Френелю удалось объяснить все эти отрицательные результаты с помощью блестящего предположения. Он заявил, что некоторая часть эфира остается внутри материи, в то время как остальная часть свободно проходит сквозь нее. Но его предположение содержало вопиющее противоречие: каждой составляющей спектра света соответствовало в таком случае разное количество поглощенного эфира, что воистину абсурдно. Однако это отнюдь не преуменьшает значения блестящей гипотезы Френеля. Напротив, ее значение лишь возрастает, ибо, как выяснилось много позднее, Френель интуитивно приблизился к чему-то такому, что соответствовало теории относительности и никак не укладывалось в рамки ньютоновской картины мира.
Здесь нам предстоит сказать о выдающемся голландском теоретике Хендрике Антоне Лоренце, которому в 1902 г. была присуждена Нобелевская премия. В конце XIX столетия он значительно усовершенствовал максвелловскую электромагнитную теорию, в ходе чего им была получена формула Френеля, но без содержащегося в ней противоречия. При этом предполагалось, что эфир находится в состоянии абсолютного покоя, если не считать проходящие через него световые волны.
Все, казалось бы, было расставлено на свои места, если бы Максвелл в последний год своей жизни не успел предложить идею нового оптического метода измерения движения Земли через эфир. Эксперимент требовал приборов такой необычайной чувствительности, что Максвелл был уверен в невозможности его осуществления. Тем не менее идея Максвелла открывала теоретическую возможность измерить эффекты, описываемые формулой Френеля и недоступные другим, менее чувствительным методам проведения оптических экспериментов.
Однако Максвелл проявил излишний пессимизм. Он не мог предвидеть, сколь изобретательным окажется в подготовке экспериментов американский физик Альберт Майкельсон, которому в 1907 г. была присуждена Нобелевская премия. В своей предварительной попытке, предпринятой в 1881 г., Майкельсон остроумно использовал интерференционные полосы и продемонстрировал, что эксперимент вполне осуществим. В 1887 г. вместе со своим коллегой Э.В. Морли он провел этот эксперимент, добившись еще большей точности.
Эксперимент Майкельсона — Морли слишком хорошо известен, чтобы подробно на нем останавливаться. Его целью было определить воздействие движения Земли на скорость света, измеренную на Земле. Если Земля движется через стационарный эфир, в лаборатории должно ощущаться нечто вроде эфирного ветра. Направьте пучок света в направлении этого потока, поставьте на его пути зеркало и дайте отраженному свету возвратиться в исходную точку. Вычисления показывают, что время, затраченное на этот путь, будет несколько превышать то время, которое понадобится пучку, направленному перпендикулярно потоку. Определив разницу во времени, которое затрачивается на прохождение пучком света пути туда и обратно в различных направлениях, можно измерить скорость эфирного ветра, а тем самым и скорость движения Земли через эфир. Эксперимент был проведен с достаточной точностью, чтобы уловить разницу во времени, если эфир считать неподвижным. Однако, к разочарованию Майкельсона, приборы не показали никаких различий. В силу этого Майкельсон счел эксперимент неудачным и вплоть до 1902 г. упоминал о нем с некоторым смущением.
Если оценивать эксперимент Майкельсона — Морли как попытку измерить абсолютное движение Земли, то он действительно закончился неудачей. Но сама эта неудача обернулась триумфом. Отрицательный результат, полученный Майкельсоном и Морли, привел в замешательство тех немногих, кто способен был понять некоторые проистекающие из него последствия. Согласно предположению Майкельсона, нулевой результат означает, что Земля увлекает за собой окружающий ее эфир. Но поскольку убедительнейшие экспериментальные и теоретические доводы свидетельствовали против этого, теоретики встали перед следующей проблемой: если поток эфира
Ирландский физик Г.Ф. Фитцджеральд, а затем и Лоренц независимо друг от друга предложили следующее объяснение: тела сокращаются в направлении своего движения через эфир, причем величина этого сокращения как раз такова, чтобы компенсировать влияние эфирного ветра в эксперименте Майкельсона — Морли. Чем больше скорость движения через эфир, тем больше соответствующее сокращение. Из-за орбитальной скорости Земли, составляющей около 30 км/с, длина любого тела будет сокращаться всего-навсего на одну стомиллионную часть. При движении же со скоростью света, т. е. около 3х108 м/с, длина тела должна будет сократиться до нуля.
Большинство ученых восприняли это предположение ad hoc без большого энтузиазма. Великий французский математик, теоретик, философ и популяризатор науки Анри Пуанкаре считал сложившееся положение совершенно неудовлетворительным. Он возражал против метода «заплат»: сначала Френель, выдвинув идею о частично увлекающемся эфире, пытался дать объяснение нулевого результата ранних, не вполне еще точных экспериментов; теперь же Фитцджеральд и Лоренц пытаются с помощью идеи сокращения объяснить нулевые результаты более точных опытов. А что, если экспериментаторы сумеют добиться еще большей точности и получат новые неожиданные результаты? Значит, еще кому-то придется поспешно ставить новые заплаты с помощью предположений, скроенных специально по мерке существующих фактов? Под влиянием критических замечаний и советов Пуанкаре Лоренц предпринял систематические усилия, пытаясь согласовать уравнения Максвелла с результатами эксперимента Майкельсона — Морли и других, уже поставленных или еще не задуманных экспериментов. К 1904 г. после напряженной работы он в основном нашел математическое решение проблемы. Поскольку в данном случае нас не интересуют подробности, наметим лишь общий ход рассуждений Лоренца, даже если оно покажется несколько туманным. Проблема состояла в том, чтобы сохранить неизменной форму уравнений Максвелла при переходе от тела, находящегося в эфире в состоянии покоя, к телу, равномерно движущемуся относительно эфира. Чтобы добиться этого, Лоренц использовал, помимо всего прочего, сокращение длины. Однако ему не удалось полностью сохранить форму уравнений Максвелла. В его рассуждения вкрался какой-то изъян.
А тем временем Пуанкаре продолжал высказывать весьма глубокие и проницательные замечания. Например, в том самом 1895 г., когда шестнадцатилетний Эйнштейн размышлял над тем, какой представилась бы нам световая волна, если бы мы двигались вслед за ней со скоростью света, Пуанкаре выдвинул в качестве рабочей гипотезы — а с 1899 г. и более определенно — предположение, которое в 1904 г. он назвал
В июне 1905 г., почти одновременно с Эйнштейном, Пуанкаре отправил в научные журналы две статьи, имевшие одинаковое название: «О динамике электрона». Обе они существенно основывались на статье Лоренца 1904 г. В первой, более краткой, была исправлена допущенная Лоренцом ошибка и лишь вскользь затронута проблема, исчерпывающему математическому решению которой была посвящена вторая статья.
Эйнштейну, когда он писал свою статью, конечно, не были известны эти две еще не напечатанные работы Пуанкаре. Не знал он и статьи Лоренца, опубликованной в 1904 г. Эйнштейн избрал совершенно иной метод. Более того, ему удалось осуществить преобразование уравнений Максвелла и при этом избежать ошибок.
Практически все основные математические формулы, вошедшие в статью Эйнштейна 1905 г. по теории относительности, можно найти и в работе Лоренца 1904 г., и в двух вышеупомянутых исследованиях Пуанкаре (оба они позднее стали датироваться 1905 г., хотя более существенная из них появилась в печати не ранее начала 1906 г.). Зачастую идентичные формулы были почти неизбежны, поскольку математическое облачение теории относительности связано с уравнениями Максвелла и математическим описанием распространения волн. В самом деле, фундаментальное для теории относительности математическое преобразование — формула, названная Пуанкаре в 1905 г. «преобразованием Лоренца», — еще в 1898 г. было на основе уравнений Максвелла получено Джозефом Лармором, физиком ирландского происхождения. Кроме того, еще раньше, в том самом 1887 г., когда был поставлен эксперимент Майкельсона — Морли, почти такое же преобразование применил немецкий физик Вольдемар Фойгт при изучении волнового движения. В сожалению, разговор об этом неизбежен, поскольку подобные математические совпадения наводят некоторых людей на ошибочную мысль, что вклад Эйнштейна в данном случае был лишь второстепенным, а это, безусловно, далеко от истины. И все же справедливости ради мы обязаны отметить, что в работах Пуанкаре содержится множество близких к теории относительности идей, и остается только удивляться, что ему не удалось сделать тот решительный шаг, который привел бы его к этой теории, — так близко Пуанкаре подошел к ней.
После столь затянувшегося предисловия мы можем, наконец, обратиться к статье по электродинамике движущихся тел, написанной Эйнштейном в 1905 г. Она достойна самого глубокого внимания — и, конечно же, потребует его.
Под впечатлением от законов термодинамики, заведомо отвергающих возможность создания вечного двигателя, Эйнштейн занялся поисками другого, столь же сильного принципа. Однако ключ к теории относительности после многих лет неудач и разочарований был найден им неожиданно. В одно прекрасное утро все части калейдоскопа так легко и естественно сложились вдруг перед его мысленным взором в волшебную картинку, что он сразу же проникся уверенностью в своей правоте. Правда, Эйнштейн был столь же уверен и в другой, более гипотетической своей работе о квантах света, состоявшей, казалось, из самых неожиданных противоречивых элементов.
Эйнштейн, должно быть, сознавал, что творит на века. И тем не менее он, вероятно, записывал свои вычисления на разрозненных листках бумаги. Правда, прежде чем послать свои ныне широко известные статьи 1905 г. в «Annalen der Physik», Эйнштейн, скорее всего, достаточно аккуратно переписывал их. Однако после появления этих статей в печати рукописи исчезли — наверное, он незамедлительно использовал их обратную сторону для других черновых вычислений. Как бы то ни было, оригиналы его работ не сохранились. Таков уж был Эйнштейн.
А теперь обратимся к содержанию его статьи 1905 г. по проблеме, получившей вскоре название специальной теории относительности. Отметим прежде всего, что Эйнштейн не упоминает особо результат эксперимента Майкельсона — Морли. Создается впечатление, что для его рассуждений этот результат как будто бы ни к чему. Более того, он оставил без внимания выдвинутое им самим всего за несколько недель до этого предположение, что свет должен каким-то образом состоять из квантов.
Как и в предшествующей работе, Эйнштейн начинает с изложения конфликта, выявляющего суть проблемы: в теории Максвелла проводится необоснованное различие между состояниями покоя и движения. Эйнштейн приводит такой пример. Если магнит и виток провода движутся друг мимо друга, в проводе возникает электрический ток. Представим себе, что магнит движется, в то время как виток находится в состоянии покоя. Теория Максвелла прекрасно все это объясняет. А теперь сделаем наоборот — пусть виток провода движется, а магнит находится в состоянии покоя. И снова теория Максвелла дает прекрасное объяснение. Но с физической точки зрения оно уже совершенно иное, несмотря даже на то, что вычисленные токи одинаковы.
Итак, заставив читателя усомниться в правильности максвелловского понимания состояний покоя и движения, Эйнштейн подкрепляет эти сомнения, приводя в качестве доказательства «безуспешные попытки обнаружить какое-либо движение Земли относительно эфира». Таким образом, он формулирует сильный постулат: никакой эксперимент не может обнаружить абсолютный покой или равномерное движение, т. е. пятое следствие Ньютона выполняется для всех разделов физики. Подкрепленный фактами, этот постулат, названный Эйнштейном
Его второй принцип гласит, что независимо от движения источника свет всегда движется через пустое пространство с одной и той же постоянной скоростью
Итак, перед нами два принципа. Каждый из них достаточно прост, убедителен и на первый взгляд безобиден. Каждый утверждает идею, находящуюся на грани очевидного. В чем же их опасность для устоявшихся представлений? Где кроется угроза революционного переворота в физике?
В своей статье Эйнштейн пишет, что эти принципы состоят «лишь в кажущемся противоречии». Но что имеет он в виду под этим
Постарайтесь внимательно проследить за ходом его мысли. Ваши усилия не пропадут даром. Однако предупреждаем: по мере того как вы будете вникать в суть рассуждений Эйнштейна, вы вдруг поймаете себя на том, что киваете в знак согласия головой. Через некоторое время его доводы станут казаться вам настолько очевидными и не содержащими ничего оригинального, что вы, пожалуй, начнете клевать носом. Затем наступит момент, когда вы с трудом сможете сдержать зевоту. Берегитесь: к этому времени вы зайдете столь далеко, что уклониться от потрясения не удастся, ибо очарование эйнштейновской логики заключается именно в ее кажущейся наивности и простоте.
А теперь рассмотрим два одинаковых равномерно движущихся тела — пусть это будут два технически оснащенных космических корабля, которые показаны ниже на рисунке. Представим себе, что эти корабли — назовем их по первым буквам имен их капитанов
Итак, почва для вопроса подготовлена. По второму принципу Эйнштейна, скорости световых импульсов не зависят от движения их источников. Следовательно, — и это немаловажно — световые импульсы занимают положения, показанные на рисунке. Капитан
Можно было бы ожидать, что, с учетом своего движения относительно
Но если бы это было так, то нарушился бы первый постулат Эйнштейна. Как же так? Ведь если
Поскольку итог наших рассуждений крайне неожидан, попробуем рассмотреть его с другой точки зрения — хотя бы для того, чтобы проверить, следует ли наш вывод из двух принципов Эйнштейна. Предположим,
Человек менее гениальный, столкнувшись с подобным крайне неприятным следствием двух, казалось бы, безобидных постулатов, немедленно отказался бы от какого-нибудь из них. Но Эйнштейн смело сохранил оба постулата, ведь они были ему нужны именно потому, что выражали самую суть проблемы. Само правдоподобие каждого из них, взятого в отдельности, обеспечивало его теории прочный фундамент. В столь сложной, полной неожиданностей области физики Эйнштейн не мог позволить себе возводить здание своей теории на зыбучем песке.
Теперь нам понятно, что Эйнштейн имел в виду под словом «противоречие». И все-таки это противоречие он определил как «лишь кажущееся», подразумевая под этим, что собирается каким-то образом его разрешить. Но как именно?
Мы подошли к критическому моменту в наших рассуждениях. Совершенно очевидно, что для выхода из создавшегося положения требовались какие-то радикальные средства. Идея, которая осенила Эйнштейна в то знаменательное утро, состояла в необходимости отказа от привычного, заботливо взлелеянного многими поколениями представления о времени.
Чтобы понять революционную идею Эйнштейна о времени, вернемся к нашим кораблям
А посылает импульс света от
Вполне возможно, что все это покажется довольно-таки бесцельным и, уж во всяком случае, вполне очевидным, так что упоминавшаяся уже зевота может напасть на вас именно здесь. Но, как уже говорилось, красота рассуждений Эйнштейна в том, что он оперирует понятиями, кажущаяся приемлемость которых обманчива. Пока мы вежливо сдерживаем зевки, незаметно для самих себя мы оказываемся перед ошеломляющими по своей неожиданности следствиями из принятых допущений.
В то время как
для
Что же должен подумать
Естественно, когда
Итак,
На чьей же мы стороне: на стороне
И тут гениальный ученый делает решающий ход. Для Эйнштейна расхождение в мнениях между
Возьмем, к примеру, другую незыблемую основу теоретической физики — понятие длины. Представим себе стержень, который движется мимо наблюдателей
Из этого следует, что так как одновременность относительна, то относительно и расстояние. И, видимо, эту «эпидемию относительности» остановить невозможно. Скорость, ускорение, сила, энергия — все эти понятия (и не только они) зависят от времени и расстояния; таким образом, изменилась сама структура физики.
Что же можно сказать о связи между измерениями времени и пространства, которые были проведены
Вооружившись этим преобразованием, Эйнштейн сделал дальнейшие выводы. Два его принципа могут на первый взгляд показаться безобидными, но логические следствия из них зачастую бросают вызов здравому смыслу. Например, как показал Эйнштейн,
Тут мы снова вспоминаем предположение Фитцджеральда и Лоренца о сокращении тел в направлении их движения через эфир. Эйнштейн получил точно такую же формулу для величины сокращения. Однако в теории Эйнштейна этот эффект носит взаимный, относительный характер:
Пуанкаре, один из величайших математиков своего времени, обладал тонкой философской интуицией. В своем основополагающем труде, опубликованном в 1905 г., Пуанкаре продемонстрировал виртуозное владение сложным математическим аппаратом теории относительности. В течение многих лет он проповедовал, что природа физических понятий чисто условна. Он раньше других почувствовал, что принцип относительности, скорее всего, правилен. И все-таки, когда пришло время сделать решительный шаг, мужество изменило ему, и он остался в плену традиционного образа мышления и привычных представлений о пространстве и времени. И если это покажется удивительным, то лишь потому, что мы недооцениваем ту смелость, которая понадобилась Эйнштейну, чтобы выдвинуть принцип относительности в качестве аксиомы, сохранить веру в его правильность и тем самым изменить наши представления о времени и пространстве. Осуществляя эту революцию в физике, Эйнштейн находился под сильным влиянием идей Маха. Еще в студенческие годы Бессо привлек его внимание к книге Маха по критике механики Ньютона. Мах войдет в наш рассказ позднее, хотя энтузиазм, с которым Эйнштейн воспринял его философские идеи, длился недолго. Мах с глубоким скептицизмом относился к таким понятиям, как абсолютное пространство и абсолютное время, — так же, впрочем, как и к атомам. Грубо говоря, он рассматривал науку как нечто подобное тщательной каталогизации данных, и ему хотелось, чтобы все понятия могли быть четко определены с помощью специальных методов. Эйнштейновская трактовка понятия одновременности в свете специальных методов синхронизации ясно свидетельствует о влиянии Маха. Однако и другим ученым — среди них Пуанкаре — идеи Маха также были известны, и тем не менее именно Эйнштейн сделал решающий шаг вперед.
Во взаимном сокращении длин, как и во взаимном замедлении хода часов, нет противоречия. Это чем-то похоже на эффект перспективы. Например, если два человека одинакового роста разойдутся в разные стороны, а затем остановятся и оглянутся, то каждому из них покажется, что другой стал ниже ростом. Мы, взрослые люди, не удивляемся этому взаимному сокращению и не находим в нем противоречия по той простой причине, что привыкли к нему с детства.
Сказанное выше позволяет составить лишь самое поверхностное представление о революционном характере статьи Эйнштейна по теории относительности, опубликованной в 1905 г. После изложения теоретических основ Эйнштейн переходит к математической стороне дела, которая далее занимает в статье основное место. Эйнштейн показывает, каким образом в свете новых идей о пространстве и времени и связанного с ними пересмотра ньютоновской механики уравнения Максвелла все же согласуются с принципом относительности. Например, чем с большей скоростью тело движется относительно экспериментатора, тем большей будет масса этого тела относительно того же экспериментатора. Характерно, что здесь Эйнштейн подводит нас к теоретическому предсказанию, которое может быть подвергнуто экспериментальной проверке. Он приводит формулы, описывающие движение электронов в электромагнитном поле с учетом релятивистского увеличения их масс по мере возрастания их скоростей относительно наблюдателя. Избрав иной путь, в 1904 г. Лоренц сделал, по сути, то же предсказание и успешно сравнил его с результатами, уже полученными ранее одним из экспериментаторов. Нас не должно смущать, что используемые Лоренцом й Эйнштейном формулы эквивалентны, ведь уже говорилось, что оба ученых опирались на одно и то же наследие — теорию Максвелла. Однако стоит отметить различие между этими двумя учеными. В 1906 г. все тот же экспериментатор опубликовал новые результаты и объявил их несовместимыми с предсказанием Лоренца и Эйнштейна и в то же время согласующимися с некоторыми конкурирующими теориями. Лоренца это явно лишило уверенности; Эйнштейн же остался невозмутим. Эти конкурирующие теории он не мог принять по эстетическим соображениям и поэтому без малейших колебаний предположил, что экспериментатор, очевидно, допустил ошибку. Проведенные другими экспериментаторами измерения показали впоследствии, что прав был Эйнштейн.
Было бы несправедливо завершить рассмотрение статьи Эйнштейна по теории относительности, не процитировав ее заключительных слов:
«В заключение я хотел бы сказать, что, работая над исследуемой здесь проблемой, я опирался на преданную помощь моего друга и коллеги М. Бессо и обязан ему несколькими предложениями».
Итак, мы рассмотрели четыре статьи, которые Эйнштейн предложил Габихту в обмен на его диссертацию. Экземпляры знаменитого 17-го тома «Annalen der Physik» с тремя из этих четырех работ стали бесценной библиографической редкостью, и библиотеки, которым посчастливилось ими обладать, зачастую держат их под замком. Подобный поток гениальных идей — три различные темы, разработанные с мастерством волшебника за столь короткий промежуток времени, делает 1905 г. памятным для человечества.
Тем не менее мы не можем поставить здесь точку. Для Эйнштейна 1905 г. еще не завершился. В конце сентября, через три месяца после появления статьи о теории относительности, он отправляет в «Annalen der Physik» еще одну статью, опубликованную в ноябре. Она занимает три печатные страницы. Воспользовавшись уравнениями электромагнетизма из предыдущей статьи, Эйнштейн вычислил, что если тело выделяет некоторое количество
Со свойственным ему инстинктивным чувством единства всего сущего Эйнштейн роняет вскользь необычайное по своей проницательности и решающее по своему значению замечание: то, что энергия выступает в виде света, «очевидно, несущественно». Таким образом, он провозглашает общий закон о том, что, если тело выделяет или поглощает некоторое количество
Значение
В той же статье все в том же 1905 г. Эйнштейн утверждает, что энергия любого вида обладает массой. Даже ему понадобилось еще два года, чтобы сделать огромной важности вывод о том, что и обратное должно быть верно, т. е. что всякая масса должна обладать энергией. К этому заключению его привели эстетические соображения. С какой стати должны различаться две разновидности масс: та, которой тело уже обладает, и та, которую оно теряет при выделении энергии? Не подкрепленное сколько-нибудь вескими основаниями допущение о существовании масс двух разных типов, в то время как вполне хватило бы одного, неминуемо вступило бы в противоречие и с эстетическими, и с чисто логическими критериями. Следовательно, всякая масса должна обладать энергией.
Итак, масса и энергия эквивалентны. На этом основании Эйнштейну удалось вывести ставшее знаменитым уравнение
В трех последних главах мы рассказали о том, как расцветал в знаменательном 1905 г. гений Эйнштейна. Первого апреля 1906 г. Эйнштейн получил повышение по службе в Бюро патентов и был назначен техническим экспертом второго класса.
Иногда революционные идеи быстро находят своих последователей. Статья по теории относительности поступила в «Annalen der Physik» в конце июня 1905 г. и была опубликована 26 сентября. А в ноябре 1905 г. о ней уже благосклонно отозвался некий выдающийся ученый. В своей автобиографии он писал, что работа Эйнштейна сразу же привлекла его внимание и возбудила энтузиазм.
Кто же был этот ученый? Пуанкаре? Нет. Тогда, конечно, Лоренц? Но вы опять ошиблись, не он. Это был Планк — тот самый Планк, которому, как и большинству физиков, пришлась не по душе идея кванта света. В его выступлении на Берлинском физическом коллоквиуме была высказана благоприятная оценка работы Эйнштейна. Но это не все. Планк сразу же приступил к развитию теории относительности. Его статьи на эту тему были опубликованы в 1906 и 1907 гг., и в них он одобрительно ссылался на Эйнштейна. Более того, он использовал свое огромное влияние для того, чтобы побудить других ученых познакомиться с новыми идеями. Он написал теплое письмо Эйнштейну, обращаясь к нему как к равному. Вот несколько отрывков из длинного письма, которое Планк написал Эйнштейну 6 июля 1907 г.
«Г-н Бухерер [чьи эксперименты существенно поддержали теорию относительности] уже писал мне о своем резко отрицательном отношении к последней моей работе [по относительности]… Поэтому для меня особенно утешительно… что Вы сейчас не придерживаетесь его мнения. До тех пор пока энтузиасты принципа относительности столь немногочисленны, как это имеет место сейчас, согласие их между собой становится особенно важным… Я, вероятно, отправлюсь в будущем году в горы в окрестностях Берна. Пусть это произойдет еще не скоро, но сама мысль об удовольствии лично с Вами познакомиться делает меня счастливым».
Лоренц не полностью разделял революционные идеи Эйнштейна о пространстве и времени: высоко отзываясь о них в последующие годы, он не всегда мог скрыть свое сожаление об утраченном эфире. Что же касается Пуанкаре, то вообще трудно сказать, оценивал ли он когда-либо по достоинству революционную природу релятивистских концепций Эйнштейна. В опубликованных работах Пуанкаре почти никогда не ссылался на Эйнштейна, а Эйнштейн в свою очередь почти никогда не упоминал Пуанкаре — хотя возможностей у обоих было предостаточно.
Ассистент Планка Макс фон Лауэ обратился к Эйнштейну с просьбой встретиться с ним в Берне летом 1906 г. Представляется (хотя и нельзя утверждать это со всей определенностью), что Лауэ машинально решил, будто бы Эйнштейн работает в Бернском университете. Конечно же, Лауэ был крайне удивлен, обнаружив, что человек, постигший свойства пространства и времени и высказавший о них столь поразившие Планка мысли, всего лишь простой служащий, которого Лауэ едва удостоил взглядом, когда разыскивал Эйнштейна в Бюро патентов. Их встреча положила начало дружбе на всю жизнь, и Лауэ, ставший позднее Нобелевским лауреатом, написал в 1911 г. первую монографию по теории относительности.
А Эйнштейн, не дожидаясь всеобщего признания своей работы, продолжал выпускать научные статьи, в которых развивал свои идеи о квантах, броуновском движении и относительности. Не надо забывать, что памятный 1905 г. еще не закончился: в декабре Эйнштейн послал в «Annalen der Physik» вторую работу о броуновском движении. Она была опубликована в 1906 г. А в 1907 г., как мы уже знаем, он окончательно сформулировал эквивалентность массы и энергии, что нашло конкретное выражение в роковом уравнении
Мы подробно остановимся на этих достижениях и Эйнштейна, и Минковского в 1907 г., но не в хронологическом порядке, а там, где это будет уместно с точки зрения логики повествования. Пока же заметим, что Минковский был профессором математики в Цюрихском политехникуме именно тогда, когда Эйнштейн там учился, причем последний крайне не регулярно посещал лекции Минковского, за что тот считал Эйнштейна лодырем.
Не все приняли теорию относительности с энтузиазмом. Даже благосклонно настроенным по отношению к ней физикам нелегко было понять и оценить новые идеи о пространстве и времени. Так что по мере распространения слуха о том, что предложил Эйнштейн, многие люди — и физики, и философы, и неспециалисты — принялись резко осуждать его идеи. Однако — и это чрезвычайно важно — все больше и больше выдающихся ученых приходили к тому, чтобы принять их.
И хотя Эйнштейн начал уже пользоваться некоторой славой среди ученых, он все еще оставался в Берне и испытывал немалые трудности, совмещая напряженную научную деятельность с ежедневной восьмичасовой работой в Бюро патентов. Сложившиеся в конце 1907 г. благоприятные обстоятельства вновь натолкнули его на мысль о занятии должности приват-доцента, с тем чтобы иметь возможность стать когда-нибудь профессором. А так как для этого нужно было подать конкурсную работу, он отослал в Бернский университет свою статью 1905 г. по теории относительности.
Работу не приняли, причем в качестве одной из причин была названа ее непонятность. С вполне естественным огорчением Эйнштейн отказался от попыток получить место преподавателя в университете. 3 января 1908 г. Эйнштейн написал об этом своему другу Марселю Гроссману — тот, несмотря на очень молодые годы, уже был профессором математики в Цюрихском политехникуме: «Рискуя показаться тебе смешным, я все же должен обратиться к тебе за практическим советом. Я готов предпринять активную попытку получить место преподавателя (математики и физики) в техникуме в Винтертуре. Приятель, который преподает там, сообщил мне под строжайшим секретом, что, вероятно, там скоро откроется вакансия. Не думай, что мною движет мания величия или какая-либо другая страсть, скорее, причиной тому — мое страстное желание продолжать свою индивидуальную научную работу в не столь неблагоприятных условиях, уж это-то ты, безусловно, поймешь.
„Но почему же он хочет ухватиться именно за эту работу?“ — подумаешь ты. Причиной тому — моя уверенность, что тут у меня есть наилучший шанс, так как:
1. Я уже однажды замещал там преподавателя в течение нескольких месяцев.
2. Я в приятельских отношениях с одним из тамошних преподавателей.
А теперь я спрошу тебя: как мне быть? Следует ли мне нанести визит, чтобы продемонстрировать свои высокие преподавательские способности и доказать, что я — достойный гражданин? Кого именно следовало бы повидать? Не произведу ли я плохое впечатление (не говорю на швейцарском диалекте немецкого языка, еврей и т. д.)? Более того, стоит ли в таком разговоре хвалиться своей научной работой?»
Эйнштейн активно искал и другие возможности. В январе того же года он подает заявление на вакантное место преподавателя математики в Цюрихской кантональной гимназии. Однако это место ему не понадобилось: кажется, судьба потихоньку становилась к нему более благосклонной. 28 января профессор Альфред Клейнер (не без его участия сначала была отклонена, а затем одобрена работа, которую Эйнштейн подавал в Цюрихский университет на соискание степени доктора философии) послал Эйнштейну загадочную открытку, выразив свое пожелание связаться с ним по важному для них обоих вопросу.
Пытаясь привлечь Эйнштейна в Цюрихский университет на должность профессора, Клейнер настоятельно просил его не только вновь попытаться стать приват-доцентом Бернского университета, но и ставить его, Клейнера, в известность обо всех предпринимаемых действиях с тем, чтобы в случае неудачи тот мог обдумать, как помочь Эйнштейну обойти все трудности получения места профессора.
Эйнштейн предпринял еще одну попытку. На этот раз все обстояло лучше, и в 1908 г. он стал приват-доцентом Бернского университета. Правда, поначалу это не принесло ожидаемых перемен к лучшему. Он по-прежнему отрабатывал положенные ему часы в Бюро патентов, а в дополнение теперь еще и читал лекции в университете. Приват-доцентам повсюду — не только в Берне — не было положено жалованье. Посещение лекций было платным, и внесенные студентами деньги шли лектору. Профессора, хотя и получали жалованье, оставляли за собой чтение хорошо посещавшихся обязательных курсов лекций и тем самым увеличивали свои доходы. Приват-доцентам же доставались обычно спецкурсы, которые привлекали лишь немногих студентов и приносили сущие гроши. Доходы Эйнштейна от чтения лекций в Бернском университете были мизерными. Лишь Бессо да еще один-два студента были его постоянными слушателями.
В те дни Эйнштейн был не слишком хорошим лектором. Его голова была занята более важными вещами. Но если он собирался получить когда-либо место профессора, ему предстояло пройти через все обряды посвящения в члены ученого племени. Это вызывало у него неудовольствие и даже протест. Хотя и внешний вид, и манера поведения Эйнштейна очень мало соответствовали академическим нормам, он не пытался что-либо изменить. Сестра Эйнштейна, Майя, вспоминает об одном эпизоде. В нем отражается то впечатление, которое Эйнштейн производил на окружающих. Она училась в Бернском университете и как-то решила посетить лекцию Эйнштейна. Майя спросила у служителя, в какой аудитории читает лекцию ее брат, доктор Эйнштейн. Видя перед собой элегантную молодую особу, служитель выпалил в крайнем изумлении: «Что? Этот… парень Ваш брат?» А когда Клейнер посетил без предупреждения лекцию своего протеже и после этого раскритиковал его преподавательские способности, Эйнштейн ответил: «А мне и не нужно место профессора в Цюрихе».
Весной 1909 г. пришло наконец официальное решение об учреждении с осени того же года в Цюрихском университете новой должности экстраординарного профессора кафедры теоретической физики. Член Совета Эрнст настаивал на назначении Фридриха Адлера, с которым Эйнштейн был в приятельских отношениях. Адлер действительно был серьезным соперником, ибо его отец, основатель Австрийской социал-демократической партии, обладал значительным весом в политических кругах. Однако его сын — человек возвышенных идеалов — настоял на снятии своей кандидатуры в пользу Эйнштейна. При этом он просил министерство просвещения отвлечься от политических соображений и принять во внимание выдающиеся научные достижения Эйнштейна, намного превосходящие его собственные. Его доводы оказались настолько красноречивыми, что Эрнсту не удалось настоять на назначении Адлера. Вот так в результате бескорыстного поступка Адлера 7 мая 1909 г. Эйнштейн был избран на должность профессора. Ему было тридцать лет.
В связи с этим вспоминается эпизод из жизни Ньютона. В 1669 г., когда Ньютону шел двадцать седьмой год, его наставник Исаак Барроу отказался от места профессора Кембриджского университета в пользу Ньютона. Однако в целом судьбы Адлера и Барроу сложились по-разному. Барроу углубился в проблемы теологии. А Адлер все больше и больше отдавался политике, и в 1916 г. тот же его идеализм, усиленный ужасами первой мировой войны, побудил Адлера совершить покушение на премьер-министра Австрии, за что он, впрочем, получил довольно мягкий приговор.
В 1909 г. Эйнштейн был слишком поглощен своими исследованиями, чтобы уделять сколько-нибудь пристальное внимание политике. 6 июля он подал в Бюро патентов прошение об отставке, которое было удовлетворено 15 октября 1909 г. В письме к Бессо в 1919 г. Эйнштейн тепло вспоминал работу в Бюро патентов, называя его «мирской кельей, святым местом, где зародились его самые прекрасные идеи, и им было так хорошо вместе». В Бюро патентов Эйнштейн провел магические 7 лет[16].
Физик и математик Минковский выступил 21 сентября 1908 г. на языке, понятном не только специалистам, с изложением своих идей об объединении пространства и времени в единое пространство — время на проходившем в Кельне LXXX конгрессе естествоиспытателей. Этот доклад вызвал сенсацию, отчасти из-за вступления: «Отныне пространство само по себе и время само по себе полностью уходят в царство теней, и лишь своего рода союз обоих этих понятий сохраняет самостоятельное существование». И если эти слова Минковского возбуждают наше любопытство — он достиг своей цели. Эти слова — прекрасное обобщение.
В ньютоновском представлении компактный и соразмерный, если можно так выразиться, мир существует в абсолютном пространстве и абсолютном времени. Эйнштейн нарушил эту картину, утверждая, что для разных наблюдателей, находящихся в равномерном движении, существуют разные системы установления синхронности. А так как их меры длины также подвергаются изменениям[17], то можно сказать, что у разных наблюдателей имеются разные индивидуальные системы отсчета времени и пространства. И всё же, несмотря на эти несовпадения, у наблюдателей много общего. Например, значение скорости света — константа с. А главное — они живут в одной и той же Вселенной.
Последнее звучит совсем уж банально. Однако именно это вводит нас в суть дела. Ведь индивидуальные системы отсчета пространства и времени различных наблюдателей существуют не сами по себе. Как показал Минковский, в теории относительности все они принадлежат единственной универсальной области, которая всем равно принадлежит и представляет собой конгломерат пространства и времени. Последний называется
Все вышесказанное способно озадачить читателя. Попробуем же снять покров таинственности. Во-первых, не пытайтесь зрительно представить себе четырехмерное пространство — время. Это совершенно невозможно. Ни Эйнштейну, ни Минковскому это было не под силу. Ученые обычно имеют дело с математическими аналогиями, и, хотя это позволяет им с необычайной виртуозностью обсуждать все, связанное с четырехмерным пространством — временем, они все-таки не в состоянии зрительно представить его себе.
На листе миллиметровки положение точки определяется двумя числами. Поэтому можно сказать, что поверхность листа миллиметровки имеет два измерения. В комнате для этого нужны уже три числа, описывающие, например, расстояние точки от пола и от двух стен. Таким образом, мы говорим, что пространство имеет три измерения. Но если говорить не о точках, а о точках в определенный момент времени, необходимы уже четыре числа — три для описания положения в пространстве и одно — для времени. В этом смысле мир четырехмерный.
Ну, скажете вы с облегчением, если это все, то вселенная Ньютона была четырехмерной. В каком-то смысле да. Но поскольку абсолютное время было отделено от абсолютного пространства (не считая того, что абсолютное пространство существовало все время), то ньютоновская вселенная представляется часто имеющей 3 + 1, а не 4 измерения. Этого нельзя сказать о пространстве — времени в теории относительности, ибо в ней пространство и время так тесно переплетены, что без термина «четырехмерный» просто не обойтись.
Поразмыслим над четырехмерностью чуть поглубже. Для этого вернемся к нашим космическим кораблям и их капитанам
Пусть тем не менее каждый наблюдатель проделает следующее. Прежде всего преобразует временной интервал в расстояние. Как? Очень просто. Вычислив то расстояние, которое свет (все согласны, что скорость его равна
Запомним:
(пространство —
Проделав это, они получат в соответствии с уравнениями теории относительности один и тот же результат — впрочем, к нему придет и любой другой наблюдатель, находящийся в состоянии равномерного прямолинейного движения.
В ньютоновской механике пространства — расстояния между двумя событиями были бы разными. Равны были бы время — расстояния. Но с релятивистской точки зрения лишь приведенное выше объединение их в одной формуле имеет одно и то же значение для всех наблюдателей. Это уже достаточно примечательно. А теперь давайте вспомним теорему Пифагора, которая так поразила Эйнштейна в детстве. Представим себе двух человек
Рассмотрим расстояния между