Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Темная сторона материи. Дирак. Антивещество - Хуан Антонио Кабальеро Карретеро на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Снова другой физик опередил Дирака в решении научной проблемы. Однако, как и в прошлый раз, ученый не огорчился, а его работа, несмотря ни на что, была хорошо принята в научном сообществе. С тех пор статистика, применяемая к системам таких частиц, как электроны, называется «статистикой Ферми — Дирака». Позднее, в 1947 году, Дирак ввел понятия «фермионов» и «бозонов» для частиц, которые подчинялись правилам статистики Ферми — Дирака и Бозе — Эйнштейна (см. рисунок на предыдущей странице).

Хотя работа Дирака и была принята с большим интересом, кое-кто из физиков счел ее слишком сложной для понимания, как многие его прошлые и будущие статьи. Шрёдингер смиренно, но не без иронии заметил Бору:

«Я нашел работу Дирака очень важной, хотя многие места не понял. [...] У Дирака оригинальный и подходящий ему способ мыслить, который — по той же самой причине — наверняка приведет его к самым важным и неожиданным результатам, пусть даже они останутся непонятными для нас. Дирак не имеет представления о том, насколько сложно обыкновенным людям воспринимать его работы».

ПЕРВАЯ ПОЕЗДКА: КОПЕНГАГЕН

В сентябре 1926 года Дирак решил дополнить свое научное образование годовой стажировкой в университете Геттингена, где родилась квантовая механика. Однако, по совету Фаулера, он отправился сначала на пять месяцев в Копенгаген. В датской столице Дирак оказался рядом с самыми блестящими физиками того времени: Бором, Гейзенбергом, Клейном, Эренфестом, Паули и другими. Бор не сыграл решающей роли в развитии квантовой теории, но имел большое влияние в этой области физики. В Копенгагене его институт был одним из центров новой теории, местом встреч ученых, обсуждений и сотрудничества. Таким являлся метод работы Бора, заключавшийся в бесконечных дискуссиях и доказательствах, которые доводили до изнеможения его коллег — как случилось со Шрёдингером через несколько недель после приезда Дирака. Нет никаких сомнений в том, что новая рабочая обстановка, создающая контраст с жесткой системой Кембриджа, оказала влияние на Дирака. Несколькими годами позже он вспоминал:

«Бор, кажется, был самым глубоким мыслителем из всех, кого я когда-либо встречал. [...] В то время мы вместе осуществляли долгие прогулки и бесконечно разговаривали. Хотя я должен признать, что в основном говорил Бор».

Несмотря на живую атмосферу Копенгагена, Дирак не изменил своим привычкам. Он продолжал работать в одиночестве и держался в стороне от постоянных обсуждений, происходивших в институте. Его повседневная жизнь заключалась в работе с понедельника по субботу в библиотеке и привычных загородных прогулках по воскресеньям. Свидетельства студентов того времени хорошо описывают характер и рабочие привычки физика:

«Дирак всегда казался нам таинственным. Он часто сидел один в самом отдаленном углу библиотеки, в самой неудобной позе, полностью погруженный в свои мысли. [...] Он мог провести весь день в одной позе, за один присест написать целую статью, ни разу не оторвав глаз от своего документа».

Дирак с самого начала не выказывал особого желания к возможной совместной работе с коллегами, в частности с Бором. Если он участвовал в семинарах и конференциях, организованных в институте, то лишь в качестве простого слушателя. В то время оживленные дискуссии об основах квантовой механики и вытекавшие из них гносеологические споры не представляли большого значения в его глазах; математическая формулировка теории казалась Дираку более важной. Его подход к физике не мог быть еще более отличным от подхода Бора. Дирак считал, что Бор излишне озабочен размышлениями, которые невозможно было ясно сформулировать; он блуждал вокруг одного и того же вопроса и не приходил ни к какому выводу.



Портрет Поля Дирака (вверху) и Нильса Бора. Они много общались во время пребывания Дирака в Копенгагене.


Поль Дирак (слева) с физиками Вольфгангом Паули (в центре) и Рудольфом Пайерлсом в университете Бирмингема.

По мнению Дирака, математическая формулировка была единственным способом точно определить физические понятия.

Различие взглядов Бора и Дирака ясно демонстрирует один дошедший до нас анекдот. Завершив исследование, Бор имел привычку диктовать своим молодым помощникам полученные результаты, что было настоящим кошмаром, поскольку ученый бесконечно менял аргументы и никогда не был удовлетворен способом изложения. Вскоре после приезда в Копенгаген Дираку выпала «честь» помогать блестящему Бору в работе над его новой статьей. Через несколько минут после начала «диктовки» Дирак пришел к выводу, что у него есть более полезные занятия, нежели бесконечное переписывание одной и той же фразы в ожидании того, когда Бор решит, является ли формулировка достаточно точной. Единственное замечание, сделанное Дираком, было кратким и ясным: «В школе меня учили, что нельзя начинать фразу, если не знаешь, как ее закончить». Так он дал понять Бору, что тому нужно найти другого помощника.

ТЕОРИЯ ПРЕОБРАЗОВАНИЙ

Дирак оказался в Копенгагене во время разгара споров о вероятностной интерпретации волновой функции Шрёдингера. Месяцем раньше Борн разработал эту вероятностную интерпретацию, использовав квадрат значения волновой функции. Однако ее отвергли такие блестящие физики, как Эйнштейн и в том числе сам Шрёдингер. Зато вероятностная интерпретация была принята Бором и большинством его соратников. Хотя Шрёдингер доказал математическое соответствие волновой и матричной механики, значительная часть физиков полагала, что необходимо выработать единую схему, которая объединила бы различные формулировки квантовой механики, введя вероятностную интерпретацию волновой функции и ее соотношение с матричными операторами. Эта схема была разработана независимо друг от друга Дираком и Йорданом. Статья Дирака появилась в январе 1927 года под названием с Физическая интерпретация квантовой динамики». Она считается одной из самых важных и самых полных его работ. В частности, в статье была представлена самая строгая и самая общая математическая формулировка квантовой механики.

Дирак назвал ее «теорией преобразований». Ученый всегда испытывал некоторую гордость по поводу данной теории, которую он, по его собственным словам, шаг за шагом выстраивал, опираясь исключительно на логические рассуждения. «Эта работа доставила мне больше удовольствия, чем все другие, предыдущие или последующие»,— говорил Дирак. Коллеги признали общий и оригинальный характер его работы и были впечатлены неумолимостью его логики. Они увидели в ней «необычайный прорыв». Однако стиль Дирака остался неизменным, и такие крупные физики, как Оскар Клейн, не могли не заметить:

«Нам понадобилось некоторое время, чтобы понять его аргументы, поскольку на своих семинарах он тщательно писал на доске все формулы и рисовал графики, но практически не пояснял их. За ходом его рассуждений было действительно тяжело следить».

Матричная механика, или алгебра q-чисел, и волновая механика были очень разными теориями, которые описывали одни и те же природные явления. Требовалось соотнести их, чтобы показать, что они являются равнозначными. Дирак представил свою работу следующими словами:

«Вот общая схема, в ней сформулированы все вопросы, на которые квантовая теория может ответить однозначно. Она содержит всю физическую информацию, которую можно получить из квантовой динамики, и то, каким способом можно это осуществить».

Рассмотрим кратко некоторые основные аспекты новой теории Дирака. В рамках матричной механики Гейзенберга, Борна и Йордана утверждается использование канонических преобразований. «Каноническим преобразованием» называют любое преобразование, сохраняющее основные количественные отношения. Возьмем, например, случай с двумя квантовыми операторами, связанными с положением (q) и моментом (р), для которых qp -pq = iħI, где I является матрицей тождественного оператора. Каноническое преобразование заключается в определении оператора преобразования, который позволяет выстроить две новые динамические квантовые переменные (Р, Q), продолжающие соблюдать отношение квантования PQ - QP = iħI. Отношение между изначальными переменными и новыми выражается следующим образом:

Р=ТрТ-1, Q = TqT-1

где Т является оператором преобразования, а T-1 — его обратной величиной, то есть TT-1 = T-1T = I. Использование канонических преобразований подтверждается в процессе диагонализации гамильтониана, который позволяет определить энергии рассматриваемой системы.

Главной целью Дирака было определение «реального» значения оператора преобразования и его отношения к волновой функции Шрёдингера. Дирак заключил, что собственные функции волнового уравнения Шрёдингера соответствуют операторам преобразования, которые позволяют получить диагональный вид гамильтониана. Так физик соединил в одно целое формализм квантовых операторов Гейзенберга, Борна и Йордана и их правила квантования и формализм Шрёдингера с его дифференциальным уравнением и его волновой функцией. Теория преобразований вводила, кроме того, свойства и принципы, которые Дирак считал главными в любой квантовой теории. Эти свойства стали точкой отсчета значительной части его последующих работ.

Величие научной идеи зиждется на ее способности поощрять мысль и открывать новые направления для исследования.

Поль Дирак

В ходе разработки теории преобразований Дирак ввел новую важную переменную, которая со временем стала полезным инструментом развития современной физики, — функцию δ. Язык современной физики невозможно понять без ее использования. В наши дни любой текст по квантовой теории содержит специальные разделы, посвященные функции Дирака и ее главным свойствам, она участвует в решениях всех проблем, относящихся к субатомному миру. В статье «Физическая интерпретация квантовой динамики» Дирак писал о введении функции δ:

«Мы не можем двигаться вперед в развитии матричной теории с вереницей строк и столбцов, не введя для этого функцию с-числа, называемого х, которая равна нулю во всех точках — кроме точки, где x крайне мало, — и интеграл которой в любой окрестности x = 0 равен 1».

Дирак сформулировал свою функцию в следующем виде:

δ(x) = 0, если x ≠ 0;

+∞

∫δ(x)dx = 1,

-∞

и затем утверждал:

«Конечно, δ(x) не является собственно функцией числа х, но она может рассматриваться как предел последовательности ряда функций. Как бы там ни было, δ(x) может использоваться как собственно функция в практических целях разрешения любой проблемы квантовой теории, и полученные результаты никогда не будут ошибочными».

Работа Дирака в очередной раз показалась коллегам восхитительной, но он не первым пришел к подобному выводу. Йордан изучал ту же проблему и разработал собственную теорию преобразований. И если путь двух физиков был разным, выводы их совершенно совпадали. Через два месяца после публикации работ Дирака и Йордана Гейзенберг сформулировал принцип неопределенности, математическая формулировка которого основывалась большей частью на теории Дирака — Йордана. Дирак сформулировал в своей работе идею, близкую к принципу неопределенности Гейзенберга:

ФУНКЦИЯ δ ДИРАКА

Дирак не первым использовал функцию δ, но он обобщил ее применение, превратив ее в главный инструмент развития квантовой теории. Функция δ(x) не является математической функцией в обычном смысле слова, это не функция, которая имеет определенные значения в каждой своей точке. Напротив, она принимает значение 0 при всех значениях х, кроме точки, где х = 0 и где она превращается в бесконечность. Дирак называл ее «несвойственной функцией», чтобы отличить от обычных функций и показать, что ее использование должно ограничиваться определенным типом проблем, с которыми она совместима. Физик заметил, что его несвойственная функция при х=0 не имеет четко определяемого значения, поскольку она появляется как часть интегрирования, результат которого является прекрасно определяемой величиной. Строгий анализ функции δ(x) представлен в теории распределений, развитой в 1945 году математиком Лораном Шварцем (1915-2002). Поведение функции δ(χ) показано на рисунке 1, где видно, что она равна нулю на всем интервале величин х за исключением маленькой окрестности δ(χ) в самом начале. В представленном интервале максимум функции равен 1/ε. Следовательно, функция


РИС. 1

охватываемой окрестности равна 1. Функция δ(x) появляется как предел функции, представленной на рисунке, когда величина параметра ε стремится к 0 (ε → 0). Множество других функций могут образовывать функцию δ(x). Например, ширина знаменитой гауссовой функции, представленной на рисунке 2, определяется коэффициентом σ. Если величина этого параметра уменьшается, функция сужается все больше и больше, значительно увеличивая свое максимальное значение. Для предела, в котором ширина стремится к нулю, максимальная величина стремится к бесконечности. Математически это выражается следующим образом:


Самое важное свойство функции Дирака выражается через следующий результат:

+∞

∫f(x)δ(x-a) = f(a),

-∞

в котором f(x) соответствует любой продолжающейся функции и а — любому действительному числу. Так, умножая функцию х на δ(x - a) и особенно интегрируя x, мы возвращаемся к вычислению функции f в точке х = а. Интервал интегрирования необязательно должен расширяться от -∞ до +∞, но до любой окрестности, где находится критическая точка, в которой функция δ не обнуляется. Функция δ Дирака остается сегодня важным инструментом во всех областях физики.


РИС. 2

«В квантовой теории невозможно ответить ни на один вопрос, который отсылает к двум численным показателям двух квантовых переменных р и q (положение и начальный момент)».

ГЕТТИНГЕН И ЗАРОЖДЕНИЕ КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ

В начале февраля 1927 года Дирак отправился в Геттинген и провел там пять месяцев, оказавшись рядом с создателями матричной механики: Борном, Йорданом и Гейзенбергом. Университет Геттингена являлся одним из самых уважаемых исследовательских центров в мире: он был колыбелью новой квантовой теории и имел блестящие традиции в области математики. Гаусс, Риман, Дирихле, Клейн... Все они были профессорами университета Геттингена. В 1927 году в Геттингене находился и Давид Гильберт (1862-1943) — несомненно, самый влиятельный ученый-математик того времени. Некоторые из самых блестящих его учеников, такие как Джон фон Нейман (1903-1957) и Герман Вейль (1885-1955), позднее тоже сыграли важную роль в квантовой теории.

Дирак использовал пребывание в Геттингене, чтобы укрепить свои навыки и получить новые знания в разных областях математики. Он посещал занятия Вейля по теории групп. Речь идет об области математики, развившейся в XIX веке и получившей важное значение в теоретической физике благодаря работам Вейля и Юджина П. Вигнера (1902-1995). В последующие годы Вейль и Вигнер часто использовали теорию групп в рамках квантовой механики. Однако Дирак не выказывал особого интереса к этой теории, считая ее «поверхностной» для решения проблем физики.

В данном вопросе Дираку не хватило интуиции: теория групп стала краеугольным камнем в развитии современной физики. Однако Дирак оценил вклад этих ученых, особенно работу Вейля. Несколько лет спустя один журналист спросил его: «Профессор Дирак, Вам доводилось встречать кого-то, кого Вы не понимали?» Тот ответил: «Да, это был Вейль». Для части коллег Дирака, которые всегда жаловались на сложность его работ и невозможность понять его аргументацию, было откровением узнать, что существовал кто-то, чьи размышления не мог понять сам Дирак, и они наверняка испытали некоторое облегчение.

За время пребывания в Геттингене Дирак опубликовал две статьи, в которых развил основы квантовой теории излучения. Именно он считается основателем квантовой электродинамики. В главе 4 будет подробно рассказано о содержании этих двух статей. Дирак стал первым физиком, развившим квантовую теорию взаимодействия излучения и вещества. Данная теория стала для него большой наградой и еще большим разочарованием.

ВОЗВРАЩЕНИЕ В КЕМБРИДЖ

Пребывание Дирака в Геттингене закончилось в июне 1927 года. По пути в Кембридж он остановился в Лейденском университете (Нидерланды) по приглашению Пауля Эренфеста (1880-1933), с которым обсудил последние работы в области теории излучения. Эренфест неотступно стремился понять все существующие аспекты новой квантовой теории. Он был известен своей манерой превращать семинары в настоящие допросы выступающих. Его стремление все знать было настолько сильным, что часто повергало ученого в глубокую депрессию, связанную с невозможностью уследить за развитием всех открытий. Эренфест восхищался работами Дирака и считал их очень оригинальными, но трудными для понимания:

«Мы часами изучали несколько страниц его работы, в ней есть места столь же темные, как безлунная ночь».

Хендрик А. Лоренц (1853-1928), профессор Лейденского университета и старейшина голландских физиков, тоже восхищался работами Дирака. Он предложил ему должность в Лейденском университете на два года, однако Дирак вежливо отказался, поскольку получил новую стипендию в Кембридже. В июле 1927 года ученый вернулся в университет Кембриджа после десяти месяцев, проведенных на континенте.

За два года он стал одним из самых уважаемых физиков в международном сообществе. Его работы получили мировое признание. Они считались очень оригинальными и глубокими, хотя и совершенно непонятными. Однако, если физики и восхищались его работами, несомненно, именно из-за трудностей понимания последние оказывали меньшее влияние, нежели работы Гейзенберга, Борна и Йордана или Шрёдингера. Ситуация начала меняться в конце 1927 года, вместе с появлением двух первых статей Дирака о взаимодействии излучения и вещества. Но самая потрясающая работа была еще впереди. В начале 1928 года Дирак ошеломил своих коллег: он объединил теорию относительности и квантовую физику в одном уравнении. Оно знаменовало необыкновенные открытия и подняло проблемы, о которых прежде невозможно было и подозревать.

ГЛАВА З

Релятивистская теория электрона. Антивещество

Релятивистская теория электрона, возможно, стала самым значительным открытием Дирака. Ему удалось объединить в одном уравнении главные аспекты двух великих теорий XX века — теории относительности и квантовой физики. Уравнение Дирака естественным образом включало спин электрона и его магнитный момент.

Благодаря этому уравнению было открыто существование отрицательных значений энергии. Так впервые появилось понятие антивещества.

В октябре 1927 года в Брюсселе состоялся очередной Сольвеевский конгресс, на который был приглашен и Дирак — еще одно подтверждение признания его работ. Данный конгресс знаменит жарким спором, разгоревшимся между Бором и Эйнштейном, об основах квантовой механики и принципе неопределенности Гейзенберга. Дирак присутствовал на этих заседаниях. Там он лично познакомился с Эйнштейном, но занял достаточно пассивную позицию. Вспоминая, ученый написал:

«Я слушал аргументы, но не принимал участия в дискуссии; ее предмет мало интересовал меня. [...] Я считаю, что главная работа физика-математика заключается в получении верных уравнений; интерпретация же этих уравнений имеет минимальное значение».

Во время конгресса Дирак также сообщил Бору о своей работе над релятивистским уравнением электрона. Бор заметил, что эта проблема уже была решена Клейном. Его ответ очень удивил Дирака: он не мог понять, как теория Клейна, противоречившая основным законам квантовой механики, могла устраивать значительное число физиков. Через два месяца Дирак поразит научный мир новой теорией, и Бор осознает, что его комментарий был огромной ошибкой.

ПЕРВЫЕ ПОПЫТКИ: УРАВНЕНИЕ КЛЕЙНА — ГОРДОНА

Дирак всегда был очарован теорией относительности и мечтал однажды применить ее к квантовому миру. Одну попытку он предпринял после публикации первой работы Гейзенберга, но неудачно. Несколько месяцев спустя, изучая эффект Комптона и волновую механику, он использовал релятивистскую версию уравнения Шрёдингера, которая известна под названием «уравнение Клейна — Гордона» (записываемого как уравнение КГ), по имени физиков Оскара Клейна (1894-1977) и Вальтера Гордона (1893-1939). В свое время Дирак не придавал особого значения данному уравнению, считая его просто «полезным математическим инструментом для расчета матричных элементов, которые таким образом могли быть интерпретированы в рамках матричной квантовой теории». Разработав свою теорию преобразований, Дирак заключил, что уравнение КГ было абсолютно непоследовательным, поскольку оно не соответствовало основным свойствам квантовой механики.

В чем же заключался смысл уравнения Клейна — Гордона, и почему оно было неприемлемо для Дирака? Чтобы понять это, нам надо вернуться в начало 1926 года, когда Шрёдингер занимался волновой механикой. Как и Дирак, австрийский физик осознавал важность включения релятивистской теории в свою работу. На самом деле полученное им первое волновое квантовое уравнение учитывало релятивистские эффекты и не противоречило классическому релятивистскому выражению для энергии. Однако Шрёдингер решил не публиковать это уравнение, поскольку заметил, что оно не ведет к постоянной тонкой структуры.

Эта постоянная, полученная Зоммерфельдом в 1915 году с помощью атомной теории Бора, прекрасно выражала энергетические уровни атома водорода. Таким образом, она представляла собой главный «тест» для любой квантовой теории. В марте 1926 года Шрёдингер опубликовал свое новое уравнение — то самое, которое сегодня носит его имя. Оно не только учитывало постоянную Зоммерфельда, но и полностью изменило облик квантовой механики; со временем оно стало, наряду с принципом эквивалентности массы и энергии Эйнштейна, самым знаменитым физическим уравнением. Однако уравнение Шрёдингера не включает в себя теорию относительности — оно согласовывается с классическими формулировками механики Ньютона.

МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА УРАВНЕНИЯ КЛЕЙНА — ГОРДОНА

В релятивистской механике масса зависит от инерциальной системы отсчета. Обозначим собственную массу частицы, то есть массу частицы в ее собственной инерциальной системе отсчета, как m. Представим, что эта частица перемещается со скоростью ṽ. Для простоты допустим, что речь идет о свободной частице — не взаимодействующей с другими телами. В этой ситуации общая энергия и кинетический момент выражаются уравнениями


в которые вводится фактор Лоренца γ, описанный в главе 1. Соединяя выражения энергии и момента, получаем следующее уравнение:


Для частиц в состоянии покоя общая энергия равна Е=mc2, а для частиц без массы (таких, как фотон) энергия задана как Е=ср. Можно вывести волновое квантовое уравнение через предыдущее выражение энергии, заменив классические переменные соответствующими квантовыми операторами (принцип соответствия):


Используя данный принцип, получаем в итоге следующее релятивистское квантовое уравнение:




Поделиться книгой:

На главную
Назад