Картина постепенно проясняется. По мере добавления осцилляторов нам необходимо добавлять все больше измерений, чтобы можно было учитывать все возможности. Для четырех осцилляторов требуется трехмерный куб начальных условий; для пяти осцилляторов требуется четырехмерный гиберкуб, а в общем случае для
Очередной шаг заключается в преобразовании рассматриваемой нами динамики – эволюции такой системы во времени – в графическое представление, которое мы стремимся получить. Мы хотим убедиться в том, что в такой системе действительно будет достигнут синхронизм при неких начальных состояниях осцилляторов B и C.
Представим, что произойдет, если мы позволим такой системе начать работать. Напряжение на всех осцилляторах поднимется до порогового значения, они запустятся, а затем вернутся в исходное (нулевое) состояние; они также будут реагировать на «толчки» со стороны других осцилляторов. Чтобы устранить избыточную информацию, опять воспользуемся методом стробов: предоставим системе возможность работать в темноте до очередного момента, когда осциллятор A запустится и вернется в исходное состояние, а B и C отреагируют на это. Затем включим строб и сделаем очередной фотоснимок, зафиксировав новые позиции B и C.
Геометрический результат заключается в том, что старая точка в нашем квадрате оказалась на новом месте (обновленные напряжения B и C). Иными словами, динамическая эволюция нашей системы эквивалентна преобразованию, в результате которого любая данная точка в нашем квадрате оказывается в другом месте этого квадрата в соответствии с неким сложным правилом, которое определяется формой кривой заряда и величиной толчков.
Этот процесс можно повторить; при этом новую точку можно интерпретировать как начальную, которая изменяет свою позицию в соответствии с упомянутым преобразованием, снова и снова перепрыгивая с одного места в нашем квадрате на другое место. Если такая система должна в конечном счете прийти к синхронизму, то упомянутая нами точка должна постепенно продвигаться в сторону нижнего левого угла квадрата, то есть к точке с напряжениями (0,0); это означает, что все осцилляторы достигнут исходного положения одновременно. (Почему именно нижний левый угол? Потому что именно в этой точке находится осциллятор A. Согласно определению строба, осциллятор A уже запустился и сбросился, поэтому напряжение на нем равно нулю. В синхронизированном состоянии напряжение на обоих других осцилляторах также равно нулю.)
В принципе, у каждой начальной точки есть некое конечное положение, которое можно вычислить. Если в конечном счете все осцилляторы запускались синхронно, то такую начальную точку мы называли «хорошей». В противном случае мы называли ее «плохой». Нам с Ренни не удалось найти способ, который позволял бы нам точно сказать, какие точки являются «хорошими», а какие – «плохими», однако нам удалось доказать, что почти все точки являются хорошими. Плохие точки действительно существуют, но они встречаются настолько редко и настолько сильно разбросаны, что если собрать их все вместе, то занимаемая ими площадь стремится к нулю. Иными словами, если выбрать какую-либо точку произвольным образом, то у вас чрезвычайно мало шансов выбрать плохую точку.
Это может показаться абсурдным: если плохие точки существуют, то вы можете полагать, что с вашим-то везением вы наверняка выберете плохую. Спешу вас успокоить: не выберете. Это практически то же самое, как если бы вы бросали дротик в мишень для игры в «дартс» в надежде, что он попадет точно в разделительную линию между двумя соседними концентрическими областями. Это чрезвычайно маловероятно. А теперь представьте, что толщина этой разделительной линии стремится к нулю (а именно это требуется, если ее площадь должна равняться нулю). Теперь, надеюсь, вы понимаете, почему у вас практически нет шансов попасть дротиком в эту линию.
Идея о теоретическом существовании «плохих» точек принадлежала Ренни, хотя мы, разумеется, были заинтересованы в «хороших» точках. Стратегия Ренни напоминала концепцию отрицательного пространства, к которой прибегают художники: чтобы лучше уяснить интересующий вас объект, постарайтесь уяснить пространство, окружающее этот объект. В частности, Ренни придумал, как доказать, что «плохие» точки занимают нулевую площадь.
Чтобы составить некоторое представление о его доказательстве, сосредоточимся на наихудших из «плохих» точек, которые я буду называть «ужасными». Эти точки – самые непокорные в своем стремлении воспрепятствовать достижению синхронизма: они вообще не поддаются поглощениям. Когда система начинает свою работу с какой-либо ужасной точки, никакая из пар осцилляторов (и тем более не вся популяция осцилляторов) не сможет синхронизироваться.
Чтобы понять, почему ужасные точки не могут занимать площадь больше нулевой, вообразите все эти точки в виде некой совокупности и проанализируйте, что произойдет, когда мы применим наше преобразование ко всем точкам в такой совокупности. Каждая ужасная точка перескочит в какое-то другое место, но после такого преобразования она все равно останется ужасной. Это звучит почти как тавтология: если какая-либо точка никогда не приводит к поглощению, то после одной итерации нашего преобразования она все равно никогда не приведет к поглощению. Следовательно, новая точка также является ужасной. Поскольку первоначальная совокупность включала
Наш вывод заключается в том, что преобразованная совокупность находится полностью внутри первоначальной совокупности. Могу предложить более наглядную аналогию: это похоже на хорошо известные вам фотографии «до» и «после», используемые в рекламе всевозможных диет для похудения. Преобразованная совокупность – похудевшая «после» – фотография – полностью содержится внутри толстой «до» – фотографии (как в рекламе диет для похудения).
До сих пор в нашем доказательстве не использовалась какая-либо информация о форме кривой заряда или величине «толчков». Когда мы в конечном счете учтем эти детали, мы придем к выводу, который, на первый взгляд, может показаться парадоксальным, хотя на самом деле он является решающим доводом в нашем доказательстве. Нам с Ренни удалось доказать, что преобразование из «до» в «после» действует подобно функции увеличения масштаба в фотокопировальном аппарате. Любая совокупность точек, которую вы подаете на вход нашего преобразования, на его выходе оказывается увеличенной в том смысле, что ее суммарная площадь оказывается умноженной на коэффициент, больший 1. Неважно, какую именно совокупность вы выберете (как неважно и то, какое изображение вы поместите в фотокопировальный аппарат): увеличится площадь всех совокупностей. В частности, увеличится площадь совокупности ужасных точек. Но погодите, это означает, что совокупность ужасных точек становится толще, а не тоньше. Но это, похоже, противоречит тому, о чем мы говорили выше. Если быть более точным, проблема в том, что преобразованная версия совокупности ужасных точек должна находиться внутри исходной совокупности при том, что ее площадь также должна увеличиться, что кажется невозможным. Единственным условием, при котором эти два вывода могут быть совместимы, является нулевая площадь исходной совокупности (фотография «до» должна представлять собой изображение тонкого прута). В таком случае никакого противоречия нет: при умножении на число, большее 1, площадь исходной совокупности останется нулевой, поэтому преобразованная совокупность может поместиться внутри исходной совокупности. Но это именно то, что мы хотели продемонстрировать: ужасные точки занимают нулевую площадь. Именно поэтому вам никогда не удастся выбрать их, если вы будете выбирать начальное условие случайным образом. Не сможете вы выбрать и какие-либо другие «плохие» точки. Именно поэтому наступление синхронизма в такой модели является неизбежным.
Та же аргументация относится к любому другому количеству осцилляторов – с той небольшой поправкой, что в случае четырех или большего количества осцилляторов площадь нужно заменить на объем или гиперобъем. В любом случае вероятность начать процесс с плохой точки всегда остается равной нулю. Следовательно, Пескин был прав: в его модели идентичных импульсно-связанных осцилляторов каждый из осцилляторов в конечном счете запускается в унисон с остальными.
Конструируя это доказательство, мы пришли к выводу, что предположение Пескина об утечках было очень важным: в противном случае преобразование из «до» в «после» не расширяет площадь и все доказательство разваливается. Более того, оно
Этот тонкий момент зачастую ставил в тупик других математиков, когда я читал свои первые лекции по нашей работе: прежде чем я успевал дать развернутое пояснение этого момента, какой-нибудь критикан (а среди слушателей обязательно находился хотя бы один такой) прерывал меня и упрекал в тривиальности нашей теоремы: дескать, осцилляторы, конечно же, синхронизируются, поскольку все они идентичны и одинаково связаны друг с другом – а на какой же еще результат я рассчитывал? Но такое возражение слишком обманчиво: оно игнорирует слабое влияние кривой заряда. Синхронизм возникает с неизбежностью лишь в случае, когда эта кривая изгибается в «правильном» направлении. С биологической точки зрения, форма кривой заряда определяет, в какой момент толчки оказываются более сильными: в начале цикла (вблизи исходного состояния) или в конце цикла (вблизи порогового значения). Когда кривая заряда наклонена вниз, как в модели Пескина, данный толчок напряжения трансформируется в больший сдвиг фазы для осцилляторов, близких к пороговому значению, что в свою очередь гарантирует, что система будет синхронизирована, хотя понять, почему именно она будет синхронизирована, не так-то просто.
Сконструированное нами доказательство выводов, сделанных Пескином, оказалось первым строгим результатом, относящимся к популяции осцилляторов, обменивающихся внезапными импульсами. Что же касается реальных светлячков или клеток-ритмоводителей сердца, такая модель является очевидным упрощением. Она предполагает, что запуск одного осциллятора всегда подталкивает другие осцилляторы в направлении порога, продвигая таким образом их фазы вперед; реальные биологические осцилляторы могут, вообще говоря, сдвигать фазу как вперед (опережение), так и назад (запаздывание). Кроме того, тайские светлячки, которые являются самыми большими мастерами в части синхронизации – вид, известный как
В течение нескольких следующих лет было опубликовано более 100 статей, посвященных импульсно-связанным осцилляторам. Авторами этих статей были ученые, представлявшие множество дисциплин, начиная с нейробиологии и заканчивая геофизикой. Что касается нейробиологии, то теоретиков, изучающих модели нейронных сетей, категорически не устраивал преобладающий подход, согласно которому нейроны весьма грубо описывались средними скоростями их запуска (количеством скачков напряжения в секунду), а не фактическим распределением самих этих скачков во времени[17]. Предложенная нами новая модель импульсно-связанных осцилляторов идеально отвечала потребностям ученых-нейробиологов и духу времени в целом.
По случайному стечению обстоятельств или, может быть, в силу каких-то других причин в начале 1990-х годов ученые в других областях также размышляли над поведением систем такого рода. Например, влиятельный биофизик Джон Хопфилд, работающий в Калифорнийском технологическом институте, обнаружил связь между землетрясениями и импульсно-связанными нейронами[18]. В упрощенной модели землетрясения пласты земной коры постоянно воздействуют друг на друга, создавая напряжение, которое нарастает до тех пор, пока не будет достигнут некий порог. Затем эти пласты внезапно начинают скользить относительно друг друга; высвобождающаяся при этом энергия приводит к взрыву. Весь этот процесс напоминает постепенное повышение и внезапный скачок напряжения нейрона. В описанной выше модели землетрясения соскальзывания одного пласта может оказаться достаточно, чтобы запустить соскальзывание других пластов (точно так же, как запуск нейрона может вызвать цепную реакцию других разрядов в мозге). Эти каскады множащихся событий могут приводить к землетрясениям (или эпилептическим хватательным движениям у человека). В зависимости от того, какой именно оказывается конфигурация других элементов системы, результатом может быть либо едва различимый гул, либо сильное землетрясение.
Такая же математическая структура возникала в моделях других взаимодействующих систем, начиная с лесных пожаров и заканчивая массовыми вымираниями живых организмов. В каждом таком случае какой-то отдельно взятый элемент подвергается нарастающему давлению, продвигается в направлении некого порога, а затем внезапно высвобождает накопившееся напряжение и распространяет его на другие элементы, что способно вызвать эффект домино. Модели с таким характером широко обсуждались в начале 1990-х годов. Статистика каскадов – в основном небольших, но в нескольких случаях катастрофических – изучалась теоретически физиком Пером Баком и его сотрудниками в связи с тем, что они называли самоорганизующейся критичностью[19].
Открытие, сделанное Хопфилдом, заключается в том, что самоораганизующася критичность может быть тесно связана с синхронизацией в импульсно-связанных системах осцилляторов. Интригующая возможность связи между этими двумя областями породила десятки статей, в которых исследовались возможные варианты связи[20]. Этот эпизод служит примером того, как математики могут выявлять скрытую связь явлений, которые на первый взгляд кажутся не связанными между собой.
Наша работа привлекла также внимание средств массовой информации – в основном из-за ее связи со светлячками, которые вызывали у большинства людей детские воспоминания о летних вечерах, когда они ловили этих мерцающих насекомых в стеклянные банки[21]. В результате этого повышенного внимания со стороны прессы в 1992 г. я получил восторженное письмо от женщины по имени Линн Фост, проживающей в Ноксвилле, Теннеси. В характерной для нее вежливой и непосредственной манере она была готова разрушить давний миф о синхронно мерцающих светлячках. Вот о чем она поведала мне в своем письме.
Я уверена, вам известно об этом. Поэтому хочу лишь напомнить о том, что в национальном парке «Грейт-Смоки Маунтин» вблизи г. Элкмонт, Теннеси, у мерцающих насекомых наблюдается что-то наподобие группового синхронизма. Сеансы мерцания у них происходят с середины июня и начинаются каждые сутки примерно в 10 часов вечера. После 6 секунд полной темноты тысячи насекомых в течение трех секунд с идеальным синхронизмом совершают шесть быстрых вспышек, после чего
В Элкмонте у нас есть маленький домик (к сожалению, по распоряжению руководства национального парка, он должен быть снесен в декабре 1992 г.) и, насколько нам известно, этот конкретный вид группового синхронного мерцания наблюдается лишь на этой небольшой территории. Между тем это поистине завораживающее зрелище.
Описанные мною насекомые существенно отличаются от наших обычных светлячков, которые после наступления темноты просто загораются и потухают в произвольные моменты времени.
Далее Линн Фост рассказала в своем письме, что по другую сторону речушки, на берегу которой стоит их домик, светлячки, расположившиеся выше по склону холма, начинают свою последовательность свечений чуть раньше тех, которые расположились ниже, поэтому у наблюдателя возникает впечатление огоньков, сбегающих волной вниз по склону холма, «что-то наподобие водопада светлячков».
Она отправила письмо руководству национального парка в Элкмонте с просьбой не проводить реконструкцию парка и не разрушать естественную среду обитания насекомых по крайней мере до тех пор, пока ученые не изучат их поведение. Ведь это явление можно наблюдать лишь в строго определенном месте этого национального парка. Кстати, уникальность этого места натолкнула Линн Фост на мысль о том, что проживающие там люди, наверное, делают что-то такое, что способствует столь необычному мерцанию светлячков. Она предположила, что причиной может быть периодическое подстригание травяных газонов местными жителями. На протяжении 50 лет жители Элкмонта подстригают свои газоны примерно каждые две недели. Это позволяло личинкам светлячков благополучно перезимовать, зарывшись в заросли короткой травы на болотистой почве. Весной эти личинки превращались в светлячков, которые размножались летом. Следовательно, по мнению Линн Фост, если Элкмонт покинут все его нынешние жители, регулярно подстригающие свои газоны, светлячки могут быть утрачены для науки раз и навсегда. В поддержку своей гипотезы, касающейся стрижки травяных газонов, Линн Фост указывала, что самые высокие концентрации светлячков отмечались
непосредственно возле домиков местных жителей и охватывали участки, на которых регулярно подстригалась трава… Ни одной из личинок не удалось обнаружить на участке, где раньше стоял дом «дядюшки Лема Оуенбая», то есть там, где уже давно не подстригают траву. На протяжении 15 лет, за которые на месте лужайки, примыкавшей к дому Мейны Маккинн, успел вырасти лес, она отмечала существенное уменьшение «своей» популяции светлячков.
Линн также удручала перспектива расставания со своим жильем и привычным окружением. К тому времени семейство Фостов наслаждалось фантастическим мерцанием светлячков уже на протяжении 40 лет. Каждый июнь три поколения Фостов укутывались в пледы и молча сидели на неосвещенном крыльце своего домика в ожидании начала очередного представления.
То, что было так знакомо семейству Фостов, было новостью для науки[22]. Эти любительские наблюдения могли стать первым хорошо задокументированным случаем синхронного мерцания светлячков в Западном Гэмпшире. На протяжении многих десятилетий после дискуссии, разгоревшейся в начале XX века в журнале Science, было принято считать, что такое явление не встречается на американском континенте – только в Азии и Африке. Я познакомил Линн с Джонатаном Коуплендом, исследователем светлячков, работающим в Южном университете Джорджии. Коупленд вместе со своим коллегой Энди Моисеффом из Коннектикутского университета подтвердил, что светлячки, обитающие у домика Фостов, мерцают синхронно, причем величина рассинхронизации между светлячками не превышает трех сотых дол
Несмотря на то что в 1992 г. Элкмонт был в конечном счете поглощен национальным парком «Грейт-Смоки Маунтин», светлячкам удалось пережить эту трансформацию, и их «Световое шоу» продолжилось, став хорошей приманкой для туристов. Что касается Линн Фост, то ее по-прежнему увлекает повсеместность синхронизма в природе и она по-прежнему совершает свои открытия. Вот, например, о чем она написала мне в 1999 г.: «Еще одно явление простого синхронизма мне довелось наблюдать этой весной, когда четыре индюка (не диких, а домашних) во время весеннего брачного периода собираются в круг и начинают синхронно кулдыкать, после того как их вожак (во всяком случае, мне показалось, что он является их вожаком) издает первый звук».
Далеко не все из нас способны оценить по достоинству чудеса синхронизма в мире животных[23]. Например, 18 мая 1993 г. в таблоиде National Enquirer была опубликована статья, озаглавленная «Правительство швыряет на ветер деньги налогоплательщиков, выделяя средства на изучение светлячков, обитающих на острове Борнео. Не самая блестящая идея!». Автор статьи издевательски высказывался по поводу предоставления Национальным научным фондом одного из грантов и сообщал, что член Палаты представителей Том Петри (член Республиканской партии от штата Висконсин) «не считает, что это исследование окажется таким уж полезным, и хочет “зарубить” его. “Тратить деньги налогоплательщиков на изучение светлячков кажется мне не самой лучшей идеей”».
Нет ничего удивительного в том, что Том Петри – как и большинство людей, далеких от науки – не понимает важность этой проблемы. Между тем важность изучения светлячков трудно переоценить. Например, до 1994 г. самопроизвольные пульсации трафика между устройствами, которые называются маршрутизаторами, доставляли немало проблем специалистам, работающим с интернетом[24]. Лишь в 1994 г. стало понятно, что маршрутизаторы ведут себя подобно светлячкам, периодически обмениваясь сообщениями, которые непреднамеренно синхронизировали их. Как только причина была выявлена, стало ясно, как избавиться от этих «заторов» в компьютерной сети. Инженеры разработали децентрализованную архитектуру, обеспечивающую более эффективное тактирование компьютерных цепей: для достижения синхронизма с невысокими затратами и высокой надежностью они взяли на вооружение стратегию светлячков. (Эти скромные насекомые даже помогают спасти людям жизнь. По иронии судьбы, на той же неделе, когда в National Enquirer были опубликованы «разоблачения» Тома Петри, в статье, опубликованной журналом Time, сообщалось о том, что врачам удалось использовать светоизлучающий фермент светлячков – люциферазу – для ускорения испытаний лекарств от особо стойких разновидностей туберкулеза[25].)
Групповое поведение светлячков не только служит источником вдохновения для инженеров, но имеет более широкое научное значение. Это один из немногих поддающихся трактовке примеров сложной самоорганизующейся системы, в которой одновременно происходят миллионы взаимодействий, когда каждый элемент системы изменяет состояния всех остальных ее элементов. Практически все основные нерешенные проблемы в современной науке имеют такой запутанный характер. Рассмотрим, к примеру, каскад биохимических реакций в отдельно взятой клетке и нарушение их хода, когда эта клетка оказывается раковой; взлеты и падения фондового рынка; формирование сознания в результате взаимодействия триллионов нейронов в мозге; зарождение жизни из сложнейшей сети химических реакций, протекавших в первичном бульоне. Все эти примеры включают огромные количества «действующих лиц», соединенных между собой в сложные сети. В каждом таком случае самопроизвольно возникают изумительные картины. Богатство окружающего нас мира во многом объясняется чудесами самоорганизации.
К сожалению, наш разум не в состоянии уяснить столь сложные системы. Мы привыкли мыслить о системах с точки зрения централизованного управления, четких цепочек команд, простой причинно-следственной логики. Но когда нам приходится иметь дело с системами, содержащими огромные количества взаимосвязанных элементов, когда каждый элемент в конечном счете влияет на все остальные части системы, наши стандартные способы мышления оказываются бессильны. Простые картины и словесные формулировки слишком близоруки. Именно это создает проблемы в экономике, когда мы пытаемся предугадать последствия какого-нибудь очередного урезания налогов или изменения процентных ставок, или в экологии, когда применение какого-нибудь нового пестицида приводит вовсе не к тем результатам, на которые мы рассчитывали (например в продукты питания попадают вредные вещества).
Загадка синхронного мерцания светлячков стоит в одном ряду со множеством концептуальных проблем, подобных ей, хотя, разумеется, найти ее решение гораздо легче, чем найти решение проблем экономики или экологии. Мы имеем достаточно полное представление о природе индивидуальных организмов (светлячков), их поведении (ритмичное мерцание) и их взаимодействии («перезапуск» в ответ на свечение), в отличие от наших весьма приблизительных представлений об экологических системах или глобальном рынке, которые характеризуются множеством разнообразных компаний и видов живых организмов и неизвестными нам режимами взаимодействия элементов этих сложных систем. Достичь понимания таких систем отнюдь не просто. В действительности все, о чем было сказано выше, является лишь незначительной частью того, что нам удалось понять к настоящему времени. Однако приведенной выше информации вполне достаточно для того, чтобы читатели уяснили, как математика помогает нам раскрывать тайны спонтанно возникающего порядка, и получили наглядный пример того, что может (и чего не может) сделать для нас математика на этой примитивной, самой начальной стадии исследования.
Несмотря на то что в живом мире синхронизм встречается повсеместно, его функция не всегда очевидна. Почему, например, светлячки мерцают в унисон? Биологи предлагают по меньшей мере 10 правдоподобных объяснений этого явления[26]. Старейшая из них называется «гипотезой маяка». Уже давно известно, что лишь самцы светлячков синхронизируют свои мерцания; таким образом, согласно данной точке зрения, это «световое представление» адресовано самкам – что-то наподобие коллективного приглашения в компанию. Синхронно мерцая, самцы усиливают этот приглашающий сигнал, охватывая им значительную площадь джунглей и привлекая самок, которые в противном случае могли бы не заметить свечения. Именно поэтому такой синхронизм характерен для местностей, покрытых густой растительностью (подобно джунглям Таиланда и Малайзии или лесу позади домика Линн Фост), но редко наблюдается на открытых лугах восточной части Соединенных Штатов, где светлячки могут без проблем назначать свидания друг другу.
Второе возможное преимущество синхронизма заключается в том, что вам может просто повезти: самка, которая положила глаз на светлячка, похожего на вас, может легко спутать вашего конкурента с вами и явиться на свидание не с ним, а с вами. Именно поэтому синхронизм может быть необходим и для того, чтобы запутать хищников: в толпе всегда можно затеряться. Самое последнее по времени своего появления объяснение заключается в том, что синхронизм является отражением конкуренции, а не сотрудничества: каждый из светлячков пытается сверкнуть первым (поскольку самки, по-видимому, предпочитают именно первого), но если этой стратегии придерживается каждый из светлячков, то синхронизм наступает автоматически[27].
У многих других живых существ взаимный синхронизм также каким-то образом связан с функцией продолжения рода. Периодические цикады[28] пытаются перехитрить своих врагов, прячась под землей на долгие семнадцать лет, после чего миллионы этих насекомых одновременно появляются на свет, проводят брачный период длиною в один месяц и прекращают свое существование[29]. Группы самцов манящего краба (род
Что же касается людей, то синхронизацией занимаются именно женщины. Большинству женщин знакомо явление менструального синхронизма, суть которого заключается в том, что у сестер, женщин, проживающих в одной комнате, близких подруг или сотрудников, проводящих много времени вместе, менструальные циклы начинаются примерно в одно и то же время. Такой менструальный синхронизм, долгое время бывший скорее объектом для шуток, чем серьезного изучения, впервые был научно задокументирован Мартой Макклинток, в то время студенткой, обучавшейся в женском колледже Wellesley (штат Массачусетс) по специальности «Психология»[31]. Она провела исследование, объектом которого были 135 ее товарищей по учебе, попросив их на протяжении всего учебного года фиксировать даты начала своих менструальных циклов. В октябре менструальные циклы близких подруг и девушек, проживавших в одной комнате студенческого общежития, различались в среднем на 8,5 дня, но уже к марту среднее расхождение сократилось до 5 дней – статистически значимое сокращение. В контрольной группе, составленной из произвольно подобранных пар девушек, не удалось выявить каких-либо изменений.
Высказывались разные соображения относительно механизма синхронизации в этом случае, однако наиболее правдоподобная версия заключается в том, что это каким-то образом связано с феромонами, то есть неустановленными химическими веществами без запаха, которые каким-то путем передают сигнал синхронизации[32]. Первым подтверждением этой догадки стал эксперимент, о котором сообщил в 1980 г. биолог Майкл Рассел. Его коллега, Женевьева Свиц, обнаружила этот эффект в своей собственной жизни: проживая в течение всего лета в одной комнате с одной из своих подруг, она обратила внимание, что их менструальные циклы сблизились. После того как они расстались, их менструальные циклы рассинхронизировались. Из этого можно было заключить, что Женевьева – мощный синхронизатор. Рассел попытался выяснить, что же такого особенного в Женевьеве, что обеспечивает ей столь уникальное свойство. В ходе эксперимента она клала себе под мышки небольшие хлопчатобумажные прокладки, каждый день сдавая на анализ Расселу пот, накопившийся в этих прокладках. Рассел смешивал эти пробы пота с небольшим количеством спирта и делал мазок этой «эссенцией Женевьевы» на верхней губе женщин, согласившихся выполнять роль «подопытных» в этом эксперименте. Эти опыты проводились трижды в неделю на протяжении четырех месяцев.
Результаты эксперимента оказались впечатляющими. По истечении четырех месяцев менструальные циклы женщин, участвовавших в эксперименте, в среднем начинались с разницей 3,4 дня по сравнению с началом менструального цикла у Женевьевы, между тем как в начале эксперимента эта разница составляла в среднем 9,3 дня. С другой стороны, начало менструальных циклов женщин в контрольной группе (на верхние губы которых наносился лишь спиртовой раствор) существенно не изменилось. Совершенно очевидно, что какое-то вещество в потовых выделениях Женевьевы передавало информацию о фазе ее менструального цикла таким образом, что это увлекало за собой менструальные циклы других женщин, которые улавливали запах этого вещества.
Последующие исследования принесли не столь впечатляющие результаты. В некоторых из них были обнаружены статистические свидетельства синхронизма, в других – нет. Скептики восприняли эти противоречивые данные как свидетельство слабости или случайной природы данного явления. Недавняя работа Макклинток (в настоящее время она занимается исследованиями по биологии в Чикагском университете) свидетельствует об обратном – о том, что синхронизм менструальных циклов – это лишь наиболее заметное следствие более масштабного явления: химической связи/взаимодействия между женщинами[33]. В ходе эксперимента, проведенного в 1998 г., Макклинток вместе со своей коллегой Кэтлин Стем выяснила: если брать мазки из подмышек женщин в разные моменты их менструальных циклов и наносить эти мазки на верхние губы других женщин, то донорские секреции систематическим образом сдвигают фазу менструального цикла у реципиента. Мазки, взятые у женщин в начале их менструального цикла, в фолликулярной фазе до овуляции, обычно сокращали менструальные циклы женщин, которые получали эти мазки. Иными словами, овуляция у реципиентов происходила на несколько дней раньше, чем обычно. Напротив, мазки, взятые у женщин во время овуляции, продлевали менструальные циклы реципиентов. А секреции, собранные на лютеиновой фазе (фаза желтого тела яичника), в дни перед менструацией, не вызывали никаких изменений.
Наш вывод сводится к тому, что женщины в какой-либо сплоченной группе всегда оказывают воздействие на менструальные циклы друг друга, бессознательно участвуя в молчаливом общении феромонами. Одним из возможных последствий такого общения является синхронизм менструальных циклов. Но если принять во внимание, что такие феромональные сигналы могут либо сближать циклы, либо разводить их во времени в зависимости от того, в какой день месяца были сгенерированы эти сигналы, нет ничего удивительного в том, что в данном случае синхронизм не является неизбежным – должен также быть возможен асинхронизм или даже антисинхронизм (при котором менструальные циклы наступают в противофазе друг другу), что и наблюдается на практике.
Функция этого «химического диалога» остается для ученых загадкой. Возможно, что женщины подсознательно стремятся к тому, чтобы овуляция и зачатие происходили у них синхронно с подругами (чтобы получить возможность совместно выхаживать, родить и вскармливать детей) и в противофазе со своими недругами (чтобы избежать конкуренции с ними за ограниченные ресурсы). Сколь бы притянутыми за уши ни казались такие соображения, именно такой сценарий реализуется у других млекопитающих. Самки крыс в синхронизированной группе производят более многочисленное и здоровое потомство, чем то, которое приносит отдельно взятая самка крысы. Репродуктивный синхронизм обеспечивает преимущества всем, если другие самки в группе склонны к сотрудничеству.
С математической точки зрения данные, полученные Макклинток, подтверждают то, о чем вы, вероятно, уже догадываетесь: женщины, если их рассматривать как связанные осцилляторы, синхронизируют друг друга значительно слабее, чем светлячки. Биохимические взаимодействия между ними не всегда приводят их к синхронизму, в отличие от светлячков в Юго-Восточной Азии, которые синхронизируют свои мерцания ночь напролет, 365 дней в году. Неизбежный синхронизм этих светлячков (и клеток-ритмоводителей сердца) напрочь лишен гибкости, и именно по этой причине редко встречается в других биологических системах. Подобно женщинам, большинство осцилляторов достигают синхронизма в одних обстоятельствах и не достигают в других.
Таким образом, модель, рассмотренная нами ранее в этой главе, начинает выглядеть как чересчур упрощенная. Несмотря на то, что она помогла нам понять, почему синхронизм может оказаться неизбежным при определенных условиях, она зашла слишком далеко: она не учитывает всего остального. Уточненная теория связанных осцилляторов должна уметь предсказывать, будет ли синхронизироваться какая-то определенная группа осцилляторов; она должна также указывать нам, какие факторы являются решающими в этом отношении.
Эта теория должна также учитывать весь спектр способов взаимодействия между осцилляторами. Вспомните, что светлячки «подталкивают» друг друга внезапными импульсами – световыми ударами, – но затем игнорируют друг друга в оставшееся время своего цикла, тогда как женщины все время взаимодействуют с осцилляторами друг друга. В природе часто встречаются оба типа связи, но существующая модель учитывает лишь импульсы. Более совершенная модель должна распространяться и на непрерывное взаимодействие.
Кроме того, до сих пор мы предполагали, что все осцилляторы в данной популяции строго идентичны. Однако реальные осцилляторы не могут быть строго идентичны, а это означает, что фактическая длительность цикла у всех них тоже неодинакова. Точно так же, как длительность менструального цикла у одной женщины может составлять 25 дней, а у другой – 35 дней, все другие виды биологических осцилляторов характеризуются неким статистическим распределением длительностей цикла. Даже электронным и механическим осцилляторам, которые
К сожалению, эти нюансы порождают колоссальные математические трудности. Одно дело – желать более реалистичной модели, и другое – создать такую модель, поддающуюся интерпретации. Мы не сможем углубить свои познания, если используемая нами модель окажется такой же сложной, как и явление, которое описывает эта модель. Именно поэтому математическое моделирование является не только наукой, но и искусством: элегантная модель представляет собой идеальный компромисс между простотой и достоверностью. Сегодня мы располагаем прекрасной моделью синхронизма, в которой достигнут именно такой компромисс. Ее создание является результатом коллективного труда, который растянулся на три десятилетия и потребовал усилий трех первопроходцев, первый из которых был одним из самых прозорливых и оригинальных мыслителей XX столетия.
Глава 2. Мозговые волны и условия синхронизма
Норберт Винер никогда не был знаменитостью в полном смысле этого слова. Но когда в 1950-е годы была опубликована его книга «Кибернетика», она вызвала большие волнения среди читающей публики. Обозреватель газеты New York Times назвал эту книгу «основополагающей и сопоставимой по своей важности с трудами Галилея, Мальтуса, Руссо или Милля». Винер предложил единый подход к осмыслению проблем связи и управления, будь то системы нервных клеток или общества, животные или машины, компьютеры или люди[34]. В большей степени это было похоже на мечту, чем на законченную теорию, а выводы, сделанные Винером, были несколько скоропалительными и преждевременными. Сегодня никто не сказал бы, что его специальностью является кибернетика, однако первая половина слова «кибернетика» продолжает свою жизнь в качестве модного префикса в таких, например, словах, как «киберпространство» и «киберпанк».
Однако в научном мире имя Норберта Винера никогда не будет забыто по причинам как серьезным, так и не очень серьезным[35]. Что касается серьезных причин, то имя Норберта Винера увековечено в математической терминологии: винеровский процесс, теорема Пэли-Винера, метод Винера-Хопфа и т. д. Бывший вундеркинд, который в восемнадцать лет защитил диссертацию в Гарвардском университете, Норберт Винер совершил революцию в теории случайных процессов. Выполненный им анализ броуновского движения, хаотических перемещений молекул в растворе, оказался значительным шагом вперед по сравнению с интуитивным подходом Альберта Эйнштейна к решению той же проблемы, а предложенные им методы заложили фундамент для последующих работ Ричарда Фейнмана по квантовой электродинамике, а также для работ в области финансов, выполненных будущими лауреатами Нобелевской премии Фишером Блэком и Майроном Скоулзом.
Что же касается менее серьезной стороны, то математики любят пересказывать друг другу разные истории о Винере. Невысокого роста, похожий на колобка, всегда в очках с толстыми линзами и с неизменной сигарой в зубах, Винер обожал разъезжать по коридорам Массачусетского технологического института на своем уницикле – одноколесном велосипеде. Даже в профессии, обладатели которой не могут похвастаться своей любовью к спорту или здравому смыслу, Винер выделялся из общей массы. Когда ему не удалось нормально принять ни одной из многочисленных подач от своего партнера по теннисной партии, Винер предложил тому поменяться ракетками. Винер славился своей рассеянностью. Когда он вместе со своей семьей переезжал из Кембриджа в Ньютон (их новое место жительства), его жена выписала на листке бумаги их новый адрес и подробнейшим образом описала, как туда добраться из его офиса (она была уверена, что Норберт забудет об их переезде). Так и случилось. Винер использовал этот листок бумаги в качестве черновика для каких-то вычислений, выбросил его в корзину для мусора и по окончании работы вернулся в свой старый дом. Прибыв туда, он понял, что уже не проживает там, остановил на улице маленькую девочку и спросил, не знает ли она, куда переехало семейство Винеров. Она сказала: «Конечно, дедушка, знаю. Пойдем со мной».
Винер является одной из центральных фигур в науке о синхронизме. Частично это объясняется тем, что именно он сформулировал вопрос, который не отваживался поставить никто из ученых до него. До Винера математики довольствовались изучением систем лишь с двумя связанными осцилляторами. Винер взялся за изучение систем, включающих в себя миллионы осцилляторов. Еще более важным является, наверное, то обстоятельство, что Винер первым указал на повсеместность синхронизма во Вселенной. Стрекочущие сверчки, квакающие лягушки, мерцающие светлячки, интервалы в поясе астероидов, генераторы в энергосистеме – во всех этих системах Винер обнаружил синхронизм. Поверхностные различия не ввели его в заблуждение. Его интересовали глобальные принципы. Он полагал, что выявил один из таких принципов, когда размышлял над происхождением мозговых волн у человека.
В конце 1950-х годов никто не понимал, зачем мозг вообще излучает волны. Но несколькими десятилетиями ранее физиологи обнаружили, что если к разным точкам кожи на черепе человека подсоединить электроды, на электродах появляется очень небольшое напряжение, причем это напряжение изменяется во времени. После того как инженерам удалось разработать весьма чувствительные электронные усилители, появилась возможность автоматически представить эти микроскопические флуктуации напряжения, или «мозговые волны», в графическом виде на бумажной ленте. Устройство, использующееся для регистрации мозговых волн, называется электроэнцефалографом. (Такая же технология используется в тестах на детекторе лжи и для контроля работы сердца и должна быть знакома каждому, кто смотрел по телевизору репортажи из больниц.)
Специалисты по измерению мозговых волн (то есть по расшифровке электроэнцефалограмм) умеют распознавать в этих записях мозговой деятельности характерные картины. Одна картина, так называемый альфа-ритм, наблюдается у людей, которые бодрствуют, но пребывают в расслабленном состоянии, а их глаза закрыты[36]. Субъективно это ощущается как приятное состояние «отключения» от внешнего мира. На электроэнцефалограмме это выглядит как ярко выраженная осцилляция с частотой примерно 10 циклов в секунду.
Винер хотел изучить альфа-ритм гораздо подробнее, поскольку у него были кое-какие соображения по поводу того, какой может быть функция альфа-ритма. Винер полагал, что альфа-ритм является отражением работы некого задающего (или тактового) генератора, встроенного в мозг человека. Компьютеру необходим тактовый генератор, чтобы синхронизировать сигналы, которыми обмениваются между собой тысячи компонентов машины. Винер предположил, что мозг мог бы поступать аналогично и координировать миллиарды нейронов, заставляя их действовать в ритме, задаваемом неким «барабанщиком». Очевидно, отдельно взятые нейроны не могли выполнять такую функцию, поскольку были известны как слишком неточные осцилляторы, неспособные исполнять роль надежного тактового генератора. Винер выдвинул гипотезу, что мозг весьма изобретательно формирует точный тактовый генератор на основе огромного количества неточных тактовых генераторов. Он предположил, что в каком-то месте мозга могут быть сосредоточены миллионы специализированных осцилляторов, которые, возможно, являются отдельными нейронами или небольшими кластерами нейронов, причем все они разряжаются с частотой примерно 10 раз в секунду. Подобно любой другой биологической популяции, эти осцилляторы, несомненно, не идентичны: некоторые из них изначально действуют быстрее других, срабатывая 12 раз в секунду, тогда как другие, напротив, действуют медленнее, срабатывая лишь 8 раз в секунду; при этом большинство осцилляторов работают на частоте, близкой к средней, то есть к 10 циклам в секунду. Предоставленная сама себе, эта разнородная совокупность нейронных осцилляторов выдает импульсы с разными частотами, создавая электрическую какофонию, подобную звучанию оркестра во время настройки инструментов перед началом представления. Чтобы работать вместе как единый и слаженный часовой механизм, эти гипотетические осцилляторы должны координировать свои действия, чувствовать электрические ритмы друг друга и реагировать на них соответствующим образом.
Идея Винера заключалась в том, что эти осцилляторы должны самопроизвольно синхронизироваться, подстраивая част
Чтобы проверить, работает ли в действительности этот механизм «подтягивания» частот, Винер предложил отыскать характерные «отпечатки», которые он должен оставлять на альфа-ритме. В этом случае нам на помощь может прийти аналогия с политикой. Естественные частоты осцилляторов можно представлять себе как спектр политических взглядов в гипотетическом обществе. Крайне левые радикалы соответствуют крошечной совокупности осцилляторов, которые предпочитают работать на частоте, скажем, 8 циклов в секунду. Продвигаясь постепенно по нашему спектру вправо, мы встретим более многочисленную субпопуляцию либералов, работающих на частоте 9 циклов в секунду, доминирующее ядро центристов, работающих на частоте 10 циклов в секунду, затем натолкнемся на менее многочисленную группу консерваторов, работающих на частоте 11 циклов в секунду, и наконец – лишь небольшую горстку крайне правых радикалов, работающих на частоте 12 циклов в секунду. Положим для простоты, что диаграмма количества людей в каждой из перечисленных категорий представляет собой хорошо знакомую нам колоколообразную кривую, в которой доминирует мощный центр, и симметрично сходящую на нет по мере продвижения в правую или левую сторону от центра.
Имейте в виду, что такая картина отражает лишь тенденции, внутренне присущие системе политических взглядов. Это политические взгляды, которых придерживались бы люди (или част
А теперь предоставим возможность отдельным индивидуумам влиять друг на друга; допустим также (хотя политики лишь в редких случаях действуют подобным образом), что эти осцилляторы могут изменять свои частоты. В результате уговоров со стороны других осцилляторов медленный осциллятор можно убедить работать быстрее, а быстрый осциллятор можно убедить работать медленнее. Затем, если измерить весь этот спектр, окажется, что он уже не похож на колоколообразную кривую. Винер предположил, что он выглядел бы примерно так:
Чтобы уяснить специфическую форму этого графика, вспомним, что большинство осцилляторов поначалу работало вблизи середины колоколообразной кривой. Воздействуя на частоты друг друга, многие из них сместились в абсолютный центр, образовав мощный мейнстримный консенсус (высокий и узкий пик). Их совместное влияние на остальную популяцию оказалось достаточно сильным для того, чтобы оттащить ряд «умеренных» от левого и правого крыльев (еще больше увеличив высоту пика и понизив кривую на собственых позициях «умеренных», что привело к появлению «провисаний» по обе стороны от пика). Тем не менее достигнутый консенсус не был настолько убедительным, чтобы вытеснить большинство упрямых экстремистов на краях спектра (изображенных в виде плечей на обоих концах спектра).
Винер прогнозировал, что альфа-ритм продемонстрирует точно такой же специфический пик и двойное «проседание» в своем спектре частот. В таком случае это могло бы стать убедительным свидетельством идеи Винера о том, что причиной альфа-ритма является синхронизация между осцилляторами с разными естественными частотами. Чтобы удостовериться в своей правоте, Винеру нужно было придумать способ, с помощью которого он мог бы измерить такой спектр с небывалой точностью. В данном случае Винер намеревался использовать экспериментальный метод, который несколькими годами ранее изобрел его сотрудник Уолтер Розенблит, инженер по электротехнике из Массачусетского технологического института. Розенблит придумал способ, с помощью которого мозговые волны можно регистрировать на магнитной ленте, а не на бумаге; это означало, что полученные таким образом данные можно обработать электронным способом, выполнив первый в мире количественный анализ спектра мозговых волн. Все предшествующие работы носили качественный характер: они основывались на распознавании образов, субъективных суждениях специалистов, умеющих выявлять определенные картины, анализируя электроэнцефалограммы. Пользуясь методом, предложенным Розенблитом, соответствующие вычисления можно было автоматизировать, а процесс анализа сделать вполне объективным.
О полученных таким образом результатах Винер объявил в своей монографии, написанной в 1958 г., хотя его презентация носила подозрительно отрывочный, эскизный характер. Вместо того чтобы опубликовать фактические данные (как полагалось сделать согласно критериям, принятым в научном мире – если ученый собирался обнародовать данные, подтверждающие выдвинутую им гипотезу), он сделал приблизительный набросок измеренного спектра[37] – что-то наподобие графика, представленного выше на моем рисунке. Такие результаты показались слишком банальными и чересчур уж «правильными», чтобы быть похожими на правду. Складывалось впечатление, будто Винер что-то скрывает.
Однако его статья вовсе не заслуживала недоверия. Он утверждал, что «подтягивание» частот является универсальным механизмом самоорганизации, касающимся не только осцилляторов в мозге, но буквально всего в природе – как в живой, так и в неживой. Он настойчиво призывал биологов проводить эксперименты на лягушках, сверчках и даже на светлячках Юго-Восточной Азии задолго до появления в научной литературе статей об их синхронном мерцании. В 1961 г. он писал: «Не отваживаясь высказываться по поводу возможного исхода экспериментов, которые еще не проводились, я все же полагаю, что это направление исследований является весьма многообещающим и не слишком сложным»[38].
Его следующей задачей была разработка подробной теории «подтягивания» частот.
К сожалению, когда он попытался подкрепить свои догадки строгими математическими доказательствами, он столкнулся с непреодолимыми трудностями. Он представил ряд грубых рассчетов, но они выглядели весьма неуклюже и вели в никуда. Винер умер в 1964 г., так и не решив одну из важнейших для себя задач. Годом позже одному из студентов удастся найти правильный подход к ее решению.
В то время Арт Уинфри был старшим научным сотрудником в Корнельском университете и занимался технической физикой. Он давно мечтал стать биологом, однако вместо того чтобы идти к своей цели проторенным путем, он решил основательно пополнить багаж своих знаний по математике и физике, надеясь освоить новый для себя инструментарий. Электроника и компьютеры, квантовая механика и дифференциальные уравнения – этими инструментами биологи в то время, как правило, не пользовались.
Когда Уинфри размышлял над проблемой группового синхронизма, он думал о самих осцилляторах, а не просто об их частотах[39]. В этом отношении его концептуализация данной проблемы была гораздо более подробно разработанной, чем у Винера. Он не просто характеризовал каждый осциллятор частотой, на которой тот работает (его местоположением на политическом спектре, если вернуться к нашей предыдущей аналогии), а изображал его работу шаг за шагом, на протяжении всего цикла, что является, в конце концов, самым существенным для каждоно осциллятора. Это сразу же привело к сложностям, которые заставили бы опустить руки любого другого – только не Уинфри[40]. Преимущество молодости в том и состоит, что в эту пору жизни для вас нет почти ничего невозможного.
Свою модель он совершенно сознательно сделал приблизительной. Он намеревался сделать ее достаточно общей, чтобы ее можно было применить к
Запутанность этой проблемы обусловлена тем, что оба указанных свойства изменяются в течение цикла осциллятора: влияние и чувствительность являются функциями фазы. Например, цикл светлячка состоит из внезапной вспышки, затем следует интервал темноты (пока светлячок перезаряжает орган, который обеспечивает свечение), затем следует очередная вспышка и т. д. Эксперименты показали, что светлячки на приемном конце замечают вспышку другого светлячка, но игнорируют темноту. Поэтому в математическом описании, предложенном Уинфри, «функция влияния» должна изменяться в промежутке между двумя уровнями: высоким во время вспышки и близким к нулю во время темноты. Аналогично «функция чувствительности» показывает, как осциллятор реагирует на принимаемые им сигналы. Увидев вспышку в течение одной части своего цикла, светлячок может ускорить работу своего внутреннего таймера. Увидев точно такую же вспышку в течение какой-либо другой части цикла, светлячок может замедлить работу своего внутреннего таймера или вообще не влиять на его работу. Чтобы полностью охарактиризовать любой осциллятор в своей модели, Уинфри было достаточно использовать эти две функции. Выбрав эти две функции, можно было определить поведение осциллятора и как отправителя, и как получателя сигналов.
Чтобы сделать эти идеи как можно более конкретными, представим осциллятор в виде бегуна трусцой, бегущего по круговой дорожке стадиона. Разные места на этой дорожке представляют разные фазы цикла биологической активности осциллятора. Если дорожка представляет, например, менструальный цикл, то одна из ее точек соответствовала бы овуляции. Другая, соответствующая примерно половине длины дорожки, соответствовала бы менструации, а места между этими двумя точками соответствовали бы промежуточным гормональным событиям. После совершения одного круга бегун снова вернулся бы в точку овуляции. Или, если такая дорожка должна представлять ритм мерцания светлячка, разные ее места означали бы свечение как таковое, сопровождаемое разными стадиями биохимического восстановления, в ходе которого орган, отвечающий за свечение этого насекомого, перезаряжается и готовится к своему очередному свечению.
Если следовать подобной логике, то два связанных осциллятора будут похожи на двух бегунов, которые во время бега постоянно обмениваются между собой командами. Что именно они кричат друг другу и насколько громко они произносят эти слова, определяется их текущими местоположениями на дорожке: эта информация заключена в функции влияния, предложенной Уинфри. Если, например, величина функции влияния одного бегуна в данный момент мала и положительна, он кричит другому бегуну: «Беги, пожалуйста, немного быстрее». С другой стороны, высокое отрицательное значение функции влияния означает: «Ты бежишь слишком быстро. Помедленнее, пожалуйста!» А нулевое значение функции влияния вообще ничего не означает для партнера. С течением времени оба бегуна продолжают свой бег по дорожке, поэтому выкрикиваемые ими команды продолжают меняться от момента к моменту.
Такая картина носит слишком общий характер. Она может учитывать импульсные взаимодействия, используемые светлячками, сверчками и нейронами (аналогично внезапному крику, за которым следует молчание в течение остальной части цикла), или постоянное подталкивание и подтягивание феромонов, обнаруженное Макклинток и Стерном для менструального цикла (постоянно меняющаяся последовательность требований ускориться или замедлиться).
Между тем оба бегуна и прислушиваются к командам своего партнера, и выкрикивают их. Как именно они реагируют на поступающее сообщение, определяется другой функцией Уинфри – функцией чувствительности, которая также бывает разной в разных местах дорожки. Когда чувствительность оказывается высокой и положительной, бегун демонстрирует покладистость и выполняет любые инструкции, которые поступают ему в данный момент. Если же чувствительность равна нулю, он не обращает внимания на эти инструкции. А если чувствительность отрицательна, бегун поступает вопреки принимаемым им инструкциям: он ускоряется, когда от него требуют замедлиться, и наоборот. В данном случае модель также носит слишком общий характер, как и модель Пескина, которую мы обсуждали в предыдущей главе (она предполагала, что осцилляторы всегда продвигаются вперед, когда их подталкивает импульс). В модели Уинфри фазу осциллятора можно либо продвинуть вперед, либо задержать в зависимости от того, на каком этапе своего цикла этот осциллятор принял импульс. Эксперименты показали, что именно так ведут себя реальные биологические осцилляторы.
Для большей простоты Уинфри предположил, что все осцилляторы в данной популяции имеют одинаковые функции влияния и чувствительности. Но он допустил возможность разнообразия так же, как сделал до него Винер: он предположил, что естественные частоты осцилляторов распределены по всей популяции в соответствии с колоколообразной кривой. Если продолжить нашу аналогию с бегунами на дорожке стадиона, то такую популяцию осцилляторов следовало бы представить в виде клуба любителей бега трусцой, тысячи членов которого вышли одновременно на беговую дорожку. Большинство этих бегунов бегут с некой средней скоростью, но в клубе есть несколько очень быстрых ребят, которые еще в школьные годы блистали на беговой дорожке, и некоторое число «тюфяков», которые после многих лет, в течение которых они вели малоподвижный образ жизни, пытаются восстановить свою былую форму. Другими словами, мы имеем дело с неким распределением естественных способностей членов клуба бегунов точно так же, как мы имеем дело с неким распределением естественных частот осцилляторов в данной биологической популяции.
Будто перечисленных выше сложностей оказалось недостаточно, нам необходимо определить еще один, последний аспект этой модели: связи между осцилляторами. Уинфри пришлось сделать предположение относительно того, кто кому кричит и кто кого слушает. Здесь наблюдается довольно широкий разброс – все зависит от того, какой биологический пример мы имеем в виду. Возьмем, к примеру, циркадные (околосуточные) ритмы. В этом случае Уинфри предположил возможность существования «стыковочных» клеток, рассредоточенных по всему телу; каждая из таких клеток в ходе суточного цикла выделяет в кровоток определенные химические вещества. Каждая клетка организма омывается смесью выделений всех остальных клеток; по сути, каждая клетка взаимодействует со всеми другими клетками. С другой стороны, сверчки уделяют наибольшее внимание сигналам, поступающим от их непосредственных соседей. А в случае осциллирующих нейронов в мозге такой клубок взаимосвязей оказался невероятно сложным.
Признав, что решить проблему связи между осцилляторами было бы невероятно трудно, Уинфри попытался уклониться от вопросов связи и решить простейший вариант этой задачи[41]. Что произойдет, размышлял он, если каждый осциллятор подвергается
Уинфри составил уравнения для своей системы осцилляторов, описывающие, как быстро каждый из этих осцилляторов будет проходить свой цикл. В любом случае скорость осциллятора определяется тремя факторами: предпочтительным для него темпом, который пропорционален его естественной частоте; его текущей чувствительностью к любым внешним воздействиям (которая зависит от того, в какой точке своего цикла он находится в данный момент); и совокупным влиянием, оказываемым всеми остальными осцилляторами (которое зависит от того, в какой точке своего цикла находятся все эти осцилляторы). Это поистине колоссальный объем «математической бухгалтерии», но, в принципе, поведение такой системы в целом на протяжении всего времени определяется текущими местоположениями всех осцилляторов. Иными словами, полное знание текущего момента позволяет полностью предсказать будущее – по крайней мере в принципе.
Соответствующее вычисление осуществляется методически. Зная текущие местоположения всех осцилляторов, мы можем с помощью уравнений Уинфри вычислить их мгновенные скорости. Эти скорости говорят нам о том, как далеко каждый из осцилляторов продвинется на следующем этапе. (Мы исходим из того, что этап представляет собой очень короткий интервал времени и что в течение этого времени все осцилляторы продвигаются неуклонно. В этом случае расстояние, преодолеваемое каждым осциллятором за время цикла, равняется его скорости, умноженной на время цикла.) Таким образом, все осцилляторы могут теперь продвинуться к своим новым фазам, а указанное вычисление повторяется снова и снова, каждый раз продвигаясь вперед на один этап. Если итерации этого процесса выполнять достаточно долго, то, по крайней мере концептуально, мы увидим, какая судьба ожидает эту совокупность осцилляторов.
То, что я только что описал, называется системой дифференциальных уравнений. С такими уравнениями нам приходится иметь дело каждый раз, когда правила для скоростей зависят от текущих положений. Задачи, подобные этой, изучаются еще со времен Исаака Ньютона (поначалу в связи с движением планет в Солнечной системе). В этом случае каждая планета притягивает все другие планеты, изменяя их местоположения, что, в свою очередь, изменяет гравитационные силы, действующие между ними, и т. д. – зеркальное отражение, во многом похожее на осцилляторы Уинфри с их постоянно изменяющимися фазами, а также с их силами воздействия и чувствительностью. Ньютон изобрел дифференциальное исчисление именно для решения сложных проблем, подобных рассматриваемой нами. Являясь автором одного из величайших достижений западной науки, он решил так называемую «задачу о двух телах» и доказал, что орбита Земли вокруг Солнца является эллиптической, как было предсказано Кеплером до него. Интересно, однако, что «задача о трех телах» оказалась совершенно неподъемной. На протяжении двух столетий лучшие математики и физики мира пытались найти формулы, описывающие движение трех притягивающих друг друга планет, но лишь в конце XIX века французский математик Анри Пуанкаре доказал тщетность таких попыток: таких формул нет и быть не может.
С тех пор мы осознали, что большинство систем дифференциальных уравнений не имеет решения в том же самом смысле: невозможно найти формулу, которая позволяла бы получить ответ. Однако существует одно замечательное исключение: для линейных дифференциальных уравнений есть решение. Технический смысл слова
Проблема, однако, в том, что линейным системам присуще лишь весьма примитивное поведение. Распространение инфекционных заболеваний, сильная когерентность лазерного луча, взбаламученное движение турбулентной жидкости – все эти явления описываются
Таким образом, вряд ли приходится удивляться тому, что когда Уинфри взглянул на свои дифференциальные уравнения для биологических осцилляторов, он увидел, что они нелинейны. Все линейные методы, о которых ему рассказывали на лекциях по физике и прикладным дисциплинам, в данном случае были неприменимы: он никогда не сможет найти формулы для решения этой задачи. Что же касается нелинейных методов, то те немногие, которые имелись в его распоряжении, были пригодны лишь для очень небольших систем, таких как отдельно взятый осциллятор или два связанных осциллятора. Для задачи, решение которой он пытался найти (динамика популяции, насчитывающей тысячи нелинейных осцилляторов, взаимодействующих между собой), нужно было придумать особый подход.
Чтобы имитировать работу своей модели, Уинфри использовал компьютер. То есть вместо использования чисто математического аппарата ему предстояло провести что-то наподобие эксперимента. Компьютер должен был отслеживать поведение осцилляторов по мере прохождения ими цикла за циклом с их переменными скоростями. Машине было все равно, о каких объектах – линейных или нелинейных – идет речь. От нее лишь требовалось постепенно, шаг за шагом, продвигаться вперед, обеспечивая достаточно надежную аппроксимацию истинного поведения модели, предложенной Уинфри. Уинфри надеялся, что полученные результаты подскажут ему, как должны вести себя осцилляторы. По крайней мере он мог бы увидеть, что должно происходить, даже если ему было не вполне понятно, почему это происходит именно так, а не иначе.
Вообще говоря, легко понять один ограниченный случай. Если осцилляторы полностью игнорируют друг друга, они распределяются по всей круговой дорожке, поскольку каждый из них «бежит» с предпочтительной для себя скоростью, а остальные осцилляторы не влияют на него. Более быстрые осцилляторы перегоняют более медленные осцилляторы и со временем обгоняют их на целый круг. На достаточно продолжительном отрезке времени осцилляторы будут распределены по всей дорожке. Говорят, что такая система некогерентна. Это похоже на то, как аплодируют зрители на концертах в Америке. Каждый из американских зрителей аплодирует сам по себе, не обращая внимания на соседей, – в том ритме, который подходит именно для него. В совокупности это похоже на устойчивый аритмичный шум.
Эксперименты с имитацией, проводившиеся Уинфри, зачастую приносили результаты, напоминающие именно этот вид некогерентности, даже когда осцилляторам
Но в случае других пар функций чувствительности и влияния Уинфри обнаружил, что эта популяция самопроизвольно синхронизируется. Какими бы ни были начальные фазы осцилляторов, некоторые из них всегда слипались в прочный ком и бежали круг за кругом дружной компанией. В этом случае популяция вела себя подобно восточноевропейской зрительской аудитории, которая совершает синхронные хлопки без каких-либо видимых подсказок.
В подобных случаях синхронизация наступала в результате «сотрудничества» осцилляторов. Как только несколько осцилляторов входили в синхронизм (возможно, по чистой случайности), их совместные, когерентные «выкрики» начинали выделяться на фоне остального шума и оказывать более сильное влияние на все остальные осцилляторы. Это ядро начинало вербовать в свои ряды другие осцилляторы, в результате чего оно разрасталось и усиливало свой сигнал. Результирующий процесс положительной обратной связи приводил к самопроизвольному, все более ускоряющемуся процессу синхронизации, в ходе которого многие осцилляторы стремились присоединиться к формирующемуся консенсусу. Тем не менее некоторые осцилляторы оставались несинхронизированными, поскольку их естественные частоты слишком выбивались из общего ряда, чтобы их можно было вовлечь в процесс установления синхронизма. В конечном счете популяция разделялась на синхронизированную совокупность и дезорганизованную группу осцилляторов-экстремистов.