Стандартная задача о дне рождения была предложена Рихардом Мизесом, урожденным галичанином, который в 1933 г. предусмотрительно покинул Берлин и занял пост в Стамбульском университете, где проделал отличную работу в области механики жидких сред, аэродинамики и теории вероятностей. В 1939 г. он приехал в США, где занял должность в Гарварде{85}.
Задача эта многогранна. С одной стороны, это задача комбинаторики. Мы даже можем рассматривать ее как сугубо гипотетическую задачу об игральных костях: вы бросаете игральную кость с 365 сторонами 23 раза и находите вероятность того, что она дважды выпадет одной стороной. (Это гипотетический мысленный эксперимент, потому что реальной «правильной» игральной кости с 365 гранями не существует.) С другой стороны, можно пронумеровать все дни в году и перемешать, получив случайный набор чисел. Можно напечатать числа от 1 до 365 на пластиковых фишках, поместить во вращающийся барабан и выбирать по одной фишке
Если мы слегка изменим задачу и рассмотрим ситуацию, когда люди встречаются, скажем, на национальной конференции, то у скольких из них могут совпасть последние 4 цифры в номере социального страхования? Задача похожа на описанную выше. Единственным отличием будет то, что число 365 меняется на 9999, учитывая предположение о том, что ни у кого нет номера, заканчивающегося на 0000. С учетом этого предположения существует шанс выше, чем 1 к 1, что на конференции со 118 участниками у 2 из них совпадут последние 4 цифры номера социального страхования{87}.
Эти последние 4 цифры не имеют никакой закономерности и практически независимы от даты рождения владельца.
Непосредственно перед тем, как я начал писать эту книгу, Агнесс, соавтор онлайн-журнала для женщин, как-то узнала о том, что я работаю над книгой о совпадениях. «Уважаемый профессор Мазур, я прошу прощения, мой вопрос может показаться странным, – пишет она мне на электронную почту. – Насколько вероятно встретить человека (встретить лично, не в результате поиска через Интернет), у которого та же дата рождения, что и у вас (день, месяц и год)? Со мной это произошло дважды, по иронии судьбы в знаменательные моменты моей жизни».
До этого момента я никогда не задумывался над этим сложным вопросом. Однако по зрелом размышлении я быстро пришел к заключению, что его анализ дает нам математический аппарат практически для любого совпадения. Агнес спрашивает не о вероятности того, что у
Как найти ответ? Мы говорим уже не о 365 днях, а о тысячах дней. Каковы переменные? Вопрос Агнесс касается не дат рождения любых двух людей, а
Если бы Агнесс интересовалась вычислением вероятности того, что у кого-то из ее знакомых та же дата рождения, то здесь было бы удивительно легко дать ответ. Пусть ее день рождения приходится, скажем, на 1 июля. Ее точная дата рождения для решения задачи не важна. Необходимо лишь выбрать конкретную дату или, другими словами, сформулировать задачу таким образом, чтобы в ней спрашивалось: какова вероятность того, что у кого-либо из присутствующих в зале день рождения приходится на конкретную дату? Шанс того, что один из знакомых родился, скажем, 1 июля, составляет 364/365. Вероятность того, что
Предположим, что она знакомится с
Потому при любых расчетах мы должны согласиться, что две ее встречи были делом поистине удивительным.
Что применимо к дням рождения, применимо и к дням смерти. Реальный случай: три президента – Джон Адамс, Томас Джефферсон и Джеймс Монро – умерли 4 июля. Хм… Джон Адамс и Томас Джефферсон умерли в одном и том же году – в 1826 г. Жутковато. Однако в их времена день 4 июля был особой вехой. Известно, что смерть можно приблизить или отдалить на несколько часов или дней волей человека к жизни или смерти. Так что возможно, что президенты молодой республики просто пытались продержаться до 4 июля, особенно Адамс и Джефферсон, которые дожили до 50-й годовщины подписания Декларации независимости. Потому в этой случайности есть элемент причинности. Никакого совпадения.
Мартышкин труд
Задача об обезьянах возникла, как вопрос статистической механики в теории вероятностей; впервые она была сформулирована в статье Эмиля Бореля «Статистическая механика и необратимость» (
Давайте пока не будем усложнять задачу. Давайте не будем ожидать библиотеки Британского музея, или полного собрания сочинений, или даже единственного сонета, а только одну строку «
При
Попробуйте приложить это к парольной защите. Значит, компьютерная программа, которая подбирает буквы случайным образом, может легко взломать пароль, состоящий из 5 символов. В наши дни даже относительно слабый центральный процессор может перебрать 50 млн попыток меньше чем за 10 сек. Но если вы добавите всего один символ, то для того, чтобы иметь шанс подбора выше, чем 1 к 1, потребуется уже не менее 214 124 096 попыток. С каждым дополнительным символом (включая комбинации букв, чисел и символов или изменение регистра) сложность растет экспоненциально (см. рис. 8.4).
Вероятность случайного подбора первых 6 цифр π с числовой клавиатуры – 0,000001, или шанс один на миллион. Существует шанс выше, чем 1 к 1, что одна из тысячи обезьян нажмет первые 6 цифр π, если каждой из обезьян дать 1000 попыток. Возможно, π – не такое уж особенное число. Конечно, мы берем только первые 6 цифр π. Возьмем первые 100 цифр π. Даже если каждая песчинка на Земле и каждая звезда во Вселенной станут случайным образом подбирать цифры до конца времен, вероятность написания π до сотого знака практически не сдвинется с нуля. В 1913 г. Эмиль Борель предложил нам представить миллион обезьян, случайным образом стучащих по клавишам печатной машинки по 10 часов в день{93}.
Les contremaîtres illettrés rassembleraient les feuilles noircies et les relieraient en volumes. Et au bout d'un an, ces volumes se trouveraient renfermer la copie exacte des livres de toute nature et de toutes langues conservés dans les plus riches bibliothèques du monde.
(Неграмотные мастера собирают почерневшие листы и соединяют их в тома. По прошествии одного года эти тома будут содержать точные копии книг по какой угодно теме на всех языках, хранящихся в богатейших библиотеках мира.)
Сэр Джеймс Джинс написал в своей книге «Загадочная Вселенная»{94}:
Кажется, Хаксли сказал, что шесть обезьян, которых усадили бездумно тренькать по печатным машинкам миллионы миллионов лет, должны со временем написать все книги из Британского музея. Если бы мы рассмотрели последнюю страницу, напечатанную конкретной обезьяной, и обнаружили, что ей удалось в этом слепом тренькании набрать сонет Шекспира, мы бы справедливо сочли это событие выдающимся совпадением, но если бы мы пролистали все миллионы страниц, которые обезьяны извели за бессчетные миллионы лет, то могли бы быть уверены, что где-то среди них найдется еще один шекспировский сонет – плод слепой игры случая. Точно так же миллионы миллионов звезд, слепо скитающихся сквозь пространство миллионы миллионов лет, обязательно встретятся со всяческими случайностями и обязательно произведут некоторое конечное число планетарных систем через определенное время. И все же это число должно быть очень малым в сравнении с общим числом звезд на небе.
Задача об обезьянах была симулирована с помощью виртуальных обезьян. 4 августа 2004 г. компьютеры работали в качестве виртуальных обезьян, жмущих на клавиши в течение 42 162 500 000 миллиарда миллиардов обезьяно-лет, прежде чем смогли напечатать «VALENTINE. Cease toIdor: eFLP0FRjWK78aXzVOwm) – `;8.t»{95}. Изумительно, но первые 19 символов этой тарабарщины в точности воспроизводят первые 19 символов первой строки пьесы Шекспира «Два веронца»:
Valentine: Cease to persuade, my loving Proteus:
Я долго раздумывал над девятью заглавными буквами подряд, пока не сообразил, что на какое-то время оказался «случайно» зажат Caps Lock. Согласен, 42 квинтиллиона – это мегагромадное число, но то, что на набор этих 19 символов в определенном порядке ушло так много времени, не значит, что это не могло произойти много раньше. Надо признать: если бы такое удалось с первой попытки, то это было бы невообразимой причудой судьбы, но не чем-то невозможным. Неожиданное может происходить, и оно происходит. Возьмем совпадение ДНК. Есть ли в мире два не состоящих в родстве индивида, имеющих полностью совпадающие ДНК? Вероятность этого невообразимо мала, но все же отлична от нуля. На самом деле шансы всего лишь 1 на миллиард.
Раздел 3
Расчеты
Встречи
Здесь будет проведен анализ историй из раздела 1, которые представляют собой достаточно определенные устойчивые категории:
История 1: история Энтони Хопкинса
История 2: история Энн Парриш
История 3: история о кресле-качалке
История 4: золотой скарабей
История 5: история Франческо и Мануэлы
История 6: история о таксисте
История 7: история о сливовом пудинге
История 8: унесенная ветром рукопись
История 9: сон Эйба Линкольна
История 10: Джоан Гинтер и ее выигрыши в лотерею
Глава 9
Громадный мир
Мы знаем, что наш мир велик, но не осознаем, насколько он в действительности громаден. Когда моей дочери Кэтрин было 8 лет, мы иногда играли в одну игру, целью которой было дать ей представление о том, насколько велика Земля, и о порядке цифр. Однажды она чихнула, и я предложил ей угадать, сколько человек во всем мире тоже чихнули в этот момент. Она предположила: всего 200, что не так плохо для восьмилетки. К ее изумлению, я назвал число в несколько десятков тысяч – сильно заниженная оценка, вероятно, на несколько порядков, учитывая, что численность населения планеты превышает 7 млрд. В наше время значительно более трудным будет вопрос о считывании штрихкодов – те самые звуки «бип-бип», которые всегда слышны на кассах супермаркетов. Попробуйте назвать приблизительное число этих сигналов, прозвучавших за то время, пока вы читали данное предложение. Полагаю, вы его сильно недооценили. Число считываний штрихкодов по всему миру превышает 5 млрд в день. Это означает, что за время, пока вы читаете это предложение, было куплено около 100 000 товаров, и сюда не входят онлайн-покупки. В общем, это может нам помочь хотя бы в общих чертах представить размеры нашего мира. Но даже число считываемых каждую секунду штрихкодов мало в сравнении с явлениями молекулярного уровня.
В реальном мире атомов и молекул нет абсолютной уверенности. Таким образом, нам нужен способ определения недостоверных, но вероятных событий. Конечно, мы можем без тени сомнения принять утверждение о том, что Земля совершит очередной оборот и завтра взойдет солнце, но большинство ожидаемых феноменов принимаются нами в силу коллективного человеческого опыта. Теоретическая модель идеальной пары игральных костей может предсказывать поведение реальных костей, которые бросает человек. Кости – это несовершенные белые кубы с округлыми краями, разумеется, изготовленные таким образом, чтобы расположенные на гранях черные точки не влияли на осевую симметрию. Производители должны учитывать, что шесть небольших выемок – черных точек – могут влиять на движение куба, склоняя его к одной из граней{96}. Кости, предназначенные для казино, изготавливаются при очень строгих допусках. Их ожидаемое среднее значение значительно ближе к 3,5, чем у обычных костей для настольных игр.
Закон больших чисел – важнейшая зацепка, связывающая математическую теорию с физическими феноменами. Он в ответе за многие чудеса нашей замечательной Вселенной, а также за то, как природа создает материальный и энергетический хаос в инертном и однородном. Он даже наводит нас на мысль о том, что масштабные события во Вселенной являются результатами неимоверно долгой игры в кости или в орлянку.
Легко поверить, что события сходятся в пространстве и времени не по воле слепого случая, но в силу некоего предназначения. Так ли это? Возьмем ситуацию с чернилами, растворяющимися в воде. Одна-единственная капля чернил на бутылку воды равномерно изменит цвет всей воды в бутылке. Чернила равномерно расходятся по всей бутылке из-за предназначения или цвет равномерно изменяется только из-за случайности? Предположим, что цвет – синий. Сначала вы увидите, как капля синих чернил соскальзывает с пипетки. Если капля не вызовет всплеска при контакте с водой, вы увидите синюю сферу, красиво меняющую формы по мере того, как она опускается на дно бутылки. Потом она превратится в тороид. Этот тороид растянется и станет квадратным тороидом со сферами на краях. Сферы разделятся и образуют четыре тороида. Эти четыре тороида повторят процесс и образуют 16 тороидов. Морфоз и деление будут продолжаться, пока сферы не ударятся либо о стенки бутылки, либо о ее дно. Физика прекрасно предсказывает все это, учитывая все силы, действующие на сферы и тороиды. Иными словами, у цветных чернил предсказуемая судьба, движимая и направляемая физикой процесса (а именно поверхностным натяжением краски, отношением давления/выталкивающей силы между двумя средами, векторами выталкивающей силы, направленными вверх, и скоростью молекул) и математикой фигур. Но, когда эти фигуры встречаются со стенками, в игру вступает нечто новое. Поверхностное натяжение нарушено, молекулярные связи разорваны, симметрия сломана, и внесен элемент случайности. В этот момент между двумя жидкостями появляется вихревое движение, которое делает вероятность возвращения к какой-либо симметрии бесконечно малой. Рассеивание молекул жидкости идет, по-видимому, в случайных направлениях.
Что происходит, если капля создает небольшой всплеск? В этом случае вы увидите, как сфера медленно опускается вниз и рассеивается на великолепные фигуры, похожие на перистые облака при легком ветре. Через несколько минут в зависимости от глубины вода станет равномерно синей – чернила растворятся вообще без какой-либо формы{97}. Хотя существует до смешного малый шанс, что капля вернется к своей исходной форме, он настолько близок к нулю, что этой вероятностью мы можем легко пренебречь. Никто никогда не сообщал о том, что наблюдал подобное. Вероятность такого невероятного события измеряется числом столь малым, что количество нулей после запятой будет больше, чем число песчинок на Земле. Но это не значит, что такое не может произойти. Это явление позволяет указать направление течения времени. В прошлом была капля, а в настоящем – равномерно синяя вода.
Что в действительности произошло в бутылке, чтобы вода из прозрачной стала синей? Если мы рассмотрим вопрос на молекулярном уровне, то поймем, что каждая молекула чернил не просто бесцельно блуждает среди молекул воды. Есть связи, удерживающие молекулы вместе, но, в каком бы направлении ни двинулись молекулы, их движение упорядоченно и только кажется случайным.
Что произойдет, если молекулярные связи слабее? Чтобы дать ответ, мы изменим ход эксперимента. Вместо чернил используем кофе очень тонкого помола. С левого края прямоугольного блюда с холодной водой насыплем кофе очень тонкого помола. Рисунок 9.1 – это схема того, что произойдет на уровне, близком к микроскопическому. Точками показаны скопления частиц кофе, уменьшающиеся слева направо. Подождите несколько секунд и посмотрите, что произойдет. Концентрация постепенно изменяется слева направо, от большей к меньшей, пока не становится равномерной по всему блюду.
Можно подумать, что некая сила движет частицы в направлении от более насыщенной области к менее насыщенной. Но такой силы не существует. Частицам все равно куда двигаться. Каждая из частиц в этой системе независима от остальных. Каждая из частиц колеблется от столкновения с молекулами воды, в результате чего отскакивает в совершенно непредсказуемом направлении. Путь каждой частицы определяется случайным образом, по крайней мере не менее случайным, чем любое событие в реальной жизни. Чтобы понять, что же происходит, поместим воображаемую линию поперек емкости, разделив стороны с высокой и низкой плотностью частиц, и спросим: насколько вероятно, что частица на воображаемой линии двинется вправо? Ответ таков: она с равной вероятностью может двинуться и вправо, и влево. Больше частиц двинутся слева направо, чем справа налево, просто потому, что с левой стороны воображаемой стенки их больше, чем с правой. Иными словами, рассеивание до состояния равномерности происходит лишь оттого, что вероятности движения молекул в любом из направлений равны. То же самое происходит на доске Гальтона (см. рис. 5.3).
Второй закон термодинамики говорит о том, что в ту же самую игру можно сыграть с газами. Возьмем две емкости, в одной – газ под некоторым давлением, вторая будет пустой. Соединим две емкости трубкой, по которой газ может свободно перемещаться. Газ начнет быстро распространяться, пока давление в обеих емкостях не уравняется. Уравнивание давления – это один из примеров всеобщей тенденции частиц распространяться по как можно большему числу направлений. Вот что удивительно: молекулы газа будут случайным образом соударяться, как пузырьки в кипящем чайнике, таким образом, что каждая из них на некоторое время возвратится в емкость, в которой находилась изначально. Анри Пуанкаре продемонстрировал это в общей теореме о динамических системах.
Представьте, что произойдет, если вы поместите большое число блох на середину шахматной доски? Блохи очень быстро начнут прыгать во всех направлениях, пока не заполнят всю доску. Как и тонко молотый кофе в блюде с холодной водой, блохи просто прыгают туда-сюда без какого-либо заранее заданного направления. Ни одна блоха не пытается занять как можно больше пространства, поскольку, даже если у нее будет много пространства, она снова прыгает в случайном направлении. Блохи распространяются по доске в результате случайных прыжков. Вернутся ли они когда-нибудь на те клетки, с которых стартовали, если будут продолжать прыгать? Вероятно, нет. Однако рассмотрим следующий мысленный эксперимент. Представьте две емкости. В одной, обозначенной литерой
Такие примеры уместны, поскольку мы имеем дело с большим числом объектов. Когда числа чрезвычайно велики, как число молекул в капле чернил или число людей, населяющих огромные просторы этой планеты, мы имеем более высокие шансы усреднить случайный элемент и выяснить, что может произойти с отдельным индивидом в толпе.
Очень многие сложные природные явления легко объясняются с помощью вероятностных моделей вроде подкидывания монетки или многократного выбора случайных чисел. И из этого огромного набора произвольных чисел случайность создает постоянно развивающийся динамический мир, мир, в котором цветные чернила растворяются в воде без какой-либо конечной цели, где газ отдает часть давления вакууму, чтобы следовать законам термодинамики, где блохи бесцельно прыгают по доске, но все же заполняют всю ее поверхность, и где ДНК неверно воспроизводит саму себя без какого-либо плана, создавая таким образом уникальных людей.
Скрытые переменные
Скрытые переменные внушают нам ложную мысль о том, что причины либо нет, либо ее слишком сложно найти. Громадные размеры мира также играют определенную роль, как и все невидимые струны, соединяющие его части. Мы мыслим в локальных терминах, не рассматривая множество взаимодействий между составными частями нашего мира – от субатомных частиц до галактик.
Иногда кажется, что у двух абсолютно независимых переменных появляется статистическая связь через третью переменную. Когда такое происходит, мы обнаруживаем иллюзорную корреляцию, вызванную тем, как мы видим данные или как эти данные организованы. Если бы мы простодушно собрали данные об оценках и о длине волос учеников в математическом классе, возможно, мы обнаружили бы корреляцию между длиной волос и оценками. У длинноволосых, скорее всего, будут хорошие оценки. Если мы не посмотрим на третью переменную, то можем заключить из этой корреляции, что ученикам, чтобы получать хорошие оценки, следует отрастить волосы. Мы не настолько наивны, чтобы не замечать третью переменную – скажем, возраст или пол. Длина волос как показатель может искажаться среди более старших учеников или среди женщин, у которых волосы были длиннее, чем у мужчин{100}. Другим примером будет корреляция между доходами во взрослой жизни и отметками в колледже. Мы можем сделать ошибочный вывод, что доход во взрослой жизни зависит от оценок, которые человек получал в школе, тогда как в действительности скрытой переменной был объем работы, который ученик был готов усердно выполнять{101}.
Скрытые переменные встречаются в корреляциях, статистических данных повсеместно. Если не замечать эти скрытые переменные, то придется верить во всевозможный вздор: например, в то, что для хорошей успеваемости в колледже ученику следует начать курить, потому что «у курильщиков оценки в колледже лучше, чем у некурящих». Или возьмем более серьезный пример. До последнего времени на Новых Гебридах – группе островов на юге Тихого океана – было распространено убеждение, что вши полезны для здоровья. В течение веков старейшины случайно замечали, что у здоровых местных жителей были вши, а у больных их не было. Они пришли к выводу, что вши положительно влияли на здоровье. В условиях более тщательного и контролируемого исследования было замечено, что вши были почти у всех туземцев большую часть времени. Вши также могли вызывать лихорадку, что, в свою очередь, вызывало гибель вшей. Путаница возникала из-за того, что у нездоровых людей случалась лихорадка и поэтому у них не было вшей. «Вот где причина и следствие искажены до неузнаваемости, перевернуты и перемешаны», – написал Даррелл Хафф в своей книге «Как лгать при помощи статистики»{102}, которой сейчас уже больше 60 лет, но она все еще остается бестселлером. В СМИ полно всевозможных странных сюжетов, пытающихся нас в чем-то убедить, основанных только на данных опросов: использование пестицидов в сельском хозяйстве вызывает аутизм; линии электропередач вызывают опухоли мозга; чай из корня васаби – миорелаксант; 9 из 10 докторов считают, что употребление каши на завтрак способствует оздоровлению; дети с длинными руками лучше строят логические рассуждения, чем их сверстники с более короткими руками; и прогулки в сосновом лесу раз в неделю снижают уровень гормона стресса кортизола, артериальное давление и частоту сердечных сокращений. Женщинам следует принимать эстроген, чтобы уменьшить шанс сердечного приступа. Эстрогенная терапия увеличивает шанс сердечного приступа у женщин, уже переживших сердечный приступ. Эстрогенная терапия может защитить женщин от остеопороза и, возможно, рака толстого кишечника, но также может увеличить шанс сердечных заболеваний, инсульта, тромбоза, рака груди и слабоумия{103}.
Известен классический случай ошибки сэра Рональда Элмера Фишера. Для многих биологов и статистиков Фишер – отец современной статистики и теории планирования экспериментов. Он родился в 1890 г. в пригороде Лондона, а умер в 1962 г. в Аделаиде, Австралия, от рака прямой кишки. Ричард Докинз назвал Фишера величайшим биологом со времен Дарвина.
Фишер был человеком огромного обаяния и доброты, пытливым мыслителем с широким кругом интересов, человеком, страстно приверженным научным исследованиям, первоклассным собеседником, но он также время от времени демонстрировал суровый нрав в отношении любого, кого уличал в совершении ошибок, создании условий для их возникновения или же распространении ошибочных сведений. Его работы были сложны для понимания, равно как и его лекции: «Фишер был слишком сложен для среднего студента; его классы быстро разваливались, оставались только два-три студента, которые могли выдерживать его темп, и становились преданными адептами»{104}.
В начале своей карьеры статистика Фишер работал на экспериментальной сельскохозяйственной станции, ставшей впоследствии всемирно известной благодаря разработке теории планирования экспериментов. Он разработал то, что сегодня называется дисперсионным анализом, установил принцип рандомизации и развил идею о важности воспроизводимости{105}. Он разработал эксперименты для проверки совпадений с помощью количественных методов, куда входили, например, сопоставление карт из обычной колоды в 52 карты, системное исследование экстрасенсорного восприятия{106}. Это практический метод, предполагающий использование системы оценки, основанной на перестановках в колоде, следующих нормальному распределению.
Сложно поверить, что такой гений биологии, как Фишер, мог поощрять работы в области евгеники, ошибочные суждения, популярные до 1930-х гг., согласно которым, если правительства не будут поддерживать рост рождаемости в семьях с «благоприятными» генетическими чертами и препятствовать такому росту в семьях с «неблагоприятными» чертами, полученный генетический фонд приведет к упадку цивилизации.
В августе 1958 г. Фишер написал в журнале
Вопрос довольно сложный, и я упоминал, что на ранней стадии логическое разграничение проходило между: A вызывает B, B вызывает A, что-то еще вызывает оба из них. Тогда возможно, что рак легких – точнее, предраковое состояние, которое должно существовать, и, собственно, известно, что оно существует в течение нескольких лет у тех лиц, у кого позже будет диагностирован явный рак легких – является одной из причин курения? Не думаю, что это можно исключить. Не думаю, что мы знаем достаточно, чтобы сказать, что это и есть причина{109}.
Работа Фишера ошибочна. Учитывая его крутой нрав в отношении любого, кто, по его мнению, допустил ошибку в анализе данных или их оценке, можно только догадываться, в какую ярость его мог привести кто-то, допустивший ту же ошибку, что и он, преждевременно сделав выводы, не изучив предварительно все доступные данные. Он не осознавал собственный конфликт личного и профессионального: он был курильщиком на службе у табачной компании.
К сожалению, результаты многих медицинских исследований, которые слишком быстро оказываются в СМИ, рождают спекуляции по поводу причин и профилактики тех или иных недугов. Нам рекомендуют есть больше рыбы и меньше ненасыщенных жиров, а также не жить рядом с электромагнитными полями. Такие медицинские рекомендации могут приводить к иным опасностям. Когда-то нам говорили, что для снижения вероятности сердечных заболеваний надо принимать витамины C и E, а также бета-каротин в качестве антиоксидантов. Для предотвращения рака прямой кишки надо есть больше клетчатки. Когда-то нам говорили, что надо употреблять меньше грубой пищи, а потом, несколько десятилетий спустя, что нужно употреблять больше грубой пищи. Масштабные исследования по данным наблюдений не смогли подтвердить эти теории. Нельзя сказать, что одно событие является причиной другого просто потому, что клиническое исследование с десятками сотен испытуемых в общей и контрольной группах подтверждает гипотезу. Все, что оно может, так это сказать, что гипотеза, возможно, верна. В лучшем случае дать косвенное свидетельство того, что одно событие вызывает другое. Не будучи совершенно уверенными в причине, мы очень мало знаем о том, как давать конкретные рекомендации. На самом деле, если причина неверна, то рекомендации могут принести больше вреда, чем пользы{110}.
Не то чтобы клинические исследования вообще ничего нам не дают. Они говорят многое. Например, мы точно знаем, что курение сигарет имеет некую связь с раком легких и сердечно-сосудистыми заболеваниями, хотя нам и неизвестны точные причины. Курение – это
Проблема с клиническими испытаниями в том, что выбор испытуемых не настолько случаен, насколько должен бы быть. Меня никто никогда не просил стать испытуемым в клиническом испытании. Итак, мы должны спросить: кто эти испытуемые? Это люди, у которых есть мотивация для того, чтобы быть добровольцами. Многим платят, а платят из источников, которые могут быть связаны с интересами тех, кто эти источники финансирует. Следовательно, испытуемые приходят из особой, а не из случайной группы. Люди, участвующие в клинических испытаниях, скорее, будут придерживаться выгодных для себя рекомендаций. Они, скорее всего, довольно стройные и имеют меньше опасных для здоровья факторов. Мы можем статистически урегулировать эффект социально-экономического статуса, но это не всегда работает должным образом{111}. Кроме того, результаты таких исследований временные – пройдет 10 или 20 лет, прежде чем будет проведено новое исследование, которое поставит под сомнение предыдущее. Другими словами, избежать искажений при проведении клинических исследований очень сложно.
С другой стороны, если общественность прислушивается к медицинским рекомендациям – результатам клинических исследований, мы кое-что узнаем. Если бы мы ошибались, называя курение причиной рака легких и сердечно-сосудистых заболеваний, мы не должны были бы увидеть резкого уменьшения уровней заболеваемости раком легких и сердечно-сосудистыми заболеваниями, которые увидели за последние пять десятилетий, в ходе которых доля курящего населения в США сократилась на 57 %.
История говорит нам: то, во что мы верим сейчас, может оказаться неправдоподобным век спустя. В мире есть нечто большее, чем то, что мы видим, что можем измерить, что, как мы думаем, нам известно. Наши научные представления – сиюминутная достоверность. Сэмюэль Арбесман в своей книге «Полураспад фактов» пишет: «Мы собираем научное знание, как часовой механизм, в результате чего в ходе наших поисков лучшего понимания мира постоянно ниспровергаются факты»{112}. Убеждения, какими бы сильными они ни были сегодня, – не истина в последней инстанции. Они являются просто рабочими гипотезами. В оригинальном рецепте Вселенной есть щепотка случайности, а доступные нам средства наблюдения ограничены; потому мы не можем знать всего.
Да, мы ограничены. Явления природы зависят от такого числа переменных, что точное измерение, как правило, невозможно; а это означает пренебрежение принципом неопределенности. Если простое явление, например бросок монеты, зависит от бессчетных необнаруживаемых событий в умеренно хаотическом мире случайно сталкивающихся электронов, то только попробуйте представить мириады событий, отвечающих за такой сложный феномен, как рак. Но открыть причину рака – это не то же самое, что выдвинуть довольно удачное предположение о возможных «подозреваемых». Некоторые ученые относили рост заболеваемости раком легких после Второй мировой войны на счет производственных факторов и новых промышленных товаров. Среди «подозреваемых» был асфальт ввиду быстрого роста дорожного строительства в Америке и Европе. Однако к концу 1950 г. так много исследований связывали курение с раком легких, что стало ясно: курение – значительный фактор. Задача статистики – не найти причины, а скорее, определить «круг подозреваемых». Многие естественные отношения нельзя объяснить законами или измерить в ходе наблюдений, но можно связать со статистическими показателями.
Еще в V в. до н. э. Гиппократ писал о порошке, сделанном из экстракта хинного дерева, облегчавшем головные боли и жар. Это был аспирин. Немецкая фармацевтическая компания Bayer производит его в форме таблеток с XIX в. Но никто не знал, почему он действует, до 1971 г., когда британский фармаколог Джон Роберт Вейн продемонстрировал, что аспирин подавляет выработку определенных молекулярных соединений, регулирующих сокращение и релаксацию мышечных тканей. Морфин использовался в качестве обезболивающего с XVI в., но до 2003 г. никто не знал, что он естественным образом вырабатывается в организме человека. Стоит подумать о некоторых традициях, которым мы следуем, даже не зная почему. Задолго до того, как стало известно о существовании бактерий, люди мыли руки перед едой. Сегодня мы, возможно, моемся слишком часто, даже используем антибактериальное мыло, которое убивает и полезные бактерии. Но откуда нам знать, какие бактерии для нас полезны?
Наука любит прямые связи между причинами и следствиями, но не обязывает нас знать о существовании таких связей. Ученые могут допускать корреляцию между двумя сложными феноменами. Настоящая проблема в том, что люди склонны видеть связь там, где ее нет, а также игнорировать имеющиеся связи, которые слишком сложны для того, чтобы можно было их прогнозировать. Мы видим в совпадениях события, таинственным образом предусмотренные неким глубокомысленным замыслом. Может, и так, а может, и нет. В этом сложном мире взаимосвязанных феноменов некоторые связи сцеплены столь искусными и длинными цепочками опосредованных взаимоотношений, что мы даже представить не можем влияние одного на другое.
Глава 10
К вопросу об историях из главы 2
Совпадения – это выдающиеся события, которые возбуждают у нас интерес к вероятности. Никто не сомневается, что они чрезвычайно редки, но насколько редкой должно быть событие, чтобы сжать мир во времени и пространстве? Следующие истории в самом деле редкие, однако вполне могут происходить.
История 1. История Энтони Хопкинса
История Хопкинса может быть обычным примером синхронии. Просто подумайте, во скольких местах побывала «Девушка с Петровки»? Подумайте, сколько людей могли подобрать эту книгу до того, как Хопкинс ее увидел? Подумайте, почему Хопкинс нашел книгу именно с таким названием, именно этот экземпляр, принадлежавший Джорджу Файферу? А теперь рассмотрите возможность того, что Хопкинс сидел рядом с книгой, но не заметил ее (схожая версия истории – возможно, лучшая версия): произошло бы ровно то же самое, но Хопкинс бы об этом ничего не узнал, как и мы с вами. Одна из причин того, что история настолько захватывающая, заключается в том, что она касается определенного человека, более того, знаменитой личности. История по любым меркам эффектна, в основном потому, что мы знаем человека, с которым она произошла. Но на самом ли деле история Хопкинса – настолько выдающееся совпадение? У нас есть такое ощущение, но откуда оно берется? Событие, может быть, и выдающееся, но есть ли у нас информация, которой можно подкрепить такое утверждение? Нет никаких конкретных цифр, чтобы оценить вероятность.
Да, история может быть синхронией. Но, чтобы пояснить разницу между синхронией и математическим правдоподобием, давайте рассмотрим кое-какие цифры: число книг, которые забывают на железнодорожных вокзалах, число книжных магазинов в центре Лондона и число людей, ежедневно приезжающих в центр в поисках определенной книги. История произошла в 1976 г. Это важно, поскольку тогда не было ни Интернета, ни Amazon, которые теперь так облегчают поиск книг. Раньше самым простым вариантом было позвонить в каждый из магазинов, сэкономив таким образом кучу времени на том, чтобы посещать их.
Чтобы проанализировать историю Хопкинса, надо принять во внимание, насколько огромен Лондон. В момент написания этой книги, в эру интернета, в Лондоне насчитывается 111 отдельных маленьких книжных магазинов. Чтобы удержаться на плаву, каждый из этих магазинов должен привлечь не менее 10 покупателей в день. По самым скромным подсчетам, все эти магазины вместе продают по меньшей мере 1000 книг в день. Более реалистичная оценка – около 3000. Одни приходят посмотреть, другие разыскивают конкретную книгу, которую намерены купить, а некоторые просто хотят спрятаться от дождя или убить время. Предположим, что каждый день только 100 покупателей заходят, чтобы купить конкретную книгу X.
Маловероятно, что кто-то из этих 100 человек найдет нужную книгу, сидя на скамейке в метро. Но давайте воспользуемся случаем и подумаем, сколько людей случайно оставляют книги в общественных местах, сколько просто бросают уже прочитанные книги в поездах и на станциях.
Если книга X обладает достаточной популярностью в момент своего первого релиза, за первый месяц будет продано не менее 1000 экземпляров. Какова дальнейшая судьба этих экземпляров? Одни окажутся непрочитанными и останутся у кого-то дома на книжной полке. Другие будут проданы в букинистические магазины, а некоторые окажутся забытыми в общественных местах.
Я предполагаю, что продажи «Девушки с Петровки» составили более 10 000 экземпляров. Это дает возможность с помощью закона больших чисел показать, что у события Хопкинса был шанс от небольшого до вполне разумного, по крайней мере если исходить из того, что событие должно было произойти с любым человеком. Как так? Пусть 10 книг были оставлены в общественных местах в Лондоне: на скамейках в парке, в кафе, в залах ожидания, в вестибюлях гостиниц и т. д. – вполне разумное предположение. Пусть
Однако существует одна возможность. Мы могли бы создать компьютерную модель, которая симулирует передвижения людей относительно предмета их поисков. Задача будет непростой из-за множества скрытых переменных, которые связывают мысли реальных людей и происходящие с ними события. Но такая модель дала бы нам численную аппроксимацию математической вероятности
Оставим саму историю, касающуюся Энтони Хопкинса и Джорджа Файфера, и попробуем разобраться, насколько вероятно, что некто, приехав в центр Лондона в поисках определенной книги, находит ее в каком-либо публичном месте. Эта задача намного проще. Если мы находим эту вероятность и она оказывается очень малой, то мы знаем, что реальная история, касающаяся Хопкинса и Файфера, еще менее вероятна. Тогда мы сделаем то, что часто делают математики: найдем «оценку сверху»[17] для интересующих нас чисел – в данном случае вероятность того, что ищущий книгу благополучно ее найдет. Мы сделаем еще кое-что, часто проделываемое математиками: упростим задачу, чтобы уточнить ее суть, и выясним, что действительная задача, которой предстоит заняться позже, значительно более сложна.
Лондон – большой город с 60 000 улиц, более чем 3000 маленьких парков и скверов, 8 большими королевскими парками, 111 книжными магазинами и 276 станциями метрополитена, разбросанными по всему городу. Однако если мы на несколько мгновений вернемся к истории Хопкинса, то сможем ограничить область до вполне реалистичных цифр. Хопкинс сказал, что нашел книгу на станции метро недалеко от Гайд-парка. Файфер подтвердил, что отдал книгу другу, который потерял ее в районе Гайд-парка. Ближайшая к Гайд-парку станция метро – «Марбл Арч», от которой полчаса пешком практически по прямой через Вигмор-стрит до окрестностей Британского музея, а в этом районе Лондона в то время было больше всего книжных магазинов. Имеет смысл ограничить зону поиска, скажем, радиусом 3 км от Британского музея. В этом районе приблизительно тысяча улиц. Но многие из них очень короткие, книжных магазинов на них немного, к тому же мало кто пойдет искать книгу вдали от главных улиц. Кроме того, брошенные книги можно с большей вероятностью найти в более проходных местах, таких как станции метро, и местах досуга, например в парках.
Суть истории не в Энтони Хопкинсе, а в «Девушке с Петровки» – кто-то находит определенную книгу в определенный день в чрезвычайно неожиданном месте.
Потому представим, что
Это творческая модель, она всей истории не расскажет. Скрытые переменные повсюду. Люди, ищущие определенные книги, могут запросто находиться поблизости от предмета своих поисков, но так и не заметить этого. Кроме того, мы видим, что
Но слабый закон больших чисел говорит нам, что разница между
Все это означает, что верхний предел реальной вероятности не так уж безумно низок. Вероятность реальной истории, а именно того, что она произойдет с конкретным человеком, куда меньше. Иными словами, пусть у нас и нет определенной числовой вероятности того, что исходная история необычайно редка, есть, однако, понимание того, что подобные истории не столь исключительны.