Вот как описывает этот день римский философ и сенатор Северин Боэций (480- 524): "И вот однажды, под влиянием какого-то божественного наития, проходя мимо кузниц, он слышит, что удары молотков из различных звуков образуют некое единое звучание. Тогда, пораженный, он подошел вплотную к тому, что долгое время искал, и после долгого размышления решил, что различие звуков обусловлено силами ударяющих, а для того чтобы уяснить это лучше, велел кузнецам поменяться молотками. Однако выяснилось, что свойство звуков не заключено в мышцах людей и продолжает сопровождать молотки, поменявшиеся мерами. Когда, следовательно, Пифагор это заметил, то исследовал вес молотков. Тих молотков было пять, причем обнаружилось, что один из них был вдвое больше Другого и эти два отвечали друг другу соответственно созвучию октавы. Вес вдвое большего был на 4/3 больше веса третьего, а именно того, с которым он звучал в кварту...
Вернувшись домой, Пифагор путем различного исследования стал выяснять, заключается ли в этих пропорциях вся причина созвучия (Трактат о музыке)".
Пифагор со своими учениками. Иллюстрация из книги Франкино Гафурио 'Теория музыки'. Милан. 1492. Гравюры изображают акустические опыты Пифагора и Филолая на сосудах, струнах и трубках, находящихся в отношениях 4:6: :8:9:12:16
Только что появившаяся на свет пифагорейская наука еще не могла отделить абстрактное понятие числа от конкретного материального объекта. Видя в числах сущность явлений, начало начал, пифагорейцы считали, что реальные тела состоят из "единиц бытия" — "математических атомов", различные комбинации которых и представляют конкретные объекты. Даже вселенная мыслилась ими как совокупность чисел. Сами же числа пифагорейцы представляли наглядно и материально: единица трактовалась как абсолютная и неделимая единичность, т. е. точка, "геометрический атом" или первооснова всех чисел; два — как уход в неопределенную даль, т. е. прямая линия, простирающаяся в одном измерении; три — треугольник, образующий плоскость двух измерений, и возврат к определенности; четыре — пирамида, дающая представление о пространстве трех измерений. Вообще, числа 1, 2, 3, 4 играли у пифагорейцев особую роль и образовывали
Так родился знаменитый пифагорейский тезис: "Все вещи суть числа". Этот тезис, если забыть о его внутреннем содержании, а тем более если числа отождествлять с цифрами, многим представлялся попросту абсурдным. Далее, считая, что материальный мир состоит из чисел, т. е. из идей, пифагорейцы, сами того не сознавая, становились на позиции философского идеализма, и не случайно именно на почве пифагореизма возникло учение основоположника объективного идеализма в философии Платона. Наконец, интерес к числу часто носил у пифагорейцев религиозно-мистический характер[10]. Но всякое явление следует рассматривать в его историческом окружении "Идеалистическая мистификация чисел у пифагорейцев была следствием неразвитости науки и философии и строя мышления, близкого к мифологическому,- пишет современный болгарский философ Е. Данков.- Но за этой формой нельзя не видеть рационального содержания значение которого все яснее проступает на современном уровне развития научного познания".
Наиболее страстно и убежденно роль числа в познании мира определил знаменитый пифагореец V века до н. э. Филолай. В одном из сохранившихся фрагментов сочинения Филолая "О природе" говорится: "В число же никогда не проникает ложь, потому что она противна и ненавистна его природе, истина же родственна числу и неразрывно связана с ним с самого начала".
Заканчивая разговор о философских аспектах пифагорейского учения о числе, хочется вспомнить и слова великого Гёте. Будучи не только гениальным поэтом, но и выдающимся мыслителем и разносторонним ученым; Гёте стряхнул с пифагорейской мудрости идеалистическую пыль: "Числа не управляют миром, но показывают, как управляется мир".
Перейдем теперь к математической стороне пифагорейского учения о числе. Числа пифагорейцы изображали в виде точек (возможно, камешками, расположенными на песке), которые они группировали в геометрические фигуры. Так возникли числа, сегодня именуемые фигурными:
линейные числа (в современной терминологии это простые числа), т. е. числа, которые делятся на единицу и на самих себя и, следовательно, представимы только в виде последовательности точек, выстроенных в линию
плоские числа — числа, представимые в виде произведения двух сомножителей
телесные числа, выражаемые произведением трех сомножителей
треугольные числа
квадратные числа
пятиугольные числа
и т. д. Именно от фигурных чисел пошло выражение "возвести число в квадрат или куб".
Такое фигурное представление чисел часто помогало найти различные числовые закономерности. Например, написав последовательность квадратных чисел, легко увидеть (именно увидеть глазами!)
доказательство следующего математического утверждения:
Аналогичное рассмотрение n-го треугольного числа приводит к равенству
Фигура (обозначенная черными точками), которая, будучи приложенной к основной фигуре (белые точки), образует ей подобную, была названа Аристотелем
Вообще, с изучения фигурных чисел, т. е. сумм некоторого числа единиц-точек (камешков), поставленных в виде определенной фигуры, началось изучение сумм числовых рядов. Это в свою очередь позволило Архимеду (ок. 287-212 гг. до н. э.) развить методы нахождения площадей и объемов фигур и тел и вплотную подойти к созданию интегрального исчисления, появившегося, однако, лишь 2000 лет спустя.
Рассмотрение чисел привело пифагорейцев к рассмотрению отношений между ними, т. е. пропорций. Пропорция с равными средними членами определяет среднее значение. По преданию, Пифагору были известны три вида средних значений, которые называли "древними":
арифметическое среднее
геометрическое среднее
гармоническое среднее
Обратим внимание на то, что среднее гармоническое величин а, b, с есть среднее арифметическое обратных величин 1/а, 1/b, 1/с. Пропорции и средние значения пифагорейцы наполняли не только математическим, но и философским и эстетическим содержанием, объясняя с их помощью и музыкальные созвучия, и даже всю вселенную.
Однако история науки, как и сама жизнь, полна неожиданных и драматических событий: среднее геометрическое таило в себе сокрушительный удар по всей пифагорейской системе; более того, нанести этот удар пифагорейцы, истинные рыцари науки, вынуждены были сами себе. Именно пифагорейцы обнаружили, что среднее геометрическое к числам 1 и 2 (в современных обозначениях
Иррациональность отношения стороны и диагонали квадрата пифагорейцы объясняли тем, что оба этих отрезка состоят из бесчисленного множества точек и поэтому отношение сводится к отношению двух бесконечно больших целых чисел. Хотя эта мысль не выдерживает критики для геометрических объектов, находящихся в рациональных отношениях (ведь они также состоят из бесчисленного множества точек!), по отношению к иррациональным числам она является справедливой. Действительно, всякое иррациональное число можно с любой степенью точности представить в виде отношения двух целых чисел, причем чем больше будут эти числа, тем точнее их отношение будет выражать иррациональное число.
Открытие несоизмеримости (для диагонали квадрата со стороной 1 не было соответствующего числа!) опрокидывало всю философскую систему пифагорейцев, которые были убеждены, что "элементы чисел являются элементами всех вещей и весь мир в целом является гармонией и числом". Это открытие долго держалось в тайне, а ученик Пифагора Гиппас из Метапонта за то, что он открыл недостойным участия в учениях природу пропорции и несоизмеримости, был изгнан из школы Пифагора. Позднее, когда Гиппас погиб во время кораблекрушения, его противники видели в этом наказание богов за разглашение тайны. Следует сказать, что пифагорейцы, не в пример иным ученым, после отчаянной борьбы против открытия, опрокидывавшего символ их "веры" признали свое поражение. Пытаясь выйти из тупика, они стали представлять величины не арифметически — числами, геометрически — отрезками. Так возникла геометрическая алгебра.
Между тем исторически именно это неосознанное открытие иррациональных чисел является наивысшим достижением пифагорейской школы; ему было суждено пережить тысячелетия и стать поворотным этапом в развитии математики, истоком современного математического анализа. С этого открытия начинается эра теоретической математики, ибо обнаружить несоизмеримые величины с помощью опыта невозможно.
Наконец, рассмотрим "музыкальную" сторону пифагорейского учения о числе. Как уже отмечалось, открытие математических закономерностей в музыкальных созвучиях послужило первым "экспериментальным" подтверждением пифагорейской философии числа. "Открытие Пифагора... было первым примером установления числовых связей в природе,- читаем мы в "Фейнмановских лекциях по физике".- Поистине должно быть было удивительно вдруг неожиданно обнаружить, что в природе есть факты, которые описываются простыми числовыми отношениями".
С этого времени музыка, точнее теория Музыки или учение о гармонии, занимает Почетное место в пифагорейской системе Знаний. "Музыкантов"-пифагорейцев интересует не столько музыкальное искусство, реальная музыка звуков, сколько е математические пропорции и соотношения, которые, как считалось, лежат в основе музыки. Многие греческие математики, в том числе Евклид (III в. до н. э.) и Клавдий Птолемей (85? -165?), посвятили музыкальным созвучиям и построению музыкальной шкалы специальные сочинения. Впрочем, поиски математических закономерностей в музыкальных созвучиях вели и через два тысячелетия такие великие математики, как Иоганн Кеплер, Готфрид Лейбниц, Леонард Эйлер.
Титульный лист книги Грегора Райха 'Маргарита философи-ка'. Фрайбург. 1503
Идея музыкальных соотношений настолько увлекла пифагорейцев, что они пытались обнаружить их всюду. В конце концов эта идея приняла "космические масштабы" и переросла в идею "всеобщей гармонии". Пифагорейцы утвердились в том, что вся Вселенная устроена на основе музыкальных, т. е. простых числовых, соотношений, что движущиеся планеты издают "музыку небесных сфер", а обычная музыка является лишь "отзвуком" царящей всюду "всеобщей гармонии" (см. гл. 7).
Таким образом, музыка и астрономия были сведены пифагорейцами к анализу числовых закономерностей, т. е. к арифметике и геометрии. Все четыре дисциплины стали считаться математическими и называться одним словом — "математа". Пифагорейское отношение к музыке как точной науке сохранилось и в средние века. Так,
Как видим, термины "наука" и "искусство" в далекие времена античности практически не различались. Пифагорейцы называли математику и музыку родными сестрами. С тех пор дороги математики и музыки разошлись настолько, что их сопоставление сейчас многим покажется просто недоразумением. А ведь музыка пронизана математикой, как и математика полна поэзии и музыки! Это прекрасно чувствовали древние греки, и доказательство тому — содержание следующей главы.
6. Пифагорова гамма
Почтенный Пифагор отвергал оценку музыки, основанную на свидетельстве чувств. Он утверждал, что достоинства ее должны восприниматься умом, и потому судил о музыке не по слуху, а на основании математической гармонии и находил достаточным ограничить изучение музыки пределами одной октавы.
Строго говоря, речь здесь пойдет о пифагоровом строе, а слово "гамма" вынесено в заголовок потому, что оно у всех ассоциируется с музыкой. Что же такое гамма и строй в музыке?
Важнейшей характеристикой музыкального звука является его
Каждый отдельно взятый звук не образует музыкальной системы и, если он не слишком громкий, не вызывает у нас особой реакции. Однако уже сочетание двух звуков в иных случаях получается приятным и благозвучным, а в других, наоборот "режет" ухо. Согласованное сочетание двух звуков называется
Рассмотрим теперь некоторую совокупность звуков, нажав, например, на фортепиано последовательно несколько клавиш. Скорее всего, у нас получится бессвязный набор звуков, как говорится, ни складу ни ладу. В других случаях звуки вроде бы подходят, ладятся между собой, но их совокупность покажется оборванной, незаконченной. Эту последовательность так и хочется продолжить до определенной ноты, которая в данной системе звуков кажется наиболее устойчивой, основной и называется
Но не только тоника и совокупность Устойчивых и неустойчивых звуков определяют характер музыкальной системы. Легко убедиться, нажав подряд восемь белых клавиш от ноты до (гамма до
Парфенон — храм богини Афины Парфенос в Афинах. Возведенный в 447-438 до н. э. зодчими Иктином и Каллистра-том в ознаменование победы над персами, украшенный бессмертными работами скульптора Фидия, Парфенон третье тысячелетие несет в себе поразительную загадку гармонии и величия. Этот шедевр архитектуры, названный Ле Корбюзье грандиозной скульптурой, вписанной в прекрасный ландшафт Пирея, остается прекрасным даже в развалинах
Нас же будут в первую очередь интересовать математические закономерности, описывающие строение лада, т. е. музыкальный строй.
В заключение заметим, что наши эксперименты с нажатием клавиш на фортепиано могут закончиться самым редким и самым приятным феноменом, когда взятая система звуков будет не только принадлежать к какому-либо ладу, но и будет носить осмысленный характер. Такой художественно осмысленный последовательный ряд звуков разной высоты называется
После такого кратчайшего экскурса в теоретическое музыкознание мы можем вернуться на берега солнечной Эллады во времена мудрого Пифагора. Попытаемся восстановить рассуждения Пифагора и его учеников при построении пифагорова строя, ибо именно этот строй определил на тысячелетия, если не навечно, все развитие музыкальной культуры, не только европейской, но и восточной. Мы уже говорили, что сам Пифагор не оставил никаких письменных работ, да и наследие пифагорейцев представляется безнадежной грудой развалин, т. е. собранием случайно уцелевших фрагментов и более поздних цитат. Бесспорно, развалины эти прекрасны и поныне поражают воображение, как развалины знаменитого Парфенона, однако многое в этих обломках бесследно утеряно и о целом часто можно только догадываться. И все-таки...
Древние уверяли, что уже Пифагор Знал законы колебания струны монохорда и построения музыкальных созвучий (консонансов), однако запись об этих законах мы находим у пифагорейца Архита из Тарента (428-365 гг. до н. э.), жившего На полтора столетия позже Пифагора. Архит был, безусловно, самым выдающимся представителем пифагорейской школы, другом философа Платона и учителем математика Евдокса (ок. 408 — ок. 355 гг. до н. э.), государственным деятелем и полководцем. Многосторонность Архита поразительна: он решил знаменитую де-лосскую задачу об удвоении куба, заслуженно считался крупнейшим пифагорейским теоретиком музыки, первым упорядочил механику на основе математики и свел движения механизмов к геометрическим чертежам, работал над деревянной моделью летающего голубя. По мнению Ван дер Вардена, Архит является автором VIII книги "Начал" Евклида, в которой изложена арифметическая теория пропорций. Как государственный деятель Архит пользовался исключительным уважением: он семь лет подряд избирался стратегом*, хотя по закону стратеги выбирались лишь на один год. Путем искусных дипломатических маневров Архит вызволил из плена Платона и тем самым спас жизнь великому философу. "Славный Архит, земель, и морей, и песков исчислитель..." — писал Гораций.
* (
"Законы Пифагора — Архита", на которых основывалась вся пифагорейская теория музыки, можно сформулировать так:
1- Высота тона (частота колебаний f) звучащей струны обратно пропорциональна ее длине name = "note"
здесь а — коэффициент пропорциональности, зависящий от физических свойств струны (толщины, материала и т. п.).
2. Две звучащие струны дают консонанс лишь тогда, когда их длины относятся как целые числа, составляющие треугольное число 10 = 1 + 2 + 3 + 4, т. е. как 1:2, 2:3, 3:4.
Эти интервалы — "совершенные консонансы", и их интервальные коэффициенты позже получили латинские названия* :
* (
октава
квинт
кварта
Треугольное число 10
Было замечено также, что наиболее полное слияние тонов дает октава (2/1), затем идут квинта (3/2) и кварта (4/3), т. е.
"Второй закон Пифагора — Архита" и сейчас кажется удивительным. (В его истинной природе мы разберемся в главе 10.) Что же говорить о пифагорейцах, которых он просто привел в восторг! Здесь они нашли подтверждение всей своей философии: целые числа, более того, числа тетрактиса правят всем, даже музыкой! Пифагорейцы не заставили себя долго ждать и распространили закон музыкальных отношений всюду, где это возможно, в том числе и на строение вселенной (см. гл. 7).
Итак, если в качестве цены деления шкалы монохорда взять отрезок l, равный 1/12 длины струны монохорда l1, то вместе со всей струной монохорда длины l1 = 12l будут созвучны ее части длины l2 = 6l — звук на октаву выше (l2/l1 = l/2), l3 = 9l — звук на квинту выше (l3/l1 = 2/3) и l4 = 8l — звук на кварту выше (l4/l1 = 3/4). Это созвучие и определяющие его числа 6, 8, 9, 12 назывались тетрада (четверка). Пифагорейцы считали, что тетрада — это "та гамма, по которой поют сирены". При настройке античной лиры, ставшей символом музыки, четыре ее струны обязательно настраивались по правилу тетрады, а настройка остальных струн зависела от лада, в котором предстояло на ней играть.
Но для античного мыслителя было мало установить численные значения изучаемых величин. Пифагорейский глаз и ум привыкли не только измерять, но и
т. е. l3 есть среднее гармоническое l1 и l2 (см. 5.1). Легко обнаружить и обратное: среднее гармоническое для частот f1 и f2 переходит в среднее арифметическое для длин l1 и l2:
Вспоминая, что
т. е.
Но произведение среднего арифметического на среднее гармоническое равно произведению исходных чисел:
откуда, разделив обе части на l12, получаем второй важный вывод:
или
т. е.
Разделив же (6.5) на l1l3, Архит получает и третью из основных пропорций -геометрическую:
которую называли "музыкальной":
Деление струны монохорда (l1) на части, образующие с ней совершенные консонансы: октаву (l2), квинту (l3) и кварту (l4) и соотношения между ними. Интервалы, которые целая струна монохорда образует со своими частями, показаны красными стрелками
Легко получить еще два соотношения: