з) Вы получаете новый паспорт, номер которого совпадает с номером вашего социального страхования.
и) Вы находите экземпляр книги Марка Твена «Таинственный незнакомец», который был у вас во время учебы в школе, на скамье в парке (да, событие очень похоже на события «ж»).
к) Вы берете такси в Чикаго и узнаете в водителе человека, который подвозил вас в Нью-Йорке в прошлом году.
Я выбрал эти события произвольно. Некоторые из них являются совпадениями, некоторые – просто отдельные события. Они могли бы быть совершенно самостоятельными событиями, если бы не пресловутая бабочка над Тихим океаном, которая, как видно, влияет на все на свете: от погоды в Париже до результатов скачек «Кентукки Дерби», чем постоянно вызывает непредвиденные волнения. Почему кошка появилась в определенный момент? Таинственный незнакомец мог оказаться тем парнем, которому кошка принесла ваше давно потерянное кольцо.
Вероятность некоторых из этих событий и им подобных узнать чрезвычайно сложно даже приблизительно. Для простоты предположим, что вероятность каждого из событий составляет 0,000001, т. е. меньше, чем вероятность получить с раздачи флеш-рояль при игре в покер. Особых причин для того, чтобы брать именно это число, нет, кроме простого факта – такое событие не невозможно, но слишком уж рассчитывать на него не стоит. Может показаться, что вероятность наступления одного из двух событий в списке составит 2 × 0,000001 = 0,000002, потому что вероятности складываются, когда необходимо вычислить вероятность наступления одного из двух событий. Тогда можно наивно предположить, что, рассматривая только два события из предложенных, мы тем самым удваиваем вероятность. Но мы должны быть внимательны. Расчет игнорирует возможность того, что оба события (например, «ж» и «и» из списка) могут произойти одновременно. Нам необходимо вычесть вероятность такого исхода из суммы двух вероятностей. Если события независимы, то вероятность их одновременного наступления равна произведению вероятностей, то есть 0,000001 × 0,000001 = 0,00000000001, относительно небольшое число. Тогда действительная вероятность составит 0,00000199999 – немного меньше, чем ожидалось. Это подводит нас к любопытному вопросу. Ответ на него может заставить по-другому посмотреть на мир совпадений. В мире всевозможных необычайно удивительных событий должны быть тысячи – если не миллионы или миллиарды – событий, которые могут произойти с вами в течение одного года. Давайте предположим, что вероятность каждого из миллиона таких событий будет, скажем, 0,000001. Тогда вопрос в следующем: что произойдет, если мы объединим все эти события и попробуем найти вероятность того, что хотя бы одно из них произойдет в течение года? Нет реального способа определить, насколько независимыми друг от друга будут события числом в миллион. Мы не можем предполагать, что ни у одной из возможных пар событий нет прямой связи. Мы не можем не принимать в расчет возможность того, что одно событие может быть причиной другого или влиять на него или что отдельное событие может зависеть от другого. Например, если вы один раз выиграли в лотерею и потратите часть выигрыша на повторные попытки, это окажет влияние на второй выигрыш, он будет зависеть от первого. Также мы не можем просто сложить вероятности, чтобы получить вероятность того, что произойдет одно событие из миллиона. Это привело бы нас к абсурдным расчетам, из которых следует, что вероятность одного события составит 1 000 000 × 0,000001 = 1, т. е. событие будет достоверным! (Мы бы складывали 0,000001 миллион раз.) Чтобы такие расчеты сработали, события должны быть изолированными, т. е. не иметь ничего общего. Если они имеют что-то общее, то любая серьезная оценка вероятностей становилась бы делом непомерно сложным, если не невозможным. К примеру, нам пришлось бы исключить вероятность того, что черная кошка, которая может пересечь вам путь в следующую среду, также найдет ваше давно потерянное кольцо в водосточной трубе и принесет его таинственному незнакомцу, который попытается продать его на гаражной распродаже. Но даже при выполнении всех этих требований нам все же придется учитывать огромное число пересекающихся возможностей, которые могли бы снизить те или иные шансы. С другой стороны, если бы все из миллиона событий были взаимоисключающими, то математика говорила бы нам, что мы можем быть уверены – одно из них произойдет. Конечно! Любой активный человек может встретиться с миллионом возможных событий. Просто выйдя из дома, человек встречает необозримое число возможностей.
Событие «д» – единственное в нашем списке имеет довольно точно определяемую вероятность, но даже оно зависит от личности победителя. Чтобы выиграть дважды, нужно сначала выиграть в первый раз. Это значит, в первый раз выбрать шесть правильных чисел. Вероятность того, что это произойдет один раз, близка к 0,000000038 – в самом деле, достаточно малое число{36}. Иначе говоря, ваши шансы на выигрыш составляли бы 25 827 164 к 1.
Как это рассчитано? Есть 54 варианта выбора числа. Когда выбрано первое число, оно исключается, т. е. остается 53 возможных варианта для второго числа. Подобным образом для третьего есть 52 варианта, для четвертого – 51, для пятого – 50, для шестого – 49. Поэтому существует 54 × 53 × 52 × 51 × 50 = 18 595 558 800 различных способов выбрать шесть чисел, каждое от 1 до 54. Есть 1 × 2 × 3 × 4 × 5 × 6 = 720 различных способов расположения шести чисел. Поскольку порядок, в котором выбраны числа, значения не имеет, мы делим на 720 и получаем 25 827 165 – число различных возможных вариантов, только один из которых верен.
Вероятность выиграть во второй раз остается такой же; числа в лотерее не обладают способностью к запоминанию, равно как и вероятность. Вероятность, однако, зависит от того, как мы о ней думаем. Если вы забываете о том факте, что выиграли в первый раз, то вероятность не меняется. Ваши шансы составляют 25 827 164 к 1, а вероятность – 0,000000038. Вероятность выиграть во второй раз составляет 0,000000038 × 0,000000038 = 0,000000000000001444, что выглядит очень, очень маловероятно. Мы знаем, что ранее выигравшие числа из следующих лотерей не исключаются и никак на последние не влияют. Однако сам факт выигрыша странным образом такое влияние оказывает, а основано оно на личности победителя. Как преступники возвращаются на место преступления, так победители продолжают играть в лотерею. И делают это, имея полные карманы денег, покупая куда больше билетов, чем раньше. Таким образом, наши расчеты не учитывают всех прочих попыток сыграть в лотерею. Человек мог сыграть 100 раз, прежде чем случился второй выигрыш. В главе 7 (а именно в табл. 7.1) мы найдем шансы на выигрыш в лотерею 4 раза за 4 попытки, что является куда более сложным делом.
Глава 5
Дар Бернулли
Возможен ли математический закон, который откроет нам будущее? После того как пара игральных костей брошена, они «забывают» о том, где и как легли. Если кости «честные» и брошены без жульничества, нельзя заранее сказать, каков будет результат, и все же мы можем быть вполне уверены, что, если бросать кости достаточно долго, 7 будет появляться намного чаще, чем любое другое число. Дело в геометрии игральных костей и простых арифметических правилах: существует больше пар чисел от 1 до 6, в сумме дающих 7, чем любых других пар, которые можно получить в результате броска двух игральных костей.
Математика вероятности – относительно новая область знания. Она зародилась примерно в XVI в. До начала XVI в. математика не занималась неопределенными проблемами. Натурфилософы и математики больше интересовались познанием серьезных вещей, которые для одних могли быть абстрактными понятиями теории чисел и геометрии, для других – более практичными и полезными делами: например, геодезия или другие строительные технологии (в частности, строительство соборов). Само математическое понятие случайного было впервые описано в «Книге об азартных играх» (
Джероламо Кардано был миланским врачом, математиком и игроком. Наибольшую известность ему принесла его книга «Великое искусство»
В строгом выражении он выглядит как загадочная скороговорка: вероятность
Это принцип, которому следуют средние величины в долгосрочной перспективе. Уместно спросить: как могут случайные события (без какой-либо памяти о каждом отдельном исходе) иметь среднее значение, настолько близкое к математически рассчитанной величине? К сожалению, этот замечательный истинный закон даже сегодня часто путают с тем, что некоторые называют
Да, слабый закон больших чисел – действительно поразительная вещь. Но еще более удивительно то, что его можно доказать математически! Он показывает, что случайные события – события с широким диапазоном возможных исходов и без какой-либо памяти о каждом отдельном исходе – могут иметь эмпирическое среднее значение, близкое к математически рассчитанной величине. Математика может рассказать нам об определенных феноменах реального мира – строении мостов и плотин, которые подчиняются математическим законам. Летящий самолет и разбитое окно также следуют математическим законам. Стекло разбивается при определенных резонансных частотах; аэродинамический профиль крыла поднимает самолет, когда давление над крылом меньше давления под ним. Но, когда речь заходит о случайности, связи кажутся куда более загадочными. Игральные кости? Как можем мы знать, какая комбинация выпадет при следующем броске?
Кардано оставил после себя способ сделать это. До его «Книги об азартных играх» случай – счастливый или нет – был в руках Тихеи, Фортуны или других божеств, которые влияли на исход случайных событий в пользу того или иного исхода. Даже у греков, достигших удивительных высот во многих областях математики, не было математической теории азартных игр. Они просто бросали кости, полагая, что удача, случай или некое божество решали их судьбу. О, конечно же, они знали, что некоторые числа выпадали чаще других. Несомненно, знали, что 7 выпадает чаще любого другого числа. Все, что им нужно было сделать, – это сосчитать число вариантов выбросить 7 и сравнить с числом вариантов других комбинаций. Но, насколько мы можем судить, у них не было понятия о прогнозной вероятности.
Небольшая рукопись Кардано содержала первые крупицы знаний и ключи к науке о случайном. Мы узнали, что наблюдаемые факты помогают определить, что может случиться. Согласно Анри Пуанкаре, именно тогда мир узнал, что удача одного человека равна удаче любого другого и даже удаче богов.
Мы должны помнить о том, что во времена Кардано еще не существовало простого научного понятия случайности. Например, математики не задумывались о том, почему одни числа выпадают чаще других. Галилей разрешил эту загадку через полвека после смерти Кардано, когда написал небольшой трактат об игре в кости, хотя маловероятно, что Галилей знал о «Книге об азартных играх» Кардано. Он перечислил все комбинации и обнаружил, что для трех игральных костей существует 27 различных способов получить в сумме 10 или 11, но только 25 способов получить 9 или 12.{39}
Конечно, опытным игрокам это и так известно. У них есть фундаментальное понимание игры, основанное на народной мудрости, накопленной веками практики и наблюдений. У них также есть интуитивное знание шансов выпадения комбинаций; так, для 3 игральных костей, как они хорошо знают, 10 и 11 встречаются гораздо чаще, чем любое другое число. Но существует разница между интуицией и математическим объяснением. С уверенностью, которую дает математика, можно практически рассчитывать на успех. Для тех, кто знает, как вычислить математический шанс, решения уже не выглядят столь рискованными. В конечном итоге это уже
Две шестерки и рождение вероятности
Центральные понятия математической вероятности можно отследить уже в 1654 г. Зима в Париже была необыкновенно холодной. Даже Сена замерзла. Сообщалось, что парижане катались по реке на коньках, а на перекрестках горели костры, рядом с которыми священники раздавали беднякам хлеб. Экономика была задушена 30 годами религиозных войн в Европе, опустошившими французскую казну. Государство было вынуждено повысить налоги на рабочий класс, но бесчестные сборщики налогов мало что доносили до казны. На троне восседал Людовик XIV, а знать, освобожденная от налогообложения, накапливала ужасающе непомерные богатства. Не случайно праздные богачи открыто предавались азарту в игровых залах по всему Парижу{40}. Как не случайно и то, что нарождающаяся математическая теория вероятностей появилась именно тогда, в ту самую зиму 1654 г.
Несмотря на то что азартные игры известны с начала времен или по крайней мере с тех пор, когда троглодиты стали катать кости по полу своих пещер, к середине XVII в. они стали основным видом развлечений во Франции. Серьезной математической теории случайного не существовало, кроме грубых попыток, которые мы находим в ошибочных математических работах и книге Фра Лука Пачоли «Сумма» (
Философ-математик Блез Паскаль прочел экземпляр «Книги об азартных играх» в поисках этого числа, но не поверил в приведенное решение. Он заболел и пролежал в постели весну и лето, ведя переписку со своим другом, юристом и математиком Пьером Ферма{42}. Вместе они пришли к выводу, что шансы выбросить две шестерки немного меньше, чем 1 к 1, при 24 попытках и немного больше при 25.
Паскаль знал, что «глаза змеи» (две единицы) и «товарные вагоны» (две шестерки) появляются очень редко, поскольку шанс их выбросить – 1 к 36, тогда как шанс выбросить семерку – 1 к 6 (рис. 5.1). Он понял, что проще будет вычислить шанс
Основы учения о вероятности пришли из задачи об игральных костях и ей подобных. Внешний слой вероятностного или стохастического мира можно проиллюстрировать одной картинкой. Давайте поразмыслим о мире следующим образом: если на событие влияет некая причина, то шансы, что эта причина придаст направление возможному будущему событию, выше, чем один к одному. Если на событие не влияет никакая причина, то возможное будущее развитие события может пойти в том или ином направлении без предрасположенности к какому-либо конкретному исходу. Есть ли причина, нет ли ее – шансы выше, чем один к одному, оставляют открытой дверь для случайности или совпадения. На рис. 5.2 мы показываем это с помощью так называемой доски Гальтона в качестве модели.
Доска Гальтона моделирует события, определяемые объективной случайностью. На набор стержней бросают шарик таким образом, что шарик ударяется точно о середину верхней части стержня, при этом шансы, что шарик отскочит влево или вправо – точно 1 к 1. Если шарик отскакивает вправо, то он опускается на стержень, находящийся ниже, и либо снова ударяется точно о середину верхней его части, либо отклоняется в одну или другую сторону. В теории шарик может удариться точно о середину верхней части стержня. На практике, однако, этого никогда не происходит. Почему? Сначала мы должны задуматься: что значит «верхняя часть стержня»? Значит ли это верхнюю молекулу стали (если предположить, что стержни сделаны из стали)? Но ее не существует. Тогда на практике есть причины того, что шарик отклоняется в одну или другую сторону. Возможно, это малейший поток воздуха, через который должен пройти шарик, или малейшие колебания, проходящие через опоры стержней, или мельчайшая частичка пыли, оказавшаяся в месте соударения шарика и стержня. На практике есть сотни переменных, определяющих, в какую сторону отскочит шарик после столкновения со стержнем. Кроме того, следует учитывать микроскопические вмятины и упругость соударения.
Сэр Фрэнсис Гальтон, английский генетик, живший в XIX в., построил такую доску со штырями, расположенными в шахматном порядке – как точки на грани игральных костей с числом 5. Гальтон хотел показать, что физические явления движутся с попутным ветром случайности. В идеальной доске Гальтона, т. е. в такой, где шарик всегда попадает ровно в центр верхней части стержней, шарик отклоняется вправо или влево так, как если бы для выбора направления кто-то подбрасывал монетку. В реальности же бабочка, взмахнувшая крыльями над Тихим океаном, или корова, пукнувшая на кукурузном поле в Айдахо, могут определять этот выбор. Перед каждым соударением результат предыдущего – это забытое прошлое; шарик уже не помнит предыдущего исхода, а потому ведет себя так, как если бы ударился о первый стержень. И все же совокупный результат, похоже, учитывает историю всех предыдущих.
Давайте рассмотрим это с точки зрения математики. Предположим, что шарик ударяется о четыре ряда стержней на пути вниз. Шанс того, что шарик пойдет после каждого удара вправо или влево, – 1 к 1, в результате чего шарики формируют под стержнями кривую в форме колокола. Подсчет числа вариантов падения шариков это доказывает. Предположим, что ход снижения брошенного шарика записывается буквами L и R, означающими отскок влево и вправо соответственно. Тогда у нас будут следующие возможные исходы:
Вариантов с разными буквами больше, чем только с одной буквой, и, поскольку шансы того, что шарик пойдет влево или вправо, равны, есть тенденция к тому, что шарики будут чаще падать в сторону центра под верхним стержнем. Причина в том, что в результате серий, скажем 12 выборов L и R (как показано на рис. 5.3), существует больше серий с шестью L и шестью R, чем любого другого числа L и R.
В результате каждого столкновения со стержнями считаем падение шарика влево как –1, а вправо – как +1. После столкновения с 12 рядами стержней шарик оказывается в одной из 12 ячеек в нижней части доски.
Так, например, шарик в крайней левой ячейке на рис. 5.3 получает совокупное значение –12. Конечное положение каждого шарика представляет отдельное совокупное значение. Шарики демонстрируют тенденцию к тому, чтобы отклоняться в центр. Однако, хотя достаточно много шариков падают в два центральных слота, большее их число оказывается в остальных слотах.
На рис. 5.3 набор шариков представляет конечное совокупное значение 140 испытаний: 31 шарик упал в пять слотов слева, 55 – в пять слотов справа и 54 – в два средних слота. Верно, что конечное положение каждого отдельного шарика ничего не говорит об истории его путешествия. Почти 60 % шариков упали вне двух центральных слотов. В общем, шарик, упавший на несколько рядов вниз и находящийся слева, может закончить свой путь справа, но так же верно и то, что, чем дальше он отклоняется влево, тем меньше у него шансов вернуться вправо.
Сегодня теория вероятностей развивается в двух направлениях: эмпирическом и абстрактном. Например, эмпирическим подходом будет использовать большие выборки, чтобы оценить вероятность, тогда как абстрактным подходом – задействовать научный принцип, чтобы зафиксировать вероятность через известные факты, такие как аргумент симметрии или физическая теория. Нам известна вероятность того, что идеальные игральные кости выпадут на 1 в силу кубической геометрии самих костей. Но вероятность выпадения 1 на обычных игральных костях может быть найдена посредством большого числа испытаний и записи числа испытаний, когда выпадает 1; эта вероятность может оказаться немного больше или меньше 1/6 – все-таки это реальные несовершенные кости.
Многое зависит от самой кости. Кости, которые входят в наборы для настольных игр, выполнены довольно грубо. Ятзи – игра в кости, появившаяся в 1950-е гг. В игре используется 5 кубиков. Если при броске все 5 костей дают одно и то же число, такая комбинация называется ятзи. Шансы выбросить ятзи – 1295 к 1.{44} Вы могли бы решить: чтобы выбросить такую комбинацию, потребуется 1296 попыток. Но если достаточно большое число людей по всему миру уделят игре хотя бы немного времени, то такая комбинация может запросто выпасть с первой попытки. Именно так думал Брэди Харан, когда попросил сотни подписчиков своего сайта попробовать выбросить ятзи и записать бросок на видео. Как вы могли догадаться, некоторые выбросили ятзи после нескольких первых попыток, а многим это удалось после нескольких сотен бросков{45}.
В XVIII в., чтобы найти вероятность события, вы бы просто посчитали отдельные случаи: вы взяли бы отношение числа желаемых исходов к числу всех возможных случаев. «Честные» кости могут выпасть одной из возможных сторон, поэтому вероятность
Теорема Бернулли
Математиков часто приводит в восхищение величие и красота абстрактного принципа. Их увлекает красота, возникающая, когда теорию можно изящно применить к природному миру. Швейцарский математик Якоб Бернулли торжествовал, когда ему удалось доказать слабый закон больших чисел после знакомства с «Книгой об азартных играх» Кардано. Этот закон поистине удивителен, ведь он говорит нам, что, пусть природа и непредсказуема и содержит неизмеримое число компонентов и переменных, у нас все же имеются поразительно искусные способы измерить ее тайны{47}. Он дает нам удивительную возможность разобраться с неопределенностью.
Когда Якоб Бернулли умер в 1705 г., он оставил кипы неоконченных и неопубликованных рукописей своему племяннику Николаю Бернулли. В течение следующих восьми лет Николай разбирался в бумагах своего дяди и наконец опубликовал «Искусство предположений» (
«Искусство предположений» Бернулли дает нам слабый закон больших чисел. Если подбросить правильную монету
Бернулли был так доволен своей теоремой, что предполагал ее применение к наиболее важным событиям всего сущего. В своем «Искусстве предположений» он написал:
Этот замечательный результат показывает нам, что, если бы наблюдение всех событий продолжилось вечно (и вероятность обратилась бы в совершенную достоверность), тогда мы бы наблюдали, как все явления случаются с постоянными коэффициентами и неизменной цикличностью. Таким образом, даже за наиболее случайными и удачными нам надо будет признать определенную квазинеобходимость и, так сказать, фатальность. Я не знаю, захотел бы Платон включить этот результат в догмат о всеобщем возвращении вещей в их предыдущие положения [
В теории теорема Бернулли должна была стать интеллектуальной бомбой, чудом математической оценки неопределенности. Она сулила предсказание будущего. Здесь мы впервые встречаем математический закон, который дал нам замечательный и простой способ понять, как ведет себя случайность в реальном мире; теорему, которую Бернулли с гордостью называл строгой, оригинальной и такой блистательной, что она придала значимость всем разделам его работы. Но Бернулли был разочарован некоторыми из своих экспериментов, которые относились к задачам, связанным с болезнями и погодой. Он честолюбиво задал для себя предельно высокий критерий достоверности даже по сегодняшним стандартам{50}.
Бернулли дал нам огромные возможности для оценки неопределенного поведения природы, а также азартных игр – метод расчета математического ожидания без какой-либо априорной информации. «В самом деле, если заменить урну, к примеру, на воздух или человеческое тело, содержащие в себе возбудителя [
Когда Эйнштейн остроумно заметил: «Бог не играет в кости с Вселенной», – он говорил о возникшей тогда квантовой механике, которая не могла достоверно предсказывать исходы рассматриваемых ею явлений{52}. Фортуна никогда не согласится с тем, что результат броска игральных костей на самом деле неслучаен, как лотерейная комиссия никогда не признает, что шарики для пинг-понга с выигрышными номерами выпадают неслучайно. Никто еще не предложил машину, дающую совершенно случайные числа. «Брошенные кости, – пишет физик Роберт Оэртер, – по сути своей не случайны; исход только кажется случайным из-за нашего невежества относительно маленьких деталей, скрытых переменных (например, угла пуска или трения), которые определяют исход броска»{53}. У большинства феноменов в нашей Вселенной (в особенности тех, которыми движут атомные силы) слишком много этих скрытых переменных, чтобы математика могла предсказывать исходы. Мы, как правило, не осведомлены о подробностях таких чудес. И все же у нас есть этот удивительный дар, который был тайной вплоть до XVII в., – дар, дающий ключ к пониманию случайности, а также средства к предсказанию будущего: знание о том, что большинство явлений неквантового механического мира подчиняются слабому закону больших чисел, пусть каждое явление в отдельности и не обладает памятью о собственном прошлом. Играет Бог в кости или нет – долгосрочные тенденции ожиданий предсказуемы и почти всегда достоверны{54}.
Доказательство Бернулли опирается на число возможных комбинаций предметов, и их расчет не имеет ничего общего со случайными поворотами фортуны. Эдит Дадли Силла, известная переводчица «Искусства предположений», говорит, что Бернулли объяснял связь посредством теологии. Она писала: «Он уверяет, что в сознании или воле Бога есть четкие и определенные ситуации, известные Богу вечно, и со временем проявляющие себя в опыте или наблюдении». Говоря о «вечности», она имеет в виду то, что Бернулли игнорировал фактор времени в расчетах коэффициентов успешности случайных событий. Силла указывает на следующий довод Бернулли: «Нет существенной разницы между тем, чтобы выбросить желаемым образом одну игральную кость в течение некоторого времени, и тем, чтобы бросить сразу такое число игральных костей, которое равнялось бы числу сделанных бросков одной кости»{55}.
Математическое ожидание
Ожидание, измеряемое
В 1657 г. голландский математик и астроном Христиан Гюйгенс опубликовал работу «О расчетах в азартных играх» (
Хотя исходы игр, которые определяются исключительно жребием, неопределенны, меру того, насколько человек ближе к выигрышу, чем к проигрышу, всегда можно установить. Таким образом, если человек ручается выбросить шестерку с первой попытки, нам на самом деле неизвестно, сможет ли он это сделать, но то, насколько более вероятен для него проигрыш, чем выигрыш, – вещь, вполне определенная и поддающаяся вычислению{58}.
Гюйгенс дает пример азартной игры, где для участия необходимо платить. Человек прячет три монеты в одной руке, семь – в другой; вы выбираете руку и забираете спрятанные в ней монеты. Чтобы продолжать игру, вы должны платить. Но вот в чем вопрос: сколько вам следует платить за игру? Первое утверждение Гюйгенса дает нам ответ: «Если я могу ожидать либо события
Например, возьмем лотерею Texas Lotto. В табл. 5.1 показаны результаты совпадения 3, 4, 5 и 6 чисел. Чтобы получить математическое ожидание от игры, перемножим вероятность и размер выплаты по каждому возможному совпадению и сложим все возможные совпадения.
Если мы предположим, что джекпот равняется, скажем, $2 млн, тогда математическое ожидание составляет 0,000000038 ($2 000 000) + 0,00001115 ($2000) + 0,000654878 ($50) + 0,013157894 ($3) = $0,171517582. Другими словами, реальная стоимость каждого играющего билета – всего 17 центов.
На том раннем этапе истории теории вероятностей люди использовали математическое ожидание как меру риска, не зная, что оно окажется самым естественным показателем центра распределения – склонности данных группироваться вокруг некоего центрального значения, как показано на рис. 5.3.
Глава 6
Длинная серия орлов
Согласно данным Всемирной организации здравоохранения, доля рождения мальчиков к общей рождаемости по всему миру составляет 0,515.{60} Если рассмотреть данные по конкретным регионам или странам, то шансы далеки от равных. В Мексике доля новорожденных мальчиков очень низкая, тогда как в США и Канаде их доля выше 0,5{61}. Однако для всего населения Земли – а оно уже больше 7 млрд – шансы рождения мальчиков по отношению к девочкам почти равны. Причина проста: у человеческого сперматозоида равное число X и Y хромосом, и у каждой из них равные шансы в момент зачатия. Это бросок правильной монеты.
После того как мы подбросили правильную монету 7 млрд раз, мы можем ожидать, что в половине из бросков выпадет орел. Но можем ли мы ожидать серию из миллиона орлов последовательно? Машина для бросания монеты показывает нам, что, несмотря на случайность траектории движения монеты, ее можно заставить выпадать орлом в 100 % случаев.
Вероятность падения правильной монеты орлом вверх – 1/2. Благодаря математике мы знаем, что по мере увеличения числа бросков монеты отношение орлов к решкам постепенно приближается к 1. Эвристическая оценка нарушает смысл последнего предложения, превращая его в утверждение того, что длинная серия решек неким образом окажется сбалансирована серией орлов. Легко стать жертвой ошибочного впечатления, что если одна из сторон очень долго не выпадала, то шансы ее появления увеличиваются с каждым ходом, хотя мы знаем, что теоретически каждый раз, когда брошена монета, шансы за и против каждого из исходов совершенно одинаковы – монета может с равным успехом выпасть «орлом» или решкой. Дело в том, что люди путают исходы событий и частотность.
Длинные серии орлов могут иметь место. Я наблюдал очень длинные серии орлов. На интуитивном уровне нам может казаться странным, что происходит нечто подобное. Предположим, что вы бросаете монету 10 раз и орел выпадает 7 раз. Пропорция орлов к решкам тогда составит 7 к 3. Бытовые представления подсказывают нам, что в ходе следующих десяти бросков решка должна выпасть больше шести раз, чтобы сбалансировать превысившее ожидания число ранее выпавших орлов. Но у монеты нет памяти о том, что с ней произошло ранее, есть только история результатов, записанная наблюдателем. Ничто не мешает монетке выпасть орлом в ходе следующих 500 бросков, однако, если это произойдет, мы сильно удивимся.
На рис. 6.1 представлен сгенерированный компьютером совокупный результат 500 бросков монеты (+1 для каждого орла, – 1 для каждой решки). Горизонтальная линия обозначает 0. Орел и решка перехватывают лидерство друг у друга. Это как гонка двух лошадей с равными шансами. Этого вполне можно ожидать. Суждение, основанное на бытовых представлениях, говорит в пользу того, что график должен был бы прыгать около нулевой линии. Однако чаще всего такие графики подолгу остаются с одной стороны от нуля.
Абсолютная случайность как теория и та же абсолютная случайность в реальном, физическом мире – не одно и то же. Пронумерованные шарики для пинг-понга, которые кружатся в акриловой сфере, а потом вылетают по специальной трубке, движутся вовсе не случайным образом, но для стороннего наблюдателя они определенно выдают случайные числа. Бросок монеты, который определяет, кто начинает матч в американском футболе, весьма далек от того, чтобы быть случайным. На самом деле результат броска монеты – вопрос элементарной физики. Уже созданы машины, которые могут бросать монету сколь угодно долго – тысячу раз, миллион – и всегда выпадает орел.
Недавние эксперименты показывают, что монеты, даже правильные монеты, склонны выпадать той же стороной, с которой начинается бросок, а исход броска зависит от угла между нормалью к плоскости монеты и вектора углового момента. Другими словами, полет монеты определяется начальными условиями. Диаконис, Холмс и Монтгомери построили машину, которая подбрасывает монеты посредством пружинно-храпового механизма{62}. С этой машиной любая монета, движение которой начинается из положения «орел», всегда (в 100 % случаев) выпадает орлом вверх. Так что результат броска монеты определяется физикой, а не случайностью. Рука того, кто бросает, и множество переменных внешней среды вызывают разнообразные исходы, которые кажутся случайными.
Но мы можем обмануться иллюзией того, что монета крутится, в то время как на самом деле она просто прецессирует в воздухе, как медленно вращающийся гироскоп. Ориентация монеты в полете определяется вектором ее углового момента, который может быть всегда направлен вверх. Итак, монета, которая начинает движение из положения «орел», может всегда выпадать орлом, поскольку следует определенной траектории, хотя кажется, что орел и решка крутятся.
Когда речь идет о бросании монеты в реальных условиях, а исходы событий определяются малейшим воздействием от землетрясений, происходящих в тысяче километров от нас, или надоедливой бабочкой-смутьянкой над Тихим океаном, все иначе. Но
На рис. 6.2 мы увидим странную историю. Исходы вполне следуют ожиданиям вплоть до 45-го броска, когда решка вдруг перехватывает инициативу примерно на 105 следующих бросков! Затем идет достаточно долгий период, когда лидирует орел, и совокупное значение опять приближается к 0. Но около 286 броска решка опять надолго вырывается вперед. Не то чтобы события не согласовывались с нашими интуитивными ожиданиями. Действительное отношение орлов к решкам наверняка приблизится к 1 в ходе значительно более долгого времени, но в краткосрочной перспективе этого не происходит. За 500 бросков решка выпала только на 12 раз больше, чем орел. Это достаточно мало, но последовательности орлов и решек могут расходиться значительно сильнее в совокупных результатах. Например, рассмотрим следующее испытание, показанное на рис. 6.3.
Орел полностью контролирует ситуацию. Совокупный исход показывает, что орел ведет настолько уверенно на протяжении всей серии бросков, что кажется, будто решка никогда уже не вырвется вперед.
Результаты компьютерной модели 1 млн бросков разобраны в табл. 6.1. Отношение
Слабый закон больших чисел не исключает, что какие-то маловероятные события будут происходить часто на раннем этапе игры или на более поздних. На самом деле, даже если коэффициент успешности приближается к математически предсказанному, нет гарантии, что он таким и останется. Чуть более сильный математический результат говорит нам, что, хотя коэффициент успешности может сходиться к теоретически вычисленному, действительные значения коэффициента склонны к довольно странному поведению по мере увеличения числа испытаний. Контринтуитивно, но это так.
Слабый закон больших чисел, примененный к любому событию, вероятность которого равна
Итак, что же здесь происходит? Похоже, что у более высокого
Для 5000 бросков были 2561 орел и 2439 решек с разностью 122. Это дает ошибку в 2,4 %, что не так уж плохо. Но, если не знать распределение этих орлов, может случиться так, что 122 орла были выброшены последовательно. Придерживаясь этой точки зрения, представьте, что 758 решек выброшены последовательно за 67 500 бросков или 694 орла выброшены последовательно за 82 500 бросков. Другими словами, нет математического закона, который исключает возможность последовательного выпадения огромного числа орлов при большом
Глава 7
Треугольник Паскаля
В физическом мире не существует совершенной симметрии, искусственных машин с бесконечно малым допуском или идеальных моделей. Это мир множества скрытых переменных, явления которого слишком трудно охватить точной мерой. Иными словами, подлинные случайности действительно происходят, и мы часто обращаемся к вероятностным картинам событий, чтобы понять сложный феномен случайности.
Что если бы у вас обнаружили миелодиспластический синдром – редкую форму рака, при котором костный мозг не вырабатывает достаточно красных кровяных телец? Вы столкнулись бы с дилеммой: согласиться на трансплантацию костного мозга с 70 % вероятностью успеха или не делать ничего и с 70 % вероятностью умереть в течение следующих 10 лет. Конечно, у трансплантации имеются свои риски. Помимо необходимости химиотерапии и риска инфекции будет еще 30 % вероятность смерти в течение следующих 6 месяцев.