Поль Дирак
Весной 1926 года Оскар Клейн, работавший независимо от Шрёдингера, опубликовал первое релятивистское квантовое уравнение. Оно согласовывалось с тем уравнением, которое раньше получил австрийский физик. В последующие месяцы разные ученые — Владимир Фок, Гордон, де Бройль и сам Шрёдингер — работали над этим уравнением, анализировали его и интерпретировали его решения. То, что Шрёдингер не решился опубликовать свое первое релятивистское уравнение, поскольку оно противоречило экспериментальным данным, Дирак прокомментировал так:
Согласно Дираку, тот факт, что уравнение не согласовывается с опытом, не должен был беспокоить Шрёдингера. Уравнение Клейна — Гордона является дифференциальным уравнением с пространственными и временными переменными. Его решение задано волновой функцией, которая содержит всю физическую информацию об анализируемой системе. В отличие от уравнения Шрёдингера уравнение КГ согласуется с релятивистским выражением для энергии. Кроме того, оно соответствует теории относительности: не меняется при использовании преобразований Лоренца. Другими словами, уравнение остается релевантным вне зависимости от рассматриваемой инерциальной системы отсчета. Уравнение КГ является дифференциальным уравнением второго порядка одновременно по пространственным переменным (как и уравнение Шрёдингера) и по временной переменной. Данный факт, напрямую связанный с релятивистским выражением энергии, стал причиной постоянных проблем интерпретации результатов уравнения, поэтому оно было забыто на многие годы.
Волновая механика позволяет одновременно решить волновое уравнение, определив волновую функцию, и ввести плотность вероятности и плотность тока вероятности, которые должны удовлетворять «уравнению непрерывности» или «уравнению сохранения». Это случай уравнения КГ, где определена плотность тока, удовлетворяющая теории относительности. Однако главная проблема уравнения Клейна — Гордона возникает, когда необходимо вычислить плотность вероятности. В уравнении Шрёдингера плотность вероятности, согласно интерпретации Борна, задана квадратом волновой функции; таким образом, она определена как величина, имеющая положительное значение. Зато из уравнения КГ следует, что плотность вероятности может быть не только положительной, но и отрицательной, и нулевой. Это вытекает из его частной формулировки, включающей производную второго порядка по времени, и означает, что для того чтобы узнать волновую функцию в определенный момент, нужно знать не только волновую функцию в предыдущий момент, но и ее производную. Другими словами, из того, что уравнение КГ является уравнением второго порядка по времени, вытекает: для полного определения волновой функции должны быть известны два независимых условия. Следствием данного результата является то, что плотность вероятности может быть отрицательной. Но как объяснить, что вероятность обнаружения частицы в определенном месте может быть отрицательной? Для Дирака этот результат был отражением непоследовательности уравнения Клейна — Гордона, которое не удовлетворяло основным свойствам квантовой теории, сформулированным в его теории преобразований.
К концу 1926 года большинство физиков осознали слабые места уравнения КГ. Было не только трудно допустить существование отрицательной плотности вероятности, но также казалось невозможным включить в уравнение новое квантовое понятие — спин. Многие физики изучали проблему и пытались найти «улучшенную» версию уравнения КГ, введя в него эффекты спина в рамках теории Шрёдингера. Дирак поставил вопрос оригинальнее: исходя из основополагающих принципов, он разработал уравнение, в котором спин появлялся как естественное следствие теории относительности.
Стоит заметить, что уравнение Клейна — Гордона было пересмотрено в 1934 году Паули и Вайскопфом, которые переформулировали плотность вероятности в плотность заряда. Так сегодня уравнение Клейна — Гордона известно как «релятивистское квантовое уравнение для частицы с нулевым спином» и используется для описания поведения частиц без спина, таких как пионы (или пи-мезоны). Они имеют три разных состояния электрического заряда — положительное, отрицательное и нейтральное, — отражая значение, которое может принимать плотность заряда, определяемая уравнением.
Понятие спина было введено вследствие некоторых экспериментов, результаты которых не смогли объяснить существующие теории. Речь идет об эффекте Зеемана и опыте Штерна — Герлаха. В обоих случаях надо было ввести новое квантовое число, чтобы описать распределение электронов в атоме. В 1924 году Паули ввел четыре квантовых числа для описания состояний электрона: первые три определяли пространственное положение (n, l, ml,), а четвертое, обозначенное ms, физический смысл которого был еще не известен, могло принимать только два значения. В следующем году Паули представил свой знаменитый принцип запрета, позволявший понять, как распределяются электроны в разных атомах (расположение электронов).
Спустя несколько месяцев два молодых студента Лейденского университета (Нидерланды), Сэмюэл А. Гаудсмит (1902-1978) и Джордж Ю. Уленбек (1900-1988), присвоили новое квантовое число кинетическому моменту, соответствующему круговому движению электрона вокруг самого себя. Объяснение Гаудсмита и Уленбека было поставлено под сомнение из-за вытекавших из него последствий. Прежде всего, электрон должен был иметь конечный размер, чтобы вращение вокруг собственной оси имело смысл; то есть электрон не мог быть элементарной или точечной частицей. Впрочем, расчеты Лоренца показывали: угловая скорость на поверхности электрона должна значительно превосходить скорость света, что противоречило теории относительности. Эти результаты выглядели нелепо. Гаудсмит и Уленбек попросили своего руководителя Эренфеста не публиковать работу. И ответ последнего вошел в историю квантовой теории:
Спин является основным свойством, позволяющим понять поведение субатомного мира. У него нет эквивалента в классическом мире, это чисто квантовое явление. Следовательно, его нельзя интерпретировать как вращение электрона вокруг собственной оси в пространственных координатах; спин не зависит от уровней пространственной свободы; другими словами, он не зависит ни от координат, ни от моментов.
Уравнение Шрёдингера определяется исключительно в пространстве координат. Таким образом, волновая функция зависит только от пространственных и временных координат: Ψ(ṝ,t). Спин должен быть добавлен как новый уровень свободы. Он является единственным способом объяснить аномальный эффект Зеемана (расщепление спектральных линий) и результаты опыта Штерна — Герлаха, то есть разделение пучка на две симметричные части (см. рисунок).
К середине 1926 года большинство физиков считали, что наличие спина является прямым следствием приложения теории относительности к квантовому миру. Это объясняет, почему в уравнении Шрёдингера (которое соответствует классической теории) не содержится никакой информации о спине. Проблема, однако, была двоякой.
1. Как ввести спин в уравнение Шрёдингера?
2. Если существование спина вытекает из теории относительности, почему его нет в уравнении КГ, которое соответствует релятивистскому выражению энергии?
В мае 1927 года Паули нашел ответ на первый вопрос, развив свою теорию спина и включив его в уравнение Шрёдингера. Так родилось •«уравнение Паули». Но для того чтобы ответить на второй вопрос, надо было дождаться появления квантового релятивистского уравнения электрона — уравнения Дирака.
Теория Паули известна сегодня как «нерелятивистская теория спина». Согласно Паули, спин электрона следует интерпретировать как его собственный кинетический момент. Поэтому он ввел три оператора для трех пространственных составляющих, соблюдающих общие отношения коммутативности квантовых операторов. Формулировка была аналогичной той, которая соответствовала операторам орбитального движения электрона. Паули также ввел в теорию Шрёдингера соответствующее спину квантовое число ms, которое может принимать только два значения. Паули предложил волновую функцию из двух составляющих, каждая из которых связана с возможным значением квантового числа ms. Таким образом, квантовые операторы спина должны описываться как матрицы 2x2. Паули вывел следующую формулу:
Si = ħ/2 σi
где показатель i относится к любой из трех составляющих х, у, z, а σi представляет собой «матрицы Паули»:
Два возможных значения числа
ms:±ħ/2.
Следующий этап после определения операторов спина был относительно простым для Паули. Электрон на орбите имеет орбитальный кинетический момент и также собственный момент импульса, связанный со спином. Этот момент импульса может приспосабливаться к любому внешнему магнитному полю. Паули приложил свою модель к атому водорода, установив, что наличие спина в гамильтониане приводит к взаимодействию с орбитальным кинетическим моментом электрона.
Теорию Паули ждал большой успех, поскольку она объясняла многие явления, среди которых — аномальный эффект Зеемана и опыт Штерна — Герлаха. Однако сам Паули осознавал слабые места своей теории. Он ввел спин в изначальное уравнение Шрёдингера как простую релятивистскую поправку. Кстати, теория Паули может воспроизвести лишь приближенное выражение (первого порядка) постоянной тонкой структуры Зоммерфельда. Кроме того, уравнение Паули противоречило принципу относительности. Он сам признавал, что «мы вправе требовать от окончательной теории, чтобы она была сформулирована в инвариантной релятивистской форме и позволяла делать расчеты более высокого порядка». Этой дорогой пошел Дирак: он хотел сформулировать уравнение, исходя из основополагающих принципов двух теорий — теории относительности и квантовой теории.
Журнал Proceedings of Royal Society 2 января 1928 года получил через Фаулера статью Дирака под названием «Квантовая теория электрона», где автор писал:
Приведенный выше абзац раскрывает ход рассуждений Дирака в процессе выстраивания релятивистского уравнения. С одной стороны, уравнение должно соблюдать основополагающие принципы квантовой теории в том виде, в котором они сформулированы в теории преобразований: «Изначальное состояние системы полностью определяет ее состояние в последующий момент». Это означает, что волновое уравнение должно было быть дифференциальным уравнением первого порядка по времени. Так волновая функция в любой момент четко определяет волновую функцию в последующий момент. Данная формулировка, согласующаяся с уравнением Шрёдингера, но уводящая в сторону от уравнения КГ, ведет к вероятностной плотности, определяемой положительным значением. Этот результат кроме того связан с другим важным аспектом теории преобразований Дирака: гамильтониан системы должен быть самосопряженным оператором (эрмитовым оператором). Такое свойство гарантирует, что собственные значения оператора, то есть значения полной энергии системы, будут действительными.
С другой стороны, Дираку следовало учитывать принцип относительности. Квантовое релятивистское уравнение должно было действовать для любой инерциальной системы отсчета. Но как этого добиться? Решение Дирака своей красотой и простотой подтверждает его огромный творческий гений. В рамках релятивистской теории время и пространственные координаты являются составляющими «четырехмерного вектора пространство — время». Дирак заключил из этого, что нет причин обращаться по-разному с двумя видами переменных в квантовом волновом уравнении. Наоборот, если волновое уравнение должно было быть, согласно квантовой теории, уравнением первого порядка по производной по времени, то релятивистская теория требовала введения пространственных переменных в виде их первых производных. Это симметричное обращение со временем и пространством согласовывалось с релятивистской формулировкой, но уводило от нерелятивистского уравнения Шрёдингера, в котором временные и пространственные переменные появлялись по-разному: производная первого порядка по времени и второго порядка по пространственным переменным. Дирак считал симметрию главным условием релятивистской теории, которая в свою очередь должна согласовываться с релятивистским выражением для энергии:
E = √(c2 р2 + m2с4) (свободная частица).
Сопряженный оператор задан матрицей, выстроенной из изначальной матрицы, в которой изменяются строки и столбцы, и каждый элемент заменен комплексно-сопряженным ему элементом. Такая матрица называется сопряженной:
В итоге его требования к новому квантовому релятивистскому уравнению электрона можно описать следующим образом.
1. Это должно быть дифференциальное уравнение первого порядка по времени, которое симметрично включает пространственные переменные, то есть с производными первого порядка.
2. Оператор Гамильтона должен быть самосопряженным — так, чтобы плотность вероятности определялась положительным значением и чтобы энергии были действительными.
3. Оно должно согласовываться с релятивистским выражением для энергии и быть релевантным для любой инерциальной системы отсчета.
Таким образом, Дирак предложил следующее общее уравнение:
Заметим, что два вида переменных — пространство и время — включены одним способом. Кроме того, существует дополнительный член уравнения, ßmc2, связанный с собственной массой электрона, то есть с массой в системе, в которой он находится в состоянии покоя. Уравнение зависит от четырех неизвестных коэффициентов: αx,αy,αz,β. Таким образом, вопрос состоит в том, как их определить. Для этого Дирак должен был доказать совместимость своего уравнения с релятивистским выражением для энергии.
Он полностью осознавал «эквивалентность» квантовых операторов и соответствующих классических величин. Кстати, именно это соответствие позволило объяснить форму уравнения Шрёдингера и уравнения Клейна — Гордона. Используя аналогию между классическим и квантовым миром, квантовое уравнение, предложенное Дираком, вело к следующему классическому уравнению для энергии:
Е= с (αxpx + αyрy + αzpz) + ßmc2.
Как связать данное уравнение, линейное в трех составляющих кинетического момента со сложным релятивистским выражением энергии, в котором появляется квадратный корень? Дирак искал способ, позволивший бы ему записать в линейном виде релятивистское уравнение энергии, определив четыре неизвестных коэффициента. Первым большим шагом вперед в этом направлении было открытие того, что его квантовое уравнение может быть совместимым с релятивистским выражением для энергии, только когда введенные им коэффициенты не коммутируют между собой и, кроме того, если квадрат каждого оператора равен единице. Математически это выражается в следующей форме:
α
Индексы i,j относятся к любой из трех пространственных составляющих: х, у, z. Коэффициенты Дирак интерпретировал как матрицы. Последнее означало, что волновая функция Ψ содержит разные составляющие, помимо своей зависимости от временных и пространственных переменных. Это было новостью. В предыдущем 1927 году Паули уже представил волновую функцию с двумя составляющими, связанными с двумя возможными значениями спина.
Однако проблема была решена не до конца. Сопряженность гамильтониана означала, что четыре матрицы должны быть, в свою очередь, эрмитово-сопряженными. В первое время Дирак думал о матрицах Паули, которые отвечали всем необходимым условиям. Но матриц Паули было три, и Дираку надо было найти четвертую, чтобы окончательно сформировать уравнение. В результате он пришел к выводу, что найти четвертую матрицу для трех матриц Паули невозможно. Математики на самом деле уже знали этот результат, так как они доказали, что для квадратных матриц Nx N максимальное количество независимых эрмитово-сопряженных матриц, которые «антикоммутируют» между собой, равно N2 -1. Следовательно, у Дирака оставалась единственная возможность — увеличить размер матриц. Доказав, что их размер обязательно должен быть парным, ученый наконец нашел четыре независимые эрмитово-сопряженные матрицы 4x4. Это минимальный размер, который согласуется с общими свойствами его уравнения. Дирак заметил:
«Мне понадобилось много недель, чтобы осознать, что необязательно использовать переменные с двумя строками и двумя столбцами. Почему бы не представить четыре строки и четыре столбца?»