Кроме философской деятельности, Фалесу приписывают множество научных свершений, таких как открытие силы притяжения магнита и статического электричества, но особый интерес вызывают его предполагаемые математические результаты. Согласно легенде, во время торгового путешествия в Египет он вычислил высоту пирамид по их теням, которые сравнивал с тенью своего посоха. С помощью принципа подобных треугольников, то есть таких, которые имеют одинаковые углы и пропорциональные стороны, он рассчитал также расстояние от берега до лодки. Но кроме всего прочего, Фалесу приписывают дедуктивные доказательства нескольких знаменитых теорем, которые, согласно традиции, использовались уже давно, но сформулированы и доказаны были только тогда.
Доходило и до утверждений, что именно он сформулировал и доказал саму теорему Пифагора. Как бы то ни было, Фалес дал свое имя двум важнейшим теоремам:
— первая теорема Фалеса: если провести в треугольнике прямую, параллельную любой из его сторон, получившийся треугольник будет подобен заданному (см. рисунок 1);
— вторая теорема Фалеса: если взять точку В, лежащую на окружности с диаметром АС и не совпадающую с А и Су треугольник АВС будет прямоугольным (см. рисунок 2).
Однако Фалесу приписывают достижение куда более значительное, чем перечисленные теоремы: считается, что именно он превратил математику в абстрактную науку. В точности подтвердить это мнение невозможно, так как наука в ее современном виде возникла только в XVI веке, в ходе научной революции, однако нет сомнений, что трем великим милетцам — Фалесу, Анаксимандру и Анаксимену — математика обязана первыми своими шагами.
Молчание документальных источников свидетельствует об интеллектуальном бесплодии Ионии со времени смерти философа Анаксимена ок. 524 года до н.э. и до взятия Милета персами в 494 году до н.э. Милетская школа, однако, не исчезла. Великие милетские идеи и открытия оказали огромное влияние на последующих мыслителей, даже если они шли иными путями. Самая близкая в хронологическом смысле к милетской школе фигура — это Пифагор, и действительно, история науки считает, что именно пифагорейцы переняли наследие милетцев. Как было сказано ранее, мы не знаем, что именно мы можем отнести к достижениям Пифагора, а что — к результатам его учеников, так что когда речь заходит о математической деятельности пифагорейцев, на самом деле имеется в виду вклад всей группы вплоть до 400 года до н.э. Из числа пифагорейцев более всего выделяются Филолай (ок. 470-385 до н. э.) и Архит (ок. 435-347 до н. э.).
Математические и геометрические концепции всех доэллинистических цивилизаций были связаны с материей. К примеру, для египтян прямая представлялась натянутой веревкой или бороздой в земле. Первый большой вклад греков в математику — признание того, что математические объекты, числа или геометрические фигуры — это абстракции, идеи, производимые разумом, не связанные с физическими объектами. Тем не менее можно утверждать, что они не всегда придерживались этого взгляда.
Глава V книги I «Метафизики» Аристотеля посвящена в значительной части пифагорейцам и описывает их учение о числах. В сущности, именно на текст Стагирита опираются специалисты при составлении мнения о пифагорейской философии. Указанная глава содержит ясное и точное ее описание, ставшее классическим:
«...так как, далее, они видели, что свойства и соотношения, присущие музыкальной гармонии, выразимы в числах; так как, следовательно, им казалось, что все остальное по своей природе явно уподобляемо числам и что числа — первое во всей природе, то они предположили, что элементы чисел суть элементы всего существующего и что все небо есть гармония и число. И все, что они могли в числах и гармониях показать согласующимся с состояниями и частями неба и со всем мироустроением, они сводили вместе и приводили в согласие друг с другом...»[1 Перевод А. В. Кубицкого.]
То есть когда первые пифагорейцы говорили, что все предметы состоят из чисел или что числа — сущность Вселенной, они буквально это и имели в виду. Несмотря на все различия, можно сказать, что пифагорейцы воспринимали числа так, как современная наука воспринимает атомы. Что конкретно они подразумевали, когда говорили «число»? Сами пифагорейцы использовали три определения: число — это «ограниченная множественность», это «комбинация или скопление единиц», это «перетекающее количество». Это «скопление единиц» представлялось с помощью камешков, с помощью которых обозначались формы. Некоторые авторы указывают, что пифагорейцы VI и V веков не делали различия между числами и геометрическими точками, которые они считали маленькими шарами. В действительности представление числа как линии, состоящей из точек, последовательности значков или камней, расположенных так, чтобы образовывать правильные формы, — это особенность куда более древняя и примитивная, пришедшая из глубины веков, придающая арифметике геометрическую форму, и с ней Греция была хорошо знакома. Не напрасно общее для многих европейских языков слово «калькуляция» происходит от латинского calculus — камешек, с помощью которого производятся вычисления, и мы и сегодня говорим о «квадратах» и «кубах» чисел, а эти термины берут начало в пифагорейском геометрическом представлении числа.
Одна точка была началом всех вещей, у нее не было измерений; две точки задавали прямую и составляли первое измерение; три точки, соединенные линиями, представляли собой треугольник и задавали плоскость с двумя измерениями, а четыре точки, не лежащие на одной плоскости, формировали тетраэдр — трехмерную фигуру (см. рисунок 3).
Этот принцип применялся и для создания геометрических фигур. Оставалось только составить арифметическую прогрессию, с помощью которой ряд «точка — прямая — треугольник — тетраэдр» превращался в ряд «точка — прямая — квадрат — куб» (см. рисунок 4). В своей геометрической концепции числа пифагорейцы различали точки, комбинации которых составляли следующие единицы все более возраставшей сложности: точки образовывали линии, линии — плоскости и поверхности, а поверхности — объемные фигуры. И тем не менее следующий шаг выглядит дерзким и представляется странным для современного восприятия. Для пифагорейцев сам космос был естественной последовательностью чисел. Так как числа были тем средством, с помощью которого проявлялась реальность, то знание их свойств и отношений было равно знанию механизма Вселенной — механизма, магическим образом гармоничного, как показывали невероятные свойства чисел, открытые математикой. В рамках этого «числового мистицизма» математик был одновременно теологом, которому предстояло открыть божественный порядок. В этом метафизическом представлений отражается сочетание Пифагора-теолога с его магическим образом мыслей и Пифагора-ученого с его логическим мышлением, которое делает этого мудреца магом чисел.
Изучение пифагорейцами чисел началось как духовное искание, в чем-то схожее с еврейской каббалой, где каждое число имеет символический смысл, который придает ему магические свойства и даже жизненную силу. Десять пифагорейских чисел, не включающие ноль, составляли декаду.
Единица была прародительницей всех чисел, ведь из единиц можно составить любое число (последовательным сложением). Пифагорейцы называли ее монадой и считали бесконечным источником, из которого рождается все сущее. Речь не шла о собственно универсальном числе. Единица символизировала причину, определенную стабильность вещей. Логически она ассоциировалась с нечетным и, что менее понятно, с правой стороной. Использовалась она и как символ арифметического постоянства:
(1· 1 = 1, 1/1 = 1, 11 = 1).
Двойка означала дуализм, различие, неопределенность. Пифагор называл ее диадой. Она символизировала материю, несовершенство и контраст. Из нее проистекало вечное изменение и творение, поэтому она считалась женским началом. В математическом смысле она ассоциировалась с четным и с делением. Называли ее и «первым возрастанием», потому что она формировалась как 1 + 1. Ею вводилось первое измерение — длина, но без ширины и высоты, измерение несовершенное, потому что из двух точек или двух линий невозможно построить никакую фигуру. Двойку связывали с левой стороной.
Тройка, триада, возникала при взаимодействии монады и диады: (1 + 2) = 3. Поэтому она считалась символом совершенства, гармонии между единством и различием, и по этой причине воплощала мужское начало. С ней связывали идею времени, считая ее синтезом начала-середины-конца или прошедшего-настоящего-будущего. Из этого сакрального аспекта проистекает ритуальное обыкновение повторять некоторые жесты и действия по три раза. Тройка открывала второе измерение.
Четверка была одним из ключей к природе человека. Она обозначала неумолимый вселенский закон, так как (4 = 2 + 2). Она была одновременно причиной и следствием тех групп из четырех элементов, которые можно было найти в природе, таких как стихии (земля, вода, огонь и воздух), стороны света или времена года; но ей было подчинено и пифагорейское деление математических дисциплин (арифметика, музыка, геометрия и астрономия), откуда берет начало средневековый квадривиум. Четверка была квадратом первого четного числа и считалась обладающей совершенством и гармонией, так как (2 + 2 = 22). Именно она открывала третье измерение.
Пятерка — это союз диады и триады, женского и мужского начал и, таким образом, символ брака (2 + 3 = 5) и божественного треугольника (З2 + 42 = 52). Пять было и правильных тел, грани которых представляют одинаковые многоугольники: тетраэдр (4 треугольника), гексаэдр, или куб (6 квадратов), октаэдр (8 треугольников), додекаэдр (12 пятиугольников) и икосаэдр (20 треугольников). Кроме того, пятерка представляла собой геометрический центр девяти чисел декады 1, 2, 3, 4, 5, 6, 7, 8, 9, так что на равных расстояниях от нее находились: 1 и 9, 2 и 8, 3 и 7, 4 и 6. Огромная важность этого числа сделала его пифагорейским гербом.
Еще более священным, чем пятерка, было число 6, символ зарождения и семьи, так как шестерка предполагала союз мужского и женского начал через произведение (6 - 2 · 3). Это число было полно мистики, потому что из него складывались временные интервалы между реинкарнациями. Кроме того, оно представляло площадь божественного треугольника 3-4-5. Но важнее всего было то, что шестерка была первым совершенным числом — об этом типе чисел мы поговорим ниже.
Семерка была « девой без матери», потому что она не могла быть порождена никаким из чисел декады и, в свою очередь, не могла породить никакое из них. Семь ассоциировалось со здоровьем и светом, существовало семь музыкальных нот и семь звезд, давших название дням недели. В геометрическом смысле это число было уникальным, поскольку круг невозможно было разделить на семь равных частей никаким известным построением.
Число 8 символизировало дружбу, полноту и размышление. Значение восьмерки выражалось в ее влиянии на весь космос посредством восьми сфер, которые можно было увидеть с Земли: сферы Луны, Меркурия, Венеры, Солнца, Марса, Юпитера, Сатурна и неподвижных звезд. Это было первое кубическое число (23), а его полнота происходила из суммы двух равных квадратов (8 = 4 + 4).
Девятка была символом любви и беременности, так как обычно беременность у женщины длится девять месяцев. Связывали ее и с идеей справедливости, потому что ее множители равны (9 = 3 · 3). Это первый квадрат нечетного числа (32).
И наконец, число 10 было символом Бога и Вселенной. Так как первые четыре числа выражали для пифагорейцев тайну музыкального ряда, их сумма (10 =1 + 2 + 3 +4) считалась совершенством, синтезом самой природы числа во всей ее полноте. Математический смысл числа 10 безграничен: оно содержит в себе одинаковое количество чисел четных и нечетных и одинаковое количество составных чисел (4, 6, 8, 9, 10).
Как начало и основа всех вещей, десятка была наивысшим выражением мистической нумерологии пифагорейцев. Ее представляли в виде 10 точек или камешков, сложенных в форме равностороннего треугольника (см. рисунок 5). Эта анаграмма, визуальное и геометрическое представление, получила название «тетрактис декады». Слово тетрактис означает «четверня», что указывает на его строение с основанием 4, и это позволяет понимать тетрактис как «базовая четверка». Тетрактис имел мистический смысл, наподобие пенталъфы, и использовался при произнесении пифагорейской клятвы.
Пифагррейская манера представлять числа с помощью точек или камешков породила их классификацию в соответствии с формой, в которые укладывались эти камешки. Таким образом, «многоугольные числа» ассоциировались с формой правильных многоугольников, что придало им новые свойства.
Этот вид геометрической алгебры стал предшественником сегодняшней символической алгебры. Так, числа 1, 3, 6, 10, 15... определялись как треугольные, потому что соответственное количество точек можно было уложить в равносторонние треугольники (см. рисунок 5).
Четвертым треугольным числом было сакральное 10, и даже его форма выражала удивительное свойство его «четверности», ведь, как можно заметить на рисунке 5, у него по четыре точки на каждой из сторон. Пифагорейцы показывали, что суммы 1, 1 + 2, 1 + 2 + 3, 1 + 2 + + 3 + 4, 1 + 2 + 3 + 4 + 5 давали в результате треугольные числа. В целом
1 + 2 + ...+ n = n · ((n + 1)/2).
Числа 1, 4, 9, 16, 25... считались квадратными, так как их точки укладывались в квадраты (см. рисунок 6). Они составлялись из серий нечетных чисел:
1.4 (1 + 3), 9 (1 + 3 + 5), 16 (1 + 3 + 5 + 7), 25 (1 + 3 + 5 + 7 + 9)... Составные (то есть не простые) числа, не составлявшие правильных квадратов, назывались продолговатыми.
Кроме того, существовали числа пятиугольные, 1, 5, 12, 22, 35..., которые складывались в пятиугольники (см. рисунок 7). Они формировались из серии 1, 4, 7, 10, 13... таким образом:
1.5 (1 + 4), 12 (1 + 4 + 7), 22 (1 + 4 + 7 + 10), 35 (1 + 4 + 7 + 10 + 13)... Пятиугольное число n:
(3n2 - n)/2.
Понятно, что шестиугольные числа складывались в шестиугольники: 1, 6, 15, 28, 45... (см. рисунок 8). Они формировались из серии 1, 5, 9, 13, 17... следующим путем: 1, 6 (1 +5), 15 (1 + 5 + 9), 28 (1 + 5 + 9 + 13), 45 (1 + 5 + 9 + 13 + 17)... В целом это 2n2 - n.
При таком геометрическом представлении становились заметны некоторые свойства целых чисел. К примеру, если провести прямую внутри квадратного числа, как показано на рисунке 9, становится понятно, что сумма двух последовательных треугольных чисел составляет квадратное число. Можно доказать правильность этого утверждения в целом, хотя и невероятно, чтобы сами пифагорейцы могли прийти к подобному доказательству, которое мы представим в современной нотации:
(n(n+1))/2+((n+1)(n+2)/2) = (n+1)2
Чтобы перейти от одного квадратного числа к следующему, пифагорейцы следовали схеме, представленной на рисунке 10. Они объединяли точки справа и снизу ломаной под прямым углом линией, которая называлась гномон, что значит «плотницкий угол». Гномон образовывали точки на границе квадрата, количество которых увеличивалось на два с каждым переходом к следующему квадратному числу. Если к любому квадратному числу прибавить его гномон плюс два, мы получим следующее квадратное число. Таким образом, пифагорейцы узнали, что n2 + (2n + 1) = (n + 1)2. Кроме того, если, начиная с 1, прибавлять гномон 3, затем гномон 5 и так далее, то получится, что 1 + 3 + 5 + ... + (2n + 1) = n2.
Пифагорейский мир чисел был очень богат. Пифагор и его последователи различали разные типы чисел, которые они скрупулезно классифицировали и приписывали им нравственные и физические характеристики. К примеру, нечетные числа были мужскими, а четные — женскими. Некоторые числа были дружественными друг другу и сочетаемыми, иные же — зловредными и неспособными к отношениям с другими. Числа могли приносить человеку несчастья. Результатом этой классификации стала запутанная интеллектуальная конструкция, которую можно понять, только встав на позицию пифагорейской мистики. В Книге VII своих «Начал» Евклид попытался объяснить весь этот пифагорейский мир и представить его с максимально возможной ясностью. Категории и определения, приводимые ниже, основаны на данных этого великого геометра.
Первым большим семейством чисел были четные и нечетные, определение которых, данное пифагорейцами, бесспорно: четное число может быть поделено на две равные или неравные части (исключая диаду, которая делится единственным способом), и эти части будут, в свою очередь, представлять собой четные или нечетные числа. Нечетное число может быть разделено лишь на две неравные части — одна из них будет четным числом, вторая — нечетным. Эти типы чисел делятся, в свою очередь, на четыре класса:
— четно-четные: их половина представляет собой четное число;
— нечетно-четные: их половина нечетная;
— четно-нечетные: такие, которые, будучи разделены на нечетное число, дают четное число;
— нечетно-нечетные: имеют только нечетные делители.
Далее числа делились на несоставные и вторичные — так пифагорейцы называли простые и составные числа. В конечном счете речь идет о числах, служащих делителями или множителями других чисел. Для большей ясности ниже приводятся современные определения, потому что их оригинальное пифагорейское определение слишком запутано:
— простое (несоставное) число — это такое, которое делится только на единицу и на себя само;
— составное (вторичное) число — это то, которое не является простым;
— соотношения между простыми числами таковы, что у них есть только один общий делитель — единица;
— соотношения между составными числами подразумевают, что у них есть общие делители, отличные от единицы.
Дальше следовали линейные, плоские, объемные, квадратные и кубические числа. Линейные не имеют делителей; плоские — это произведение двух чисел, которые составляют их стороны; объемные — произведение трех чисел, являющихся их сторонами; квадратные представляют собой произведение одного числа на само себя; кубические — двойное произведение числа на самого себя. К этим типам можно прибавить числа продолговатые, которые отличаются от плоских на единицу. Совершенными числами называли те, которые являются суммой своих делителей, включая 1, но исключая из делителей само число: например, 6 имеет делители 1, 2 и 3. Греки знали только четыре совершенных числа. Кроме 6 это еще 28 (= 1 + 2 + 4 + 7 + 14), 496 (= 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248) и 8128 (= 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064). В наши дни мы знаем 43 таких числа, все они четные. Неизвестно, существуют ли нечетные совершенные числа, а также конечно ли их количество.
Кроме совершенных, различали еще избыточные и недостаточные числа: те, которые превосходят сумму своих делителей, являются избыточными, а те, которые меньше такой суммы — недостаточными.
Два числа называются дружественными, когда каждое из них равно сумме делителей другого. Из таких чисел пифагорейцы знали только 220 и 284.
— 220 = 1 + 2 + 4 + 71 + 142 (сумма делителей 284).
-284 = 1 + 2 + 4 + 5 + 10 +11 + 20 + 22 + 44 + 55+110 (сумма делителей 220).
Кроме числовых отношений, использующих эту классификацию, пифагорейцы изучали и различные соотношения и пропорции, в которых, по их мнению, и состояла красота — например, среднее арифметическое, среднее геометрическое, среднее гармоническое... Если есть два числа р и q, то их среднее арифметическое А — это
(p + q)/2
среднее геометрическое G — √(pq), а среднее гармоническое Я, которое обратно среднему арифметическому 1 /р и 1 /q, это
2pq/(p+q)
Следовательно, можно доказать, что G — это среднее геометрическое от А и Н; то есть что среднее геометрическое двух чисел является средним геометрическим их среднего арифметического и среднего гармонического. Сводящая все три величины пропорция
A/G = G/Н