы можем вернуться на берега солнечной Эллады во времена мудрого Пифагора. Попытаемся восстановить рассуждения Пифагора и его учеников при построении пифагорова строя, ибо именно этот строй определил на тысячелетия, если не навечно, все развитие музыкальной культуры, не только европейской, но и восточной. Мы уже говорили, что сам Пифагор не оставил никаких письменных работ, да и наследие пифагорейцев представляется безнадежной грудой развалин, т. е. собранием случайно уцелевших фрагментов и более поздних цитат. Бесспорно, развалины эти прекрасны и поныне поражают воображение, как развалины знаменитого Парфенона, однако многое в этих обломках бесследно утеряно и о целом часто можно только догадываться. И все-таки...

Монохорд — однострунный — был одним из первых музыкальных инструментов древних греков. Это был длинный ящик, необходимый для усиления звука, над которым натягивалась струна. Снизу струна поджималась передвижной подставкой для деления струны на две отдельно звучащие части. На деревянном ящике под струной имелась шкала делений, позволявшая точно установить, какая часть струны звучит. Конечно, как музыкальный инструмент монохорд покажется нам слишком примитивным, однако он был прекрасным физическим прибором и учебным пособием, на котором античные созерцатели постигали премудрости музыкальной грамоты.

Древние уверяли, что уже Пифагор Знал законы колебания струны монохорда и построения музыкальных созвучий (консонансов), однако запись об этих законах мы находим у пифагорейца Архита из Тарента (428-365 гг. до н. э.), жившего На полтора столетия позже Пифагора. Архит был, безусловно, самым выдающимся представителем пифагорейской школы, другом философа Платона и учителем математика Евдокса (ок. 408 — ок. 355 гг. до н. э.), государственным деятелем и полководцем. Многосторонность Архита поразительна: он решил знаменитую де-лосскую задачу об удвоении куба, заслуженно считался крупнейшим пифагорейским теоретиком музыки, первым упорядочил механику на основе математики и свел движения механизмов к геометрическим чертежам, работал над деревянной моделью летающего голубя. По мнению Ван дер Вардена, Архит является автором VIII книги "Начал" Евклида, в которой изложена арифметическая теория пропорций. Как государственный деятель Архит пользовался исключительным уважением: он семь лет подряд избирался стратегом*, хотя по закону стратеги выбирались лишь на один год. Путем искусных дипломатических маневров Архит вызволил из плена Платона и тем самым спас жизнь великому философу. "Славный Архит, земель, и морей, и песков исчислитель..." — писал Гораций.

* (Стратег — в древнегреческих городах-государствах военачальник, облеченный ши-кими военными и политическими полномочиями. )

"Законы Пифагора — Архита", на которых основывалась вся пифагорейская теория музыки, можно сформулировать так:

1- Высота тона (частота колебаний f) звучащей струны обратно пропорциональна ее длине name = "note"

(6.2)

здесь а — коэффициент пропорциональности, зависящий от физических свойств струны (толщины, материала и т. п.).

2. Две звучащие струны дают консонанс лишь тогда, когда их длины относятся как целые числа, составляющие треугольное число 10 = 1 + 2 + 3 + 4, т. е. как 1:2, 2:3, 3:4.

Эти интервалы — "совершенные консонансы", и их интервальные коэффициенты позже получили латинские названия* :

* (Названиями интервалов в музыке служат латинские числительные, которые указывают порядковый номер ступени звукоряда, составляющей интервал с исходной ступенью: октава — восьмая, квинта — пятая, кварта — четвертая и т. д.)

октава

квинт

кварта

Треугольное число 10

Было замечено также, что наиболее полное слияние тонов дает октава (2/1), затем идут квинта (3/2) и кварта (4/3), т. е. чем меньше число п в отношении вида тем созвучнее интервал.

"Второй закон Пифагора — Архита" и сейчас кажется удивительным. (В его истинной природе мы разберемся в главе 10.) Что же говорить о пифагорейцах, которых он просто привел в восторг! Здесь они нашли подтверждение всей своей философии: целые числа, более того, числа тетрактиса правят всем, даже музыкой! Пифагорейцы не заставили себя долго ждать и распространили закон музыкальных отношений всюду, где это возможно, в том числе и на строение вселенной (см. гл. 7).

Итак, если в качестве цены деления шкалы монохорда взять отрезок l, равный 1/12 длины струны монохорда l1, то вместе со всей струной монохорда длины l1 = 12l будут созвучны ее части длины l2 = 6l — звук на октаву выше (l2/l1 = l/2), l3 = 9l — звук на квинту выше (l3/l1 = 2/3) и l4 = 8l — звук на кварту выше (l4/l1 = 3/4). Это созвучие и определяющие его числа 6, 8, 9, 12 назывались тетрада (четверка). Пифагорейцы считали, что тетрада — это "та гамма, по которой поют сирены". При настройке античной лиры, ставшей символом музыки, четыре ее струны обязательно настраивались по правилу тетрады, а настройка остальных струн зависела от лада, в котором предстояло на ней играть.

Но для античного мыслителя было мало установить численные значения изучаемых величин. Пифагорейский глаз и ум привыкли не только измерять, но и соизмерять, т. е. раскрывать внутренние связи между изучаемыми предметами, другими словами, устанавливать пропорциональные отношения. Архит был истинным пифагорейцем, и он установил пропорциональные отношения между основным совершенным консонансом — октавой, квинтой и квартой. Решение это было получено Архитом в связи с желанием разделить октаву на благозвучные интервалы. Вероятно, Архит исходил из того интуитивно очевидного предположения, что вместе с тонами f1 и f2 = 2f1, дающими основной консонанс — октаву, должно дать консонанс и их среднее арифметическое f3 = (f1 + f2)/2. Но тогда длина струны l3 выразится через длины струн l1 и l2 согласно (6.2) следующим образом:

т. е. l3 есть среднее гармоническое l1 и l2 (см. 5.1). Легко обнаружить и обратное: среднее гармоническое для частот f1 и f2 переходит в среднее арифметическое для длин l1 и l2:

Вспоминая, что мы вместе с Архитом приходим к важному выводу:

(6.3)

(6.4)

т. е. квинта есть среднее гармоническое длин струн основного тона l1 и октавы l2, а кварта — среднее арифметическое l1 и l2.

Но произведение среднего арифметического на среднее гармоническое равно произведению исходных чисел:

(6.5)

откуда, разделив обе части на l12, получаем второй важный вывод:

(6.6)

или

т. е. октава есть произведение квинты на кварту.

Разделив же (6.5) на l1l3, Архит получает и третью из основных пропорций -геометрическую:

(6.7)

которую называли "музыкальной": октава так относится к квинте, как кварта к основному тону.

Деление струны монохорда (l1) на части, образующие с ней совершенные консонансы: октаву (l2), квинту (l3) и кварту (l4) и соотношения между ними. Интервалы, которые целая струна монохорда образует со своими частями, показаны красными стрелками

Легко получить еще два соотношения:



Поделиться книгой:

На главную
Назад