Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Игра случая. Математика и мифология совпадения - Джозеф Мазур на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Брайан Зикмунд-Фишер, который преподает теорию рисков и теорию вероятностей в Медицинской школе Мичиганского университета, столкнулся с такой дилеммой в 1998 г. Ему диагностировали миелодиспластический синдром и сказали, что без лечения он проживет всего 10 лет, а с лечением у него будет 70 %-ная вероятность жить нормальной жизнью{63}. Он сделал ставку на трансплантацию. Смысл в том, что шансы ничего не говорят об отдельном человеке. Вероятность в 70 % получена посредством сбора статистических данных о сотнях (возможно, тысячах) людей, которые столкнулись с той же дилеммой, – государственная, нелокальная статистика. Статистические группировки описывают тенденции и возможности, а не отдельные случаи, когда можно выиграть или проиграть.

Возьмем некое событие, которое вы могли бы счесть редким. Его математические шансы могут быть один к миллиону, но, вероятно, такие цифры связаны с тем, что событие оценивается как локальный феномен. В качестве примера можно взять белку, которую ударило молнией в тот момент, когда она пересекала дорогу. Когда мы говорим на этом знакомом языке шансов, то часто выражаемся фигурально, без какого-либо последовательного метода определения терминов. Итак, «один на миллион» обычно применяется к событию, которое, как мы думаем, происходит в довольно широких пределах Соединенных Штатов. Но США – большая страна. Это нетрудно увидеть, пролетев над маленькими домиками, маленькими деревьями и обширными зелеными полями. Мы не думаем ни о том, сколько там внизу белок, ни о том, сколько из них пересекают дорогу в отдельный момент времени. Ученые оценивают численность белок в США в 1,12 млрд, что в 3 раза больше населения страны. И белки постоянно пересекают дороги.

Учитывая 1,12 млрд белок, 6,5 млн км дорог и 9,5 млн км2 площади США, вполне возможно, что каждую минуту 300 белок пересекают дороги{64}. Во время грозы это число может быть даже больше. В среднем в Соединенных Штатах случается 110 000 гроз в год. Летом гроз гораздо больше, чем зимой, что делает возможность поражения белки ударом молнии летом действительно очень большой.

Каждое явление в природе вызывается большим числом неопределенных возможностей. Когда бросают игральную кость, то результат сильно зависит от ее начального положения в руке бросающего и значительно слабее – от звуковых волн, создаваемых голосами присутствующих в комнате. Это лишь два внешних фактора, направляющих кость к положению, в котором она остановится.

То, как она ударяется об стол, точность ее балансировки, ее движение по руке, упругость соударения со столом – все это повлияет на то, какая из сторон будет направлена вверх, когда кость остановится.

Рассмотрим игру, в которой возможен только выигрыш или проигрыш, а вничью сыграть невозможно. Пусть X обозначает исход испытания, а P (X) – вероятность наступления этого исхода. Если бы вы, например, бросали монету, P (орел) равнялось бы 1/2, как и P (решка). В колесе для американской рулетки 38 ячеек, включая 0 и 00: 18 красных; 18 черных; 0 и 00 – зеленые. Если вы ставите на красное, P (красное) равняется 18/38 или, если упростить, 9/19, а P (не красное) равняется 10/19. Если бы вы бросали игральную кость, надеясь выбросить «очко» (1), то P (1) равняется 1/6.

Выберите любую подобную игру и спросите себя: какова вероятность выиграть 0, 1, 2, 3 или 4 раза? Вполне уместный вопрос, поскольку реальные азартные игры предполагают совокупные последовательности выигрышей или проигрышей. Вспомним о Джоан Гинтер, о том, как она 4 раза выиграла в лотерею. Вам также могут быть интересны шансы сыграть лучше, чем если бы вы остались при своих, или по крайней мере шансы не проиграть больше 2 из 4 ставок.

Обозначим последовательностями из букв W и L серии выигрышей или проигрышей. Четырехкратный проигрыш будет обозначен через LLLL, а четырехкратный выигрыш – через WWWW. Есть лишь один способ выиграть все 4 раза и только один – не выиграть ни разу. А если выиграть 1 раз из 4? Есть 4 способа выиграть 1 раз из 4, а именно: WLLL, LWLL, LLWL и LLLW. И, конечно, способов проиграть только 1 раз из 4 также 4. Как насчет 2 выигрышей за 4 тура? Двухкратный выигрыш будет представлен 6 вариантами: WWLL, WLWL, WLLW, LWWL, LWLW и LLWW. При независимых событиях, где исход первого события не имеет памяти о других (например, туры при игре в рулетку или игра в орлянку), вероятности одного или другого из 2 событий – это произведение вероятностей каждого из них. Исходя из того, о чем мы говорили в главе 4, если A и B – это возможные исходы, вероятность наступления и A, и B – это произведение P (A) P (B), а вероятность наступления A или B – P (A) + P (B) – P (A) × P (B).

Теперь давайте возьмем случай с 2 выигрышами. Чтобы упростить запись, примем, что p означает P (W), а q – P (L). Вероятность 1 отдельного выигрыша – p, и, поскольку выигрыш и проигрыш в разных турах – события независимые (т. е. каждый тур не зависит от предыдущего), мы видим, что вероятность 2 выигрышей в 4 турах – это p²q²[10]. Так происходит потому, что вам необходимо 2 раза выиграть и 2 раза проиграть, а когда логической связкой является «и», вероятности перемножают. Но, как мы выяснили, это может произойти 6 различными способами: WWLL, WLWL, WLLW, LWWL, LWLW и LLWW.

Поскольку логической связкой является «или», вероятность наступления любого из этих событий будет: ppqq + pqpq + pqqp + qppq + qpqp + qqpp, или просто 6p²q².

Рассмотрим четыре разные игры. В первой игре мы играем в рулетку и ставим на красное. Во второй мы подбрасываем монетку и ставим на выпадение орла. В третьей мы подбрасываем две игральные кости и выигрываем, если в сумме выпало 7, а во всех остальных случаях проигрываем. Наконец, в последней игре мы покупаем билет Texas Lotto и рассматриваем как выигрыш только джекпот. В таблице 7.1 приведены вероятности выиграть в каждой из этих игр (первый столбец). Мы также можем сыграть несколько раз. Допустим, мы играем четыре раза – тогда можем выиграть ноль, один, два, три или четыре раза. Вероятности соответствующих событий также приведены в таблице 7.1.

В теории и для рулетки, и для орлянки в соответствии с табл. 7.1 наиболее вероятен выигрыш в 2 турах из 4. Мы могли бы составить таблицу вероятностей для 100 туров рулетки и орлянки, однако это было бы ужасно долгим и непрактичным занятием. Вместо этого позвольте сказать только то, что в 100 турах орлянки игрок, ставящий на орла, с наибольшей вероятностью выиграет 50 раз, а в 100 турах рулетки, делая ставку на «красное», игрок с наибольшей вероятностью выиграет (как будет показано) только 37 раз{65}. Священный Грааль игрока – знать, какие именно 37 раз.

Отметим симметричность, присущую рулетке и орлянке, асимметричность костей и предельную асимметричность лотерей. Как насчет строки для рулетки в табл. 7.1? На гистограмме, изображающей число туров, когда выпадает «красное», против вероятности наступления этого количества туров, где выигрывает «красное» (см. рис. 7.1A), около числа 2 есть некоторая асимметрия, а центр притяжения (геометрическая точка равновесия), видимо, немного меньше 2. Когда число туров увеличивается до 8, отклонение становится еще более явным (см. рис. 7.1B){66}.





Увеличение числа туров в рулетке приводит к сглаживанию графика. Для 100 туров у нас будет 101 прямоугольник с основанием в одно деление{67}.

На рис. 7.2 изображено то, что называется частотным распределением. Высота прямоугольника над каждым из чисел означает то, как часто ожидается наступление отдельных событий. Столбцы распределяются по горизонтальной оси таким образом, что общая сумма их площадей равняется 1. Другими словами, площадь графика составляет 100 % всех возможных событий. Большая часть распределения частот концентрируется между 32 и 62, самый высокий столбец – 47. Меньше 32 и больше 62 вероятности настолько малы, что на графике их не видно. Например, P (31) = 0,00034, а P (63) = 0,0006. Весьма маловероятно, что «красное» выпадет 20 или 80 раз, однако, как все совпадения, не исключено.

В случае орлянки, где p равняется q, симметрия идеальна. Но p не обязательно равняется q. Мы обнаруживаем все более выраженную асимметрию по мере того, как увеличивается разрыв между p и q. В табл. 7.1 мы видим идеальную симметрию в 5-й колонке слева и почти никакой симметрии в 7-й колонке. И все же все вычисления основываются на 3-й колонке и производятся с помощью так называемого треугольника Паскаля – ключе к хранилищу инструментов теории вероятностей.

Треугольник Паскаля – это числа, расположенные в виде треугольника следующим образом:


Каждое число на рис. 7.3 – это сумма двух чисел, расположенных точно над ним в линии сверху: например, 3-е число (10) в 5-й линии сверху – это сумма 4 и 6 на 4-й линии. Сперва отметим симметричность, а затем обратим внимание на то, что числа те же, что мы видели, когда раскладывали по степеням сумму двух переменных p и q. Мы находим те же числа, когда раскладывали по степеням (p + q) n. Например, при n = 2 (p + q)² = (p + q) (p + q) = p (p + q) + q (p + q) = p² + pq + qp + q² = p² + 2p¹q¹ + q².

Если мы возведем в степень n = 1, 2, 3, 4, 5, 6…, получим следующую матрицу в форме треугольника:


Для любого n константы в разложении двучленов (p + q)n – это как раз числа из треугольника Паскаля.

История этого треугольника начинается задолго до Блеза Паскаля{68}. Он в 1527 г. появился в работах китайского алгебраиста XIII в. Чу Шикей, позже – на титульном листе «Учебника по арифметике» Петера Апиана (который можно увидеть на картине «Послы» [1533 г.] работы Ганса Гольбейна-младшего), больше чем за век до того, как Паскаль исследовал треугольник, названный его именем{69}. В современном Иране треугольник известен как треугольник Хайяма, в честь известного персидского поэта и математика Омара Хайяма, который использовал треугольник в XII в., чтобы создать метод нахождения корней n-х степеней. В современном Китае он называется треугольником Ян Хуэя, в честь другого математика, который описал его в XIII в. В Италии это треугольник Тарталья, в честь математика Никколо Тарталья, жившего за век до Паскаля. Однако Паскаль, собрав уже известные наработки о треугольнике, использовал их в теории вероятностей{70}.

Распределение вероятностей

На рис. 7.2 показана вероятность выигрыша при ставке на «красное» в 100 турах рулетки. Мы уже видели, какую форму принимает график, когда рассматривали примеры вычислений в табл. 7.1 и коэффициенты, получаемые в результате разложения двучленов (p + q)n. Распределение столбцов на графике справедливо называют биномиальным распределением. Слово «биномиальное» происходит от конструкции, основанной на двух мономах p и q. По мере увеличения n график выравнивается и принимает форму колокола. Чем больше n, тем плавнее кривая.

Выберем некоторое большое значение n. Мы изменим гистограмму, сохранив без изменений ее площадь, а следовательно, и вероятность. Поскольку основание каждого столбца[11] имеет ширину в одно деление, распределение вероятностей представлено в виде площадей прямоугольников, а также их высотами. Некоторые разумные изменения – сдвиг, сжатие и растяжение – дают нам новый график, который сохраняет всю полезную информацию оригинала{71}. Конечно, теперь, в измененном графике, вертикальная ось уже не обозначает вероятность. Вероятность заключена в площадях прямоугольников, а эти площади не изменялись, потому что мы растянули график по вертикали и сжали по горизонтали в одной пропорции[12].

Чего мы достигли? Вот оно – чудо, вдохновенная идея. Кривую (гистограмма биномиального распределения, показанная на рис. 7.2), которая изображает вероятность выигрыша при ставке на «красное» в 100 турах рулетки, можно близко аппроксимировать к одной определенной математической кривой. Тут важно понимать, что одна эта кривая описывает великое множество природных феноменов, являющихся результатами случайностей. Поразительно, но эта кривая моделирует события рулетки, хотя и не имеет очевидной связи с шариками, падающими в красные ячейки колеса рулетки. Еще более удивительно, что та же кривая моделирует также и орлянку. Всего одна кривая описывает вероятности столь различных явлений. Чтобы получить информацию о вероятности конкретного явления, нам нужно ввести некоторые данные в модель. Мы должны предоставить два числа – среднее (среднее значение) и стандартное отклонение (мера разброса от среднего){72}. Два этих числа дают информацию для модели, скажем, о рулетке, а именно: вероятность наступления события p (шарик падает в красную ячейку) – 9/19. Как только у нас есть эти конкретные p и N (число сыгранных туров рулетки), мы можем вычислить стандартное отклонение для нашей конкретной игры – ставки на «красное» в рулетке{73}. Это мера того, насколько велик разброс исходов от среднего, или стандартное отклонение от среднего, чаще называемое просто стандартным отклонением{74}.

Итак, каждая кривая биномиального распределения трансформируется с помощью математического трюка (посредством сдвигов и масштабирования) в особую могущественную кривую нормального распределения, график которой изображен на рис. 7.4{75}.

Числа в основании кривой на рис. 7.4 – это стандартные отклонения от среднего. Мы объединили испытания в группы по стандартному отклонению. Отдельные вероятности исходов событий теперь не видны. Переменная X под кривой на рис. 7.4 показывает отклонение числа эмпирических успешных исходов от наиболее вероятного их числа. Иными словами, X, переменная горизонтальной оси, измеряется в стандартных отклонениях. Высота кривой – это уже не вероятность, поскольку мы ее масштабировали и сжали, сохранив площадь под кривой. Но в обмен на это масштабирование и сжатие мы получаем некоторые ценные сведения. Первое: около 68 % площади под кривой лежат на одном стандартном отклонении от среднего и около 95 % площади – на двух стандартных отклонениях от среднего. Второе: одно стандартное отклонение отмечено точками перегиба, т. е. точками на кривой, где кривая меняет форму с вогнутой на выпуклую.


Хотя одно стандартное отклонение для исхода «красное» в 100 турах рулетки – это не то же самое, что стандартное отклонение для орла в 100 бросках монеты, чудесным образом кривая и в том и в другом случае одинакова. Но толкование значения этих кривых будет различным. Хотя кривая на рис. 7.4 может быть одинаковой для распределения в различных азартных играх, разметку на осях нужно рассматривать в соответствии с конкретными расчетами среднего и стандартного отклонения. Эти данные будут зависеть от числа туров и вероятностей положительных исходов для конкретных игр.

Когда мы исследуем частотное распределение, то склонны смотреть в основном на отклонение от наиболее вероятного значения. Но то, что происходит далеко за пределами наиболее вероятных значений, может иметь невероятно сильное воздействие на общий накопленный результат. Мы обращаем мало внимания на эту внешнюю область, потому что в основном думаем о центре распределения и явлениях, которые наиболее вероятны, а не о том, что могло бы произойти в самых маловероятных случаях.

Принимаем ли мы в расчет маловероятные ситуации самых плохих сценариев? Или говорим, что они настолько редки, что их следует просто отбросить? Это и есть совпадения или случайности природы, реальные физические явления, движущиеся с попутным ветром вероятности. По мере увеличения числа бросков «правильной» монеты общее число орлов может значительно превысить общее число решек (или наоборот). Например, ситуация, когда вы бросаете монету 100 раз и каждый раз выпадает орел, маловероятна, но возможна, несмотря на то что шансы выбросить орла при каждом подбрасывании 1 к 1. Все же будем немного более сдержанны и рассмотрим случай, где из 100 бросков мы имеем исходы в 41 орел и 59 решек, или вероятности 0,41 и 0,59 соответственно[13]. Похоже, что разница велика, но из 100 бросков разница между орлом и решкой на самом деле всего лишь 18. Однако, если вы бросите монету 500 раз (как мы сделали в главе 6) и найдете, что вероятности стали значительно ближе к 1/2, скажем, где пропорция орлов в общем числе бросков равняется 0,45, а решек – 0,55, итого у нас будет 225 орлов и 275 решек, разность составит 50.

Иными словами, разность может продолжать увеличиваться, даже если коэффициенты приближаются к 1/2. Добавим к этому понимание, что для распределения результатов нет прогноза, мы находим его по мере того, как увеличивается число бросков, и то же самое происходит с вероятностью возникновения все большего и большего числа непрерывных серий орлов. Мы могли бросить монету 100 раз, сделать паузу, бросить еще 100 раз, снова сделать паузу и продолжить дальше подобным образом. Каждый раз мы могли бы начинать вести счет заново. Тогда каким же образом выходит, что разность между решками и орлами может быть 50 за 500 бросков, но, возможно, 10 за 100 бросков? Когда случится разница в 50? Может ли она случиться на последних 100 бросках подряд? Конечно, это тоже будет совпадением, но у каждой возможности есть небольшой шанс!

В теории в рулетку играют шариком идеально сферической формы, который крутится и ударяется о безупречно сбалансированное колесо с идеально ровными ячейками в совершенно неподвижной комнате в мире, который мы никогда не видели и который никогда не существовал. Реальные ставки делают в физическом мире, где шарики и колеса производятся с предельно жесткими допусками, но эти шарики и колеса изготавливают машины, созданные человеком. Магическая связь между идеальным и физическим настолько замысловата, что наше непонимание ослепляет нас.

Идеальный мир и физический мир

В физическом мире мы могли бы исследовать подлинные колеса для рулетки на предмет их недостатков, составив таблицу наблюдений, которую можно изобразить как график распределения частот. Такой график будет совершенно не похож на график нашей идеальной модели, но если колеса действительно были «правильные» и если бы мы рассмотрели достаточное число туров, то график эмпирических результатов должен быть похож (по крайней мере по форме) на график на рис. 7.4. Если мы выполним n испытаний в эксперименте, у нас будет n эмпирических результатов O1, O2, O3…., On с соответствующими вероятностями p1, p2, p3,…, pn, дающими эмпирическое распределение вероятностей. Например, как мы отметили ранее в случае с игрой в кости, исходом может быть выпадение одной из шести сторон, вероятность каждой из которых – 1/6. В честной игре экспериментальная версия распределения должна быть близка к теоретическому распределению, но мы, конечно, признаем, что непременно будут некоторые расхождения, поскольку мир неидеален.

В данном контексте идеальный значит математический. Понимание реальных шансов исходит из сравнения данных, полученных в ходе наблюдений, с расчетами, ожидаемыми в идеальном мире. Игроки могут знать, что шансы не в их пользу, и все же надеяться на то, что физический мир отклонится от математических ожиданий в пользу их ставки. Корни такого поведения кроются к могущественной идее о том, что кто-то должен выиграть. Они будут сильно рисковать, не обращая внимания на математические ожидания фортуны.

Проанализировав опубликованные записи, сделанные в ходе 4 недель в июле и августе 1892 г. в казино в Монте-Карло, английский математик Карл Пирсон обнаружил, что механизм, который был настолько точен и выверен, насколько это вообще возможно для рулеточного стола, все же не вполне следовал законам вероятности{76}. Если допустить математическую точность, то шарик с одинаковой вероятностью падает в любую из 37 ячеек колеса.

Если исключить ячейку 0, то математическая вероятность попадания шарика в красную или белую ячейку будет одинаковой{77}. Это означает, что для большого числа физических (реальных) туров шарик должен попадать в красные ячейки в 50 % случаев.

Однако, проведя 2 недели за изучением 4274 туров рулетки в Монте-Карло, Пирсон обнаружил, что их стандартные отклонения от наиболее вероятного значения были почти в 10 раз больше ожидаемых. Шансы против того, что подобное могло случиться с правильной рулеткой, – 10 трлн к одному! Пирсон пишет: «Если бы рулетку в Монте-Карло крутили с геологического начала времен на этой Земле, то нам не стоило бы ожидать даже одного подобного исхода, какие случились в ходе пары недель игры, если учитывать, что игра действительно основана на случайности»{78}.

В результате какого-то чудесного совпадения Пирсону попалось настолько маловероятное явление, что оно могло произойти только раз за всю историю мира. Следует ли тогда ставить под сомнение правильность рулеточного колеса? Его студент провел собственный эксперимент в течение 2 недель и обнаружил результаты менее невероятные, но все же такие, что их следовало бы ожидать раз в 5000 лет, если играть в рулетку круглые сутки. Другой исследователь наблюдал 7976 туров в течение 2 недель в Монте-Карло и вычислил шансы против правильного колеса – 263 000 к 1. Другие эксперименты обнаружили такие же совпадения. Проведенное в 1893 г. наблюдение 30 575 туров рулетки показало шансы 50 млн к 1. Согласно Пирсону, «…если судить по публикуемым сведениям, которые, по-видимому, не отвергаются Обществом[14], и если законы вероятности действительно работают, то с точки зрения точной науки самым изумительным чудом XIX в. является рулетка Монте-Карло…»{79}

Расхождение теории с практикой было настолько невероятным, что Пирсон написал: «Шансы тысяча миллионов к одному против такого отклонения…»{80} Его наблюдения отличались от математически ожидаемых с перевесом 1000 млн к 1! Выдающийся математик Уоррен Уивер написал о случае в 1950-х гг., когда на рулетке в Монте-Карло выпали четные числа 28 раз подряд в прямой последовательности. Шансы такого исхода – 268 435 456 к 1. Учитывая число туров рулетки, играемых каждый день в Монте-Карло, подобное событие может произойти только раз в 500 лет{81}. Эксперт по играм Джон Скарн описал случай, произошедший 9 июля 1959 г. в отеле El San Juan в Пуэрто-Рико, когда рулеточный шарик выпал на десятку 6 раз подряд. Шансы этого события – 133 448 704 к 1{82}.

Если ожидается, что игра честная и то, что мы наблюдаем, – крайне маловероятно, то, может быть, игра не такая уж честная; однако мы также знаем, благодаря слабому закону больших чисел, что крайне редкие события вполне могут произойти по крайней мере один раз, если число испытаний достаточно велико.

Помните знаменитое совпадение в «Касабланке»? Оно тоже настолько маловероятно, что могло бы произойти только раз за всю историю мира. В фильме Рик Блейн, владелец ночного клуба «У Рика», пытается спасти Яна – жениха молодой болгарской девушки – от проигрыша: Ян поставил все свои деньги против документов на выезд из страны. Молодая, хорошенькая и наивная Аннина спрашивает Рика о честности капитана полиции Луи Рено, который обещал сделать для нее документы на выезд за определенные услуги с ее стороны.

Давайте вспомним следующую сцену в игровом зале в клубе Рика. Ян сидит за рулеточным столом. У него осталось только три фишки. Входит Рик и становится позади Яна.

Крупье (Яну): «Желаете сделать еще ставку, сэр?»

Ян: «Нет, нет, думаю, нет».

Рик (Яну): «Вы ставили сегодня на 22? (Смотрит на крупье.) Я сказал: 22».

(Ян смотрит на Рика, потом на фишки у себя в руке. Помедлив, он кладет фишки на 22. Рик и крупье обмениваются взглядами. Крутится колесо. Карл наблюдает.)

Крупье: «Vingt-deux, noir, vingt-deux»[15]. (Он передвигает стопку фишек на 22.)

Рик: «Поставьте еще раз».

(Ян снова смотрит с недоумением, но оставляет фишки на месте. Колесо крутится. Останавливается.) Крупье: Vingt-deux, noir. (Он снова двигает стопку фишек в направлении Яна.)

Рик (Яну): «Обналичьте их и больше сюда не приходите».

(Ян встает и идет к крупье.)

Посетитель (Карлу): «Скажите, а Вы уверены, что это честное заведение?»

Карл (оживленно, с умильным еврейским акцентом): «Честное? Честнее не бывает!»

Шанс того, что шарик упадет в ячейку 22 два раза подряд, – 1369 к 1, что совсем не выглядит для нас подозрительным, учитывая, что мы смотрим фильм. Это вымысел. Разумеется. В реальной жизни при честной игре, учитывая указанные шансы, не стоило бы удивляться, увидев, как 22 выпадет два раза подряд. Но ставку сделал Рик, и она сыграла именно тогда, когда он ее сделал. А это делает шансы против события куда больше, чем 1369 к 1.

Еще до появления этой замечательной вымышленной сцены был известен другой художественный сюжет – синьор Эммануэль Равелли (Чико) и Профессор (Арпо), играющие в карты в фильме «Воры и охотники». Равелли и Профессор (вечные подельники) сдают карты, чтобы определить партнеров для игры в бридж. Равелли берет карту и говорит, что у него туз пик. Профессор берет карту, показывает ее Равелли, тот восклицает: «У меня туз пик, у него туз пик. Ха, ха! Вот это-то и называется совпадением!»

Глава 8

Задача об обезьянах

Мы очень часто обманываемся по поводу того, насколько велик наш мир. Он больше, чем мы думаем; он меньше, чем мы думаем. 100 лет назад мы не отходили от своих городов и деревень. Мои прадеды и прабабки, жившие в Польше, точно не отходили слишком далеко от своего штетла. Сегодня в результате нашей международной мобильности мы повсюду натыкаемся на друзей и знакомых и не удивляемся этому. Мы не вполне осознаем, насколько огромен мир, когда можем добраться из Нью-Йорка до Гонконга за 15 часов. Если я спрошу: «Каково число людей (во всем мире), совершивших самоубийство за то время, которое заняло у вас чтение книги до настоящего абзаца?» – вы вполне можете ответить: «Ноль». Но, чтобы дать вам понять, насколько в действительности велик мир, позвольте заметить, что, по данным Всемирной организации здравоохранения, в среднем раз в 40 секунд где-то в мире происходит успешное самоубийство. Это в среднем 2160 человек каждый день! Уровень в разных странах разный. В Индии, где самоубийство считается преступлением, уровень почти в 2 раза выше среднемирового.

По определению совпадения – это события, которые происходят без очевидной причины. Очевидной для кого? Это не значит, что причины нет вовсе. Миром в основном движут причины и следствия. Я говорю «в основном», потому что существуют акаузальные феномены в физике, психологии и религии. Но слово «очевидная» говорит нам: в тот момент, когда мы узнаем причину феномена-совпадения, его статус уменьшается до простого пространственно-временного явления. Это должно означать, что совпадения имеют отношение к людям, с которыми они случаются. Это также означает, что есть неочевидная причина, ожидающая, когда ее обнаружат. Если причины нет вовсе, то событие происходит случайно.

Шанс получить туза пик из обычной, хорошо перемешанной колоды в 52 карты – 51 к 1 против события, это значит, что есть 51 шанс не вытянуть нужную карту и 1 шанс ее вытянуть. Возможность вытянуть туза любой масти – 12 к 1 против события. Проще говоря, это значит, что, сдав 13 карт, вы имеете достаточно хорошие шансы получить туза. Что произойдет в действительности – дело случая.

Предположим, вы вытянули туза пик, вложили его обратно в колоду, а потом снова его вытянули. Шансы вытянуть ту же карту все еще 51 к 1, хотя шансы сделать это два раза подряд были 2703 к 1. Иными словами, чтобы снова вытянуть туза пик, необходимы были два события, шанс каждого из которых – 51 к 1, поэтому вероятность вытянуть эту карту дважды составляет (1/52) (1/52) = 1/2704, а следовательно, шанс вытянуть туза пик дважды – 2703 к 1. Это может показаться парадоксальным, поскольку сдача второй карты ничуть не сложнее первой.

Даже при таких плохих шансах вытянуть туза пик второй раз все-таки можно. Мы по опыту знаем, что это происходит достаточно часто. Вы вполне можете поставить доллар на то, что вытянете туза пик два раза подряд, но все, что у вас есть, ставить не надо. Разумно было бы поставить доллар на то, что вы вытянете туза пик дважды, но с выплатой не меньше, чем 2703 к 1. Таким образом, если у вас есть несколько тысяч долларов, можно сыграть несколько тысяч раз и выйти, оставшись при своих… ха-ха… с довольно значительным шансом выиграть хотя бы раз.

Конечно, маловероятно, что получится вытянуть туза пик в 3-й или в 4-й раз. Вероятность сдать его 4 раза составляет (1/52) (1/52) (1/52) (1/52) = 1/7 311 616, т. е. шансы против события будут 7 311 615 к 1. Маловероятно, но возможно. Но в этот раз не стоит ставить даже доллар. В самом деле, можно его вытянуть 50 раз подряд, или 100 раз, или вообще любое число раз.

Если вы 4 раза подряд вытянули туза пик, то у вас могут появиться сомнения по поводу колоды. Но случай – странная вещь. Никакие законы случайности не препятствуют тому, чтобы этот туз пик появился 4 раза подряд. С равной вероятностью можно бросать ноты на бумагу, ожидая, что они сложатся в сонату Бетховена. Вы не станете утверждать, что можете писать музыку так же хорошо, как Бетховен, просто «подбрасывая» ноты в воздух. Но если заниматься этим достаточно часто, то когда-нибудь наверняка получится сносная соната.

Теперь давайте предположим, что вы играете в покер еще с 10 игроками. Шанс получить флеш-рояль, скажем, на «крести»: A♣ K♣ Q♣ J♣ 10♣ – составляет 2 598 959 к 1. Почему? Потому что есть 52 отдельных варианта получить первую карту, 51 отдельный вариант получить следующую, 50 вариантов получить третью, 49 вариантов получить четвертую и, наконец, 48 вариантов получить пятую. Иными словами, у нас 52 × 51 × 50 × 49 × 48 отдельных вариантов получить все пять карт. Но это число слишком велико. Оно предполагает, что комбинация была сдана в особом порядке, но в каком именно? Это не имеет значения. Вы могли получить туз 1-, 2-, 3-, 4-м или последним. Если установить, когда был сдан туз, то остается 4 варианта для короля, 3 для дамы, 2 для валета и 1 для десятки. Тогда, чтобы рассчитать число вариантов сдачи комбинации, мы должны разделить (52 × 51 × 50 × 49 × 48) на (5 × 4 × 3 × 2 × 1) и получить 2 598 960. Это означает, что существует 2 598 959 шансов НЕ получить комбинацию A♣ K♣ Q♣ J♣ 10♣ и только один – получить ее. Но шанс получить ничего не стоящую комбинацию тот же. Все согласятся, что комбинация 3♠ 6♥ 8♣ J♦ Q♠ – никчемная.

Шансы получить эту никчемную комбинацию также 2 598 959 к 1. Посмотрим на это с другой стороны: шанс, что вы получите A♣ K♣ Q♣ J♣ 10♣, гораздо меньше, чем шанс, что эту комбинацию получит любой из игроков.

Задача о дне рождения

Есть по крайней мере две математические модели, которые дают нам надлежащие способы оценки совпадений. Одна из них – задача о дне рождения, которая гласит: в любой группе из 23 человек шансы на то, что у 2 людей в этой группе совпадут дни рождения, выше, чем 1 к 1. Вторая – задача об обезьянах, в которой спрашивается: сможет ли обезьяна (если дать ей сколь угодно долгое время), случайным образом нажимающая на кнопки на клавиатуре компьютера, написать первую строку из сонета Шекспира?

Задача о дне рождения широко растиражирована в Сети и в популярных книгах по математике, а также является одним из наиболее исследованных курьезов, поэтому может показаться, что задача чрезмерно утрирована. Однако она также является моделью для осмысления совпадений – возможно, лучшей из имеющихся. Быть может, ее следует считать задачей о совпадении; в конце концов нас интересует возможность того, что в большой группе пространственно-временных событий одновременно произойдут два события A и B. Мы можем спросить: насколько большой должна быть группа событий, чтобы шансы совпадения A и B были выше, чем 1 к 1? Задача также достаточно хорошо поддается обобщению для того, чтобы дать нам возможность понять, как законы вероятности соотносятся с интуицией. В стандартном виде задача формулируется таким образом: в группе из N случайно выбранных людей насколько велико должно быть N, чтобы шансы на то, что у 2 людей в этой группе совпадают дни рождения (число и месяц), были выше, чем 1 к 1? Ответ: N = 23, удивительно малое число.

Найти N несложно. Пусть p (N) обозначает вероятность того, что у N человек дни рождения не совпадают. Сначала предположим, что N = 2. Тогда p (2) = 365/365 × 364/365, потому что любой из двоих людей может быть рожден в любой из 365 дней, исключая при этом один день для другого человека. Эта p (2) очень-очень близка к 1. Что неудивительно. Далее: предположим, что N = 3. По той же причине, что и в случае с N = 2, день рождения третьего человека не может совпадать с днями рождения двух других, т. е. p (3) = 365/365 × 364/365 × 363/365. Произведение легко сосчитать на калькуляторе. Продолжая таким образом, мы видим, что p (N) сокращается по мере того, как N увеличивается. В определенный момент мы дойдем до N = 23 и произведем следующие расчеты:

p (23) = 365/365 × 364/365 × 363/365 × … × 343/365 = (1/365)²³ × (365 × 364 × 363 ×… × 343) = 0,4927

Таблица 8.1 и рис. 8.1 показывают, что p (23) (вероятность того, что у двух людей в группе из 23 человек совпадают дни рождения) равняется 0,4927. Переведем отрицание в утверждение и найдем вероятность того, что у 2 людей в группе из 23 человек совпадают дни рождения, равной 0,5073 – шанс выше, чем 1 к 1.


Даже при такой аккуратной формулировке в задаче есть допущения, которые могут исказить решение. Меньшим из допущений было не принимать в расчет високосные годы. Гораздо большим допущением было игнорирование того факта, что дни рождения не распределяются по календарю в случайном порядке, как нам может казаться. Мы знаем, что дни рождения склонны образовывать скопления по причинам, связанным с праздниками, природными катаклизмами, временами года и другими непостижимыми диспропорциями.


Есть несколько любопытных моментов. Чтобы иметь шансы выше, чем 1 к 1, что у 3 человек совпадают дни рождения, можно подумать, что потребуется еще примерно 23 человека. Верное число – 88. Для 4 совпадающих дней рождения это число становится уже 187{83}. Таблицы 8.2 и рис. 8.2 показывают, как растут числа, где k представляет число совпадающих дней рождения{84}.



Поделиться книгой:

На главную
Назад