Стивен Строгац
Ритм Вселенной. Как из хаоса возникает порядок
© Steven Strogatz, 2004
© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2017
Посвящается Арту Уинфри, наставнику, источнику вдохновения и другу
Предисловие
В сердце Вселенной ощущается постоянное, неуклонное биение: звучание синхронизированных циклических процессов. Это биение буквально пропитывает природу на всех уровнях, начиная с атомного ядра и заканчивая космосом. Каждый вечер вдоль приливных рек Малайзии тысячи светлячков собираются в мангровых лесах и мерцают в унисон, причем в их среде нет какого-либо лидера или внешнего источника, который задавал бы ритм этого мерцания. Триллионы электронов маршируют в ногу в сверхпроводнике, обеспечивая совершенно беспрепятственное прохождение тока по нему: сопротивление сверхпроводника оказывается равным нулю. В Солнечной системе гравитационный синхронизм может приводить к выбрасыванию огромных валунов из пояса астероидов в направлении Земли: считается, что катастрофическое столкновение одного такого метеорита с Землей погубило динозавров. Даже человеческое тело представляет собой симфонию, поддерживаемую скоординированным срабатыванием тысяч клеток, задающих ритм сокращений сердца человека. В каждом случае эти «подвиги» синхронизма происходят спонтанно, как если бы сама природа проявляла сверхъестественное, необъяснимое стремление к порядку.
С давних пор это явление представляет для ученых неразрешимую загадку: существование спонтанного порядка во Вселенной ставит их в тупик. На первый взгляд, законы термодинамики диктуют обратное: подчиняясь им, природа должна была бы неуклонно деградировать в сторону все большего беспорядка, все большей энтропии. Однако мы наблюдаем вокруг себя множество величественных структур – галактики, клетки, экосистемы, людей, – которым удается каким-то образом собирать самих себя. Эта загадка не дает покоя научному сообществу и в наши дни.
Лишь в очень немногих ситуациях у нас есть понимание того, каким образом порядок возникает сам по себе. Первой из таких ситуаций был особый вид порядка
Поначалу может показаться, что здесь, вообще говоря, нечего объяснять. Вы можете договориться со своим приятелем встретиться в ресторане, и если оба вы достаточно пунктуальны, то ваше появление в ресторане будет синхронизированным. Столь же тривиальный вид синхронизма запускается реакцией на какой-либо общий стимул. Стая голубей, напуганных громким звуком из выхлопной трубы автомобиля, поднимется в воздух практически одновременно, причем в течение какого-то времени они могут даже синхронно взмахивать своими крыльями, однако это происходит лишь потому, что все они одинаково реагируют на один и тот же звук. Невозможно ведь подозревать, что голуби каким-то образом договорились между собой о ритме взмахов крыльями; к тому же синхронность их действий пропадает уже спустя несколько секунд после взлета. Другие виды кратковременного синхронизма могут возникать по чистой случайности. Воскресным утром колокола двух разных церквей могут случайно зазвонить в одно и то же время, и этот синхронизм будет поддерживаться в течение какого-то (непродолжительного) времени, после чего они начнут звонить вразнобой. Еще одна возможная ситуация: сидя в своем автомобиле на перекрестке в ожидании разрешающего сигнала светофора, вы можете заметить, что указатель поворота автомобиля, стоящего впереди вас, мигает практически синхронно с указателем поворота вашего автомобиля – и так может продолжаться в течение нескольких секунд. Такой синхронизм является чистой случайностью и его обсуждение не представляет для нас никакого интереса.
Несомненный интерес представляет для нас синхронизм, сохраняющийся длительное время. Когда два события наступают одновременно и этот синхронизм поддерживается в течение долгого времени, то говорить о случайном характере такого синхронизма уже не приходится. Более того, в силу каких-то причин такой непрекращающийся синхронизм доставляет нам, людям, удовольствие. Нам нравится танцевать вместе, петь хором, играть в оркестре. В своей наиболее утонченной форме постоянный синхронизм может представлять собой поистине захватывающее зрелище, как, например, солдаты, марширующие на воинском параде, или выступления команд на соревнованиях по синхронному плаванию. Ощущение высокого исполнительского мастерства усиливается, когда зрители не знают, каких очередных чудес синхронизма им стоит ожидать в следующий момент времени. Мы интерпретируем постоянный синхронизм как признак кропотливого труда, высокого мастерства, точного планирования и хореографического искусства.
Но когда синхронизм наблюдается между неодушевленными объектами, наподобие электронов или биологических клеток, это кажется почти невероятным. Удивительно наблюдать совместные действия живых существ – тысяч светлячков, стрекочущих в унисон летней ночью, или косяков рыб, совершающих одинаковые элегантные волнообразные движения, – но еще более удивительно видеть скопления неодушевленных объектов, которые сами по себе совершают синхроные действия. Эти явления столь необъяснимы, что кто-то даже отказывается верить в их существование, приписывая их иллюзиям, случайным совпадениям или ошибкам восприятия. Другие же попросту впадают в мистицизм, пытаясь объяснить синхронизм действием сверхъестественных сил космоса.
Буквально до последнего времени изучением синхронизма занимались энтузиасты-одиночки – биологи, физики, математики, астрономы, инженеры и социологи, – каждый из которых замыкался в своей узкой области знаний, действуя по независимым друг от друга (на первый взгляд) направлениям исследования. Мало-помалу на основе фрагментарных представлений, выработанных в этих и других узких дисциплинах, начала формироваться наука о синхронизме. Эта новая наука сосредоточивается на изучении так называемых «связанных осцилляторов». Группы светлячков, планет или клеток-задатчиков ритма представляют собой совокупности осцилляторов – объектов, автоматически совершающих циклические действия, то есть действия, повторяющиеся снова и снова через более или менее регулярные интервалы времени. Светлячки мигают, планеты движутся по определенным орбитам, клетки-задатчики ритма (ритмоводители сердца) срабатывают одновременно. Говорят, что два или большее число осцилляторов связаны между собой, если некий физический или химический процесс позволяет им влиять друг на друга. Светлячки взаимодействуют между собой с помощью света. Планеты влияют друг на друга посредством силы гравитации. Клетки сердца передают туда и обратно электрические импульсы. Как следует из этих примеров, природа использует каждый доступный ей канал, чтобы предоставить возможность своим осцилляторам взаимодействовать друг с другом. Результатом такого взаимодействия зачастую оказывается синхронизм, при котором все осцилляторы начинают действовать одинаково.
Тем из нас, кто работает в этой зарождающейся области науки, задают примерно одни и те же вопросы. Как именно связанные осцилляторы синхронизируют свои действия – и при каких условиях? Когда такой синхронизм оказывается невозможным, а когда он оказывается неизбежным? Какие другие способы организации могут возникнуть, когда синхронизм пропадает? И какими могут быть практические применения знаний, которые накапливаются в этой области науки?
Эти вопросы волнуют меня на протяжении последних двадцати лет – сначала как выпускника Гарвардского университета, затем как профессора прикладной математики в Массачусетском технологическом институте и Корнельском университете, где я по сей день занимаюсь преподавательской и исследовательской деятельностью в области теории сложности и хаоса. Однако интерес к изучению циклических процессов возник у меня еще раньше, когда в бытность мою студентом-первокурсником меня посетило озарение. Для одного из первых научных экспериментов м-р Ди Курцио вручил каждому из нас по секундомеру и маленькому игрушечному маятнику, который представлял собой хитроумное устройство с выдвижным («телескопическим») стержнем, длину которого можно было пошагово регулировать; это устройство напоминало старые модели подзорных труб, которые вы наверняка видели в фильмах про пиратов. Наша задача заключалась в изменении периода колебаний маятника – времени, которое требуется для совершения одного полного колебания маятника, – и вычислении зависимости периода колебаний маятника от длины стержня, на котором он крепится. Иными словами, нам предстояло выяснить, как поведет себя маятник при удлинении стержня: станет колебаться быстрее, медленнее или период его колебаний останется прежним. Чтобы ответить на этот вопрос, мы «настроили» наши маятники на минимальную длину, измерили период его колебаний и отобразили результат на листе бумаги, разлинованном в клетку. Затем мы несколько раз повторили эксперимент, каждый раз увеличивая длину стержня на одно деление. Когда я отобразил на листе бумаги четвертую или пятую точку своего будущего графика, я заметил, что он похож на параболическую кривую. Оказалось, что колебания маятника подчиняются параболическому закону. (Что представляет собой парабола, мне было известно из курса алгебры.) Сделав это открытие, я испытал смешанные чувства удивления и страха. На меня снизошло озарение: я узнал о существовании тайного и восхитительного мира, который можно было исследовать лишь математическими методами. Я влюбился в этот мир буквально с первого взгляда; со временем мое восхищение этим миром лишь окрепло.
С тех пор прошло тридцать лет, но я по-прежнему очарован математической природой окружающего нас мира и особенно циклическими процессами, происходящими в нем (например, периодическими колебаниями маятника). Однако меня занимает изучение не столько какого-либо отдельно взятого колебательного процесса, сколько большой совокупности колебательных процессов, происходящих одновременно, то есть изучение упоминавшихся выше связанных осцилляторов. Со временем мне удалось разработать достаточно простые модели, которые, тем не менее, можно использовать для описания очень сложных совокупностей объектов. Разработанные мною идеализированные системы уравнений с достаточной степенью точности моделируют групповое поведение светлячков или сверхпроводников. Я пытаюсь использовать вычислительные методы и компьютеры, чтобы понять, как из хаоса рождается порядок. Эти загадки особенно интересны для меня тем, что являются, образно говоря, передним краем математики. Два связанных осциллятора не представляют собой проблемы: их поведение было изучено еще в начале 1950-х годов. Но когда речь идет о сотнях и тысячах связанных осцилляторов, наука по-прежнему бессильна. Нелинейная динамика систем со столь большим количеством переменных все еще недосягаема для нас. Даже наличие суперкомпьютеров не помогает нам описать коллективное поведение гигантских систем осцилляторов.
И все же благодаря объединенным усилиям математиков и физиков всего мира за последнее десятилетие нам удалось описать один специальный случай связанных осцилляторов, что открыло путь к более глубокому пониманию феномена синхронизма. Если предположить, что все осцилляторы в данной группе почти идентичны и что они в одинаковой степени связаны между собой, то их динамика поддается математической трактовке. В частях I и II этой книги я рассказываю о том, как моим коллегам и мне удалось решить этот класс теоретических проблем и
Настоящая книга представляет собой попытку синтезировать значительный объем знаний по этому предмету, которые были накоплены учеными, работавшими в разных дисциплинах, на разных континентах и даже в разных столетиях. Наука, которая пыталась изучить явление синхронизма, основывается на работах ряда выдающихся умов XX столетия, многие из которых известны едва ли не каждому из нас, тогда как другие
Мое имя тоже связано с исследованиями, которые внесли определенный вклад в это новое научное направление. Разумеется, я не питаю никаких иллюзий относительно своего места в истории, но хочу лишь рассказать читателям о том, что представляет собой работа в научной сфере: долгое блуждание впотьмах, непростой путь к научному открытию, изобилующий ошибками и разочарованиями, радость открытия, превращение студента в начинающего научного работника, а затем и в наставника молодых ученых. Пытаясь донести до самого широкого круга читателей мысль о необычайной важности математики в современной науке, я старался избегать в своей книге математических формул и полагался исключительно на метафоры и образы из повседневной жизни, иллюстрирующие ключевые идеи математики.
Надеюсь, читатели разделят мое восхищение необычайным многообразием синхронизма в окружающем нас мире и способностью математики объяснить его. Синхронизм – не только загадочное, но и восхитительное явление. Загадочное – потому что синхронизм, на первый взгляд, не считается с законами физики (хотя в действительности он базируется на этих законах – зачастую весьма оригинальными способами). С другой стороны, синхронизм приводит меня в восхищение, поскольку он порождает что-то наподобие космического балета – представления, которое разыгрывается на самых разнообразных сценах, начиная с человеческого тела и заканчивая Вселенной в целом. В то же время невозможно переоценить важность синхронизма. Наше базовое понимание синхронизма уже породило такие технологические чудеса, как глобальная система позиционирования, лазер и самые чувствительные в мире детекторы, используемые в медицине без хирургического вмешательства для определения точного местонахождения поврежденных тканей в мозге человека, страдающего эпилепсией; в технике – для поиска мельчайших трещин в крыльях самолета; в геологии – для поиска месторождений нефти, скрывающихся глубоко под землей. Выясняя, что происходит в случае, когда синхронизм нарушается, математики помогают кардиологам найти причину фибрилляции, смертельно опасной аритмии, которая ежегодно уносит жизни сотни тысяч людей – внезапно и без предупреждения, даже тех, кто ранее не жаловался на проблемы с сердцем. И это лишь один пример возможностей, которыми мы сейчас располагаем благодаря нашему растущему, но все еще находящемуся в зачаточном состоянии пониманию синхронизма.
Я глубоко благодарен судьбе за возможность на протяжении всей моей карьеры работать со многими блестящими и творческими умами. Исследования, о которых рассказывается в этой книге, выполнялись в тесном сотрудничестве с моими консультантами Артом Уинфри, Ричардом Кронауером, Чаком Чейслером и Нэнси Копелл; моими научными сотрудниками Ренни Миролло, Полом Мэтьюзом, Куртом Визенфельдом, Джими Свифтом, Кевином Куомо, Элом Оппенгеймом и Тимом Форрестом; а также моими бывшими студентами Синьей Ватанабе и Дунканом Уоттсом. Благодарю вас за то, что были мне надежными спутниками во время нашего нелегкого путешествия в дебри синхронизма.
Другие ученые помогли улучшить эту книгу. Джек Кауен поделился со мной приятными воспоминаниями о совместной работе с Норбертом Винером в Массачусетском технологическом институте в конце 1950-х годов и познакомил меня с малоизвестной, но глубоко человечной историей, связанной с открытием двойного спектра. Лу Пекора подробно рассказал мне о том, как вместе с Томом Кэрролом он пришел к открытию синхронизированного хаоса. Джим Торп с присущими ему мудростью и мягким юмором ответил на мои вопросы относительно силовой сетки. Седрик Лангборт любезно перевел для меня письма Гюйгенса о взаимовлиянии часов. Джо Бернс, Эрик Герцог, Крис Лобб, Чарли Маркус, Радж Рой и Джо Такахаси предложили чрезвычайно ценные комментарии к ранним наброскам текста этой книги. Марджи Нельсон с присущим ей сочетанием научного суждения и художественного таланта подготовила иллюстрации. Хочу выразить особую признательность Арту Уинфри за его глубокие и остроумные идеи по поводу синхронизма, а главное – за его поистине героические усилия по прочтению этого манускрипта от корки до корки, несмотря на крайне сложные обстоятельства, которые сопутствовали этому чтению.
Выражаю благодарность Линди Уильямс, Стивену Тайену, Герберту Хьюи, Тому Гиловху и всем остальным моим друзьям, которые заботливо оберегали автора этой книги от невзгод и проблем, навалившихся на него на ранних стадиях подготовки книги к публикации; Карин Дашифф Гилович, которая помогала мне обрести собственный голос; а также Алана Алда – моего незаменимого партнера по сеансам мозгового штурма, который научил меня, как нужно подходить к творческому процессу. (Правда, мне не удалось воспользоваться его советом относительно того, как написать первый черновой вариант книги за один присест. Может быть, это удастся мне в следующий раз…)
Мои коллеги в Корнельском университете, в частности Ричард Рэнд и заведующий моего отдела Тим Хили, обеспечивали мне моральную поддержку в течение всего изнурительного процесса написания этой книги и были очень внимательны ко мне, когда видели, что мои мысли витают где-то далеко-далеко. Благодарю вас, коллеги, за понимание.
Мои литературные агенты Катинка Мэтсон и Джон Брокман чутко и с огромным энтузиазмом реагировали на каждое мое обращение. Джон предложил мне общее направление этой книги, как только услышал от меня ее описание. Катинка заботливо наставляла меня относительно всех аспектов процесса написания книги, начиная с составления плана и заканчивая публикацией.
Писателю трудно даже мечтать о лучшем издательском коллективе, чем коллектив издательства Hyperion Books. В частности, сотрудница редакции Кайра Гепфорд была неизменно любезна, оптимистично настроена и эффективна. Художественный редактор Фил Роуз придумал запоминающуюся и красивую обложку, которая, на мой взгляд, уловила самую суть синхронизма. Выражаю огромную благодарность своему редактору, Уиллу Швальбе, чей острый глаз, хороший вкус и ощущение структуры улучшили мою книгу во многих отношениях. Его неослабевающий энтузиазм по отношению к данному проекту побуждал меня к энергичным действиям в те моменты, когда это было особенно необходимо.
Хочу также поблагодарить членов своей семьи за их любовь и моральную поддержку, особенно это относится к моему отцу, который всегда был на моей стороне, подбадривал, улыбался и старался вселить в меня оптимизм. Невероятная самоотверженность моей тещи, Ширли Шиффман, дала мне возможность подолгу засиживаться за своей книгой, не чувствуя угрызений совести за то, что не уделяю достаточного внимания моим маленьким дочерям. Благодарю вас, мои крошки: Ли – за то, что, научившись ходить, вернула меня к действительности, и Джоанну – за то, что родилась в самый подходящий момент – не слишком рано и не слишком поздно. Моя жена, Кэрол, проявляла свою любовь всеми доступными ей способами, выслушивая меня, читая мои рукописи, уговаривая и прощая меня, подсказывая, как нужно писать, в каких случаях следует развить мысль, а в каких – сократить текст. Ее душевная щедрость предоставила мне возможность полностью погрузиться в процесс написания книги.
Наконец, мне хотелось бы поблагодарить граждан Соединенных Штатов за их доверие и дальновидность. Поддерживая американские исследовательские учреждения посредством таких организаций, как Национальный научный фонд, налоги, выплачиваемые гражданами Соединенных Штатов, обеспечивают ученым самое ценное из того, что они могли бы желать, – возможность следовать за своим воображением туда, куда оно только может завести их. Надеюсь, вы получаете такое же удовольствие от наших открытий, какое получаем мы сами.
Часть I. Жизнь в синхронизме
Глава 1. Светлячки и неизбежность синхронизма
«Примерно двадцать лет тому назад я увидел – или мне показалось, что увидел – синхронное, или одновременное, мерцание светлячков. Я не мог поверить своим глазам, поскольку возможность такого явления среди насекомых, несомненно, противоречит любым законам природы»[1].
Эти слова Филип Лорен опубликовал в журнале Science в далеком 1917 году, когда он присоединился к дискуссии об этом необъяснимом явлении. На протяжении трехсот лет западные путешественники, побывавшие в Юго-Восточной Азии, рассказывали легенды о колоссальных скоплениях на берегах рек светлячков (протяженность этих скоплений достигала нескольких миль), мерцающих в унисон[2]. Эти истории о синхронно мерцающих светлячках, зачастую изложенные в весьма романтическом стиле, характерном для авторов книг о путешествиях в дальние страны, вызывали скепсис у очень многих читателей. Возможно ли, чтобы тысячи светлячков координировали свое мерцание со столь высокой точностью и на столь обширном пространстве? Тогда Филип Лорен был уверен, что ему удалось разрешить эту загадку: причиной этого очевидного явления, по его мнению, были непроизвольные движения век наблюдателя, то есть их внезапное закрывание и открывание, а насекомые не имели к этому никакого отношения.
В период между 1915 и 1935 гг. журнал Science опубликовал еще 20 статей[3], посвященных этой загадочной форме массового синхронизма. Кто-то из ученых трактовал это явление как случайное, мимолетное совпадение. Другие объясняли это необычными атмосферными условиями: сочетанием очень высокой влажности, абсолютного безветрия или темноты. Кто-то полагал, что тут не обошлось без некоего «дирижера»[4] – светлячка, который руководит действиями всех остальных своих собратьев. Как написал в 1918 г. Джордж Хадсон, «если необходимо, чтобы группа людей выполняла определенные действия, подчиняясь заданному ритму, то у этой группы людей не только должен быть лидер, но они должны быть обучены выполнять указания этого лидера… Можно ли поверить в то, что этим насекомым присуще более совершенное чувство ритма, чем наше собственное?» Натуралист Хью Смит, который жил в Таиланде с 1923 по 1934 гг. и многократно наблюдал это явление, с раздражением отмечал, что «некоторые из опубликованных объяснений производят большее впечатление, чем само описываемое явление»[5]. Однако и он признал, что не в состоянии предложить какую-либо более убедительную версию.
В течение нескольких десятилетий никто не мог сформулировать достаточно правдоподобную теорию, которая проливала бы свет на это загадочное явление. Лишь в 1961 г. Джой Адамсон в продолжении своей повести Born Free («Рожденная свободной») удивлялась тому же явлению, которое она наблюдала на африканском континенте[6] (кстати, ее описание синхронного мерцания светлячков на африканском континенте является первым).
…полоса света шириною около десяти футов, образованная тысячами тысяч светлячков, зеленое фосфоресцирующее свечение которых создает восхитительный по красоте покров на высокой, по пояс, траве… Флуоресцирующая полоса, созданная этими крошечными организмами, раз за разом вспыхивает и погасает с поразительной по своей точности синхронностью. Остается лишь удивляться, какими средствами коммуникации должны обладать эти крошечные существа, чтобы они могли координировать свое мерцание так, словно ими управляет некое механическое устройство.
К концу 1960-х годов из отдельных фрагментов этого пазла начала вырисовываться некая картина. Одна из подсказок была столь очевидной, что почти никто не обратил на нее внимания. Синхронные светлячки мерцали не только в унисон – они мерцали в определенном
Вторая подсказка содержится в работе биолога Джона Бака, который сделал больше, чем кто-либо другой, чтобы обеспечить научную достоверность исследований, пытающихся объяснить синхронизм действий светлячков. В середине 1960-х годов Джон Бак вместе со своей женой Элизабет впервые отправился в Таиланд в надежде увидеть собственными глазами это загадочное явление. В ходе неформального, но весьма полезного эксперимента супруги выловили на берегах рек в окрестностях Бангкока множество светлячков и выпустили их в своем гостиничном номере, предварительно затемнив его[8]. Насекомые повели себя весьма нервно, но затем постепенно распространились по стенам и потолку, находясь друг от друга на расстоянии не менее 10 сантиметров. Поначалу они мерцали вразнобой. Вскоре супруги Бак, в молчаливом удивлении наблюдавшие за светлячками, заметили, что сперва пары, а затем и тройки светлячков начали мерцать в унисон. Группы синхронно мерцающих светлячков становились все больше и больше.
Из этих наблюдений следовало, что светлячки должны как-то «настраивать» свои ритмы в ответ на мерцания других светлячков. Чтобы непосредственно протестировать эту гипотезу, Бак и его коллеги провели впоследствии лабораторные исследования[9], в ходе которых они создавали для светлячка мерцание искусственным светом (имитируя таким образом свечение другого светлячка) и наблюдали за его реакцией. Они обнаружили, что отдельно взятый светлячок корректирует моменты своих последующих мерцаний вполне определенным, предсказуемым образом и что величина и направление такой коррекции зависит от того, в какой момент цикла было воспринято внешнее воздействие. У некоторых видов светлячков внешнее воздействие всегда смещало ритм подопытного светлячка несколько вперед, словно переводя стрелки его внутренних часов вперед, тогда как у других видов светлячков внешнее воздействие смещало ритм подопытного светлячка либо несколько вперед, либо несколько назад в зависимости от того, насколько подопытный светлячок был близок к тому, чтобы мигнуть (одно дело, если светлячок был буквально на грани очередного мигания, и другое – если он был лишь на полпути к очередному миганию).
Взятые вместе, эти две подсказки предполагали, что ритм мерцания регулируется внутренним, перенастраиваемым осциллятором[10]. А это непосредственно указывало на возможное существование некого механизма синхронизации: каждый из членов сообщества мерцающих светлячков непрерывно посылает и принимает сигналы, смещая ритмы других светлячков и смещая собственный ритм в результате воздействия с их стороны. Из всей совокупности таких взаимовлияний каким-то образом спонтанно возникает синхронизм.
Таким образом, мы приходим к объяснению, которое казалось немыслимым лишь несколько десятков лет тому назад: светлячки организуют сами себя. Им не нужен дирижер, и погода не имеет значения для них. Синхронизм возникает за счет взаимообмена сигналами – точно так же, как участники оркестра могут добиться идеальной синхронности своих действий без помощи дирижера. Правда, в случае светлячков исследователей ставит в тупик то обстоятельство, что для обеспечения синхронизма этим насекомым не требуется интеллект. Они располагают всеми необходимыми для этого ингредиентами: у каждого светлячка имеется осциллятор, что-то наподобие маленького метронома, моменты выработки сигналов которым корректируются автоматически в ответ на мерцания других светлячков. Вот, собственно, и все.
За одним исключением: отнюдь не очевидно, что этот сценарий работоспособен. Может ли идеальный синхронизм возникнуть из какофонии многих тысяч лишенных разума метрономов? В 1989 г. я вместе со своим коллегой Ренни Миролло доказали правильность такого ответа. Описанный сценарий не только работоспособен – он
По причинам, которые нам непонятны до сих пор, тенденция к синхронизму является одной из самых распространенных движущих сил во Вселенной[11], охватывая практически все уровни, начиная с атомов и заканчивая животными, начиная с людей и заканчивая планетами. Женщины, которые дружат между собой, или сотрудницы, проводящие много времени вместе, нередко обнаруживают, что их менструальные циклы постепенно сближаются и начинаются примерно в один и тот же день. Сперматозоиды, двигающиеся бок о бок на своем пути к яйцеклетке[12], машут своими «хвостиками» в унисон, демонстрируя что-то похожее на простейшие элементы синхронного плавания. Иногда синхронизм принимает разрушительный характер: эпилепсия вызывается патологическим синхронным разрядом миллионов клеток мозга, что приводит к ритмичным конвульсиям, вызывающим хватательные движения. Синхронизм может возникать даже в неживой природе. Поразительная когерентность лазерного луча обеспечивается синхронной пульсацией триллионов атомов, которые испускают фотоны одной и той же фазы и частоты. На протяжении многих тысячелетий Луна под воздействием Земли постепенно замедляла вращение вокруг собственной оси. Хотя Луна вращается вокруг собственной оси, она всегда обращена к Земле одной и той же стороной (ее темную сторону мы не видим никогда), так как обращение Луны вокруг Земли и вращение Луны вокруг собственной оси синхронизировано: фактически Луна, облетая Землю каждые двадцать семь с половиной дней, совершает также одно полное вращение вокруг собственной оси против часовой стрелки.
На первый взгляд, эти явления могут показаться не связанными между собой. В конце концов, силы, которые синхронизируют клетки головного мозга никак не связаны с силами, которые обеспечивают синхронизм атомов лазера. Однако при более близком рассмотрении можно обнаружить связь, которая охватывает собою детали любого конкретного механизма. Этой связью является математика. Все приведенные выше примеры представляют собой вариации одной и той же математической темы: самоорганизации, спонтанного возникновения порядка из хаоса. Изучая простые модели поведения светлячков и других самоорганизующихся систем, ученые начинают раскрывать тайны этой восхитительной разновидности порядка во Вселенной.
Исследовавшийся мною и Ренни вопрос о самоорганизации был поначалу сформулирован Чарли Пескином, специалистом по прикладной математике, сотрудником Института Куранта (Courant Institute) при Нью-Йоркском университете. Человек с тихим и спокойным голосом, с аккуратно подстриженной бородкой и с неизменно приветливой улыбкой, Чарли Пескин является одним из самых выдающихся математиков с уклоном в биологию. Разгадывая тайны физиологии (например, как молекулы, ткани и органы человеческого тела справляются со своими сложными функциями), он предпочитает пользоваться компьютерами и математикой. Какие бы проблемы он ни пытался решать – как сетчатке человеческого глаза удается обнаружить даже самый слабый свет или как молекулярные «двигатели» вырабатывают силу в мышцах, – его «фирменным знаком» является разносторонность научных интересов. Создается впечатление, что он хочет попробовать себя во всех областях знания и исследовать все тайны природы. Если необходимого ему математического аппарата еще не существует, он обязательно должен изобрести такой аппарат. Если для решения рассматриваемой им проблемы требуется суперкомпьютер, Пескин разработает для него соответствующую программу. Если существующие процедуры работают слишком медленно, он придумает более быстрые процедуры.
Даже его математический стиль отличается высокой гибкостью и прагматизмом. Его самая известная работа связана с разработкой трехмерной модели тока крови в камерах сердца, качающего кровь. Эта модель отличается реалистичностью анатомии, сердечных клапанов и строения волокон. Для решения столь сложной задачи он использовал грубую мощь суперкомпьютерного моделирования в сочетании с изысканностью абсолютно оригинальной вычислительной схемы. Что же касается решения других проблем, Пескин обычно придерживается известной максимы Эйнштейна, согласно которой все нужно делать по возможности проще – но не проще необходимого. В таких случаях Пескин отдавал предпочтение минималистскому подходу, пренебрегая всеми биологическими подробностями, за исключением лишь самого важного. Именно в таком минималистском духе Пескин предложил схематическую модель того, как клетки, задающие ритм работы сердца, могли бы синхронизировать сами себя[13].
Натуральный задатчик ритма работы сердца представляет собой подлинное чудо эволюции – возможно, самый впечатляющий осциллятор из когда-либо созданных природой. Кластер, состоящий из примерно 10 тысяч клеток и называемый синусно-предсердным узлом, вырабатывает электрические импульсы, которые задают ритм работы сердца в целом. Синусно-предсердный узел должен действовать чрезвычайно надежно, минута за минутой, обеспечивая примерно три миллиарда сокращений сердца за все время жизни человека. В отличие от большинства клеток сердца, клетки-ритмоводители вырабатывают электрические импульсы автоматически; если их изолировать в чашке Петри, то напряжение генерируемых ими импульсов ритмично повышается и снижается.
Все это вызывает законный вопрос: зачем нужно так много этих клеток, если даже одной клетки вполне достаточно для того, чтобы справиться с данной работой? Возможно, это объясняется тем, что наличие единственного задатчика ритма не позволяет получить достаточно надежную структуру: лидер может начать неправильно функционировать или даже прекратить существование. Вместо ненадежной структуры с единственным лидером природа выработала более надежную, «демократичную» систему, в которой тысячи клеток коллективно задают нужный ритм. Разумеется, такая демократия порождает собственные проблемы: клетки должны каким-то образом координировать свои действия; если же они будут посылать конфликтующие между собой сигналы, сердце выйдет из строя. Пескина интересовал следующий вопрос: как всем этим клеткам удается – в отсутствие лидера или каких-либо команд со стороны – действовать столь синхронно?
Обратите внимание, как похож этот вопрос на поставленный выше вопрос о светлячках. В том и другом случае речь идет о больших популяциях ритмичных объектов, вырабатывающих внезапные импульсы, которые задают ритмы для других членов группы, убыстряя или замедляя их в соответствии с определенными правилами. В обоих случаях синхронизм представляется неизбежным. Задача заключается в том, чтобы объяснить, почему это должно быть именно так, а не иначе.
В 1975 г. Пескин изучил этот вопрос в рамках некой упрощенной модели. Каждая из клеток-ритмоводителей рассматривается как электрическая цепь, генерирующая импульсы (осциллятор) и эквивалентная конденсатору, подключенному параллельно резистору. (Конденсатор – это прибор, способный накапливать и хранить электрический заряд; в данном случае он играет роль, подобную той, которую играет мембрана клетки; резистор обеспечивает путь для вытекания электрического тока из клетки, аналогично так называемым каналам утечки в мембране.) Постоянный входной ток заставляет конденсатор заряжаться, что приводит к росту напряжения на нем. Когда напряжение на конденсаторе повышается, величина тока, стекающего через резистор, растет, в результате чего скорость повышения замедляется. Когда напряжение достигает некого порога, конденсатор разряжается и напряжение на нем мгновенно падает до нуля; такая модель имитирует запуск клетки-ритмоводителя и ее последующее возвращение к исходному состоянию. Затем напряжение снова начинает повышаться, и описанный выше цикл повторяется. Рассматриваемый как функция времени, такой цикл напряжения состоит из двух частей: плавный подъем вдоль кривой заряда (график в виде половины дуги, поднимающейся, но с постепенным замедлением роста), за которым следует практически вертикальное падение с возвратом к исходному состоянию.
Затем Пескин представил такой задатчик ритма сердца в виде огромной совокупности этих математических осцилляторов. Для простоты он предположил, что все осцилляторы идентичны (и, таким образом, характеризуются одной и той же кривой заряда), что каждый осциллятор связан в одинаковой степени со всеми остальными осцилляторами и что осцилляторы влияют друг на друга только в состоянии запуска. В частности, когда какой-либо осциллятор запускается, он мгновенно повышает напряжения всех остальных осцилляторов на некую фиксированную величину. Если напряжение какой-либо клетки превышает пороговое значение, она сразу же запускается.
Сложность и запутанность этой проблемы обусловлена тем, что в любой данный момент времени разные осцилляторы, как правило, пребывают на разных стадиях рассматриваемого нами цикла: некоторые из них находятся буквально на грани запуска, другие уже успели далеко продвинуться по кривой заряда, тогда как третьи могут приближаться к исходному состоянию. Как только ведущий осциллятор достигнет порогового значения, он запускается и проталкивает каждый из остальных осцилляторов в разные позиции вдоль кривой заряда. Результаты такого запуска имеют разноплановый характер: осцилляторы, которые были близки к пороговому значению, проталкиваются ближе к запускающемуся осциллятору, но те, которые приближаются к исходному состоянию, выбиваются из фазы. Иными словами, отдельно взятый запуск оказывает синхронизирующее воздействие на некоторые осцилляторы и рассинхронизирующее воздействие на другие осцилляторы. Долгосрочные последствия всех этих перестроек невозможно уяснить, опираясь лишь на здравый смысл.
Чтобы получить более наглядную картину происходящего, представьте отдельно взятую клетку в виде бачка унитаза, наполняющегося водой. Когда вода поступает в бачок, ее уровень постепенно повышается, подобно напряжению в клетке. Допустим, что когда вода в бачке достигнет определенного уровня, произойдет автоматический слив воды из бачка. Быстрый слив воды вернет ее уровень к исходному (условно нулевому), после чего бачок начнет снова наполняться; возникнет своего рода спонтанный осциллятор. (Чтобы довершить аналогию, нам также нужно предположить, что бачок слегка протекает. Вода вытекает через небольшую дырочку у дна бачка. Вода просачивается быстрее, когда уровень воды в бачке выше, из чего следует, что бачок наполняется все медленнее по мере повышения уровня воды в нем. Наличие этой утечки не имеет особого значения для самой осцилляции – это устройство будет циклически наполняться и опустошаться даже в отсутствие утечки, – но оно оказывается критически необходимым для синхронизации многих таких осцилляторов.) Наконец, представьте целое полчище из 10 тысяч таких осциллирующих туалетных бачков, соединенных между собой системой труб по принципу «каждый с каждым» таким образом, что когда происходит слив какого-либо из них, это приводит к одинаковому подъему уровня воды во всех остальных бачках. Если эта дополнительная вода поднимает уровень воды в каких-либо из этих бачков выше его порогового значения, то вода сливается и из этих бачков.
В связи с этим возникает следующий вопрос: как поведет себя такое хитросплетение бачков? Будут ли эти бачки наполняться и сливаться хаотически, когда каждому из них заблагорассудится? Распадется ли их сообщество на отдельные группировки, конкурирующие между собой? Может быть, они будут наполняться и сливаться по очереди, друг за другом?
Пескин предположил, что такая система всегда будет входить в синхронизм: какой бы ни была начальная ситуация в такой системе, в конечном счете все осцилляторы будут запускаться в унисон. Кроме того, он предположил, что синхронизм наступит, даже если эти осцилляторы будут не вполне идентичны. Но когда Пескин попытался доказать свои предположения, он столкнулся с определенными техническими препятствиями. В частности, отсутствовали надежные математические процедуры, которые позволяли бы описывать большие системы осцилляторов, обменивающихся между собой внезапными, дискретными импульсами. Поэтому он отказался от своего первоначального замысла и сосредоточился на простейшем возможном случае: двух идентичных осцилляторах. Однако даже в этом случае математические проблемы казались чересчур сложными. Пескин попытался еще больше упростить задачу, допустив возможность лишь бесконечно малых толчков и бесконечно малых утечек через резистор. После таких упрощений задача поддавалась решению: для этого специального случая Пескин доказал неизбежность синхронизма.
Доказательство, предложенное им, базируется на идее, сформулированной французским математиком Анри Пуанкаре, основателем теории хаоса. Концепция Пуанкаре представляет собой математический эквивалент стробофотографии. Возьмем два идентичных осциллятора, A и B, и представим в графическом виде их работу, делая фотоснимок каждый раз, когда запускается осциллятор A. Как будет выглядеть соответствующая последовательность фотоснимков? Осциллятор A лишь запустился, поэтому он выглядит так, как будто все время находится в исходном положении (нулевом напряжении). Напряжение осциллятора B, напротив, меняется от одного снимка к следующему. Решая уравнения, описывающие такую модель, Пескин нашел исчерпывающую, но весьма «навороченную» формулу, описывающую изменения напряжения осциллятора B в промежутках между фотоснимками. Эта формула показала, что в случае, когда это напряжение оказывается меньше определенного критического значения, оно будет неуклонно снижаться, пока не достигнет нуля, тогда как в случае, когда это напряжение оказывается больше критического значения, оно будет неуклонно повышаться, пока не достигнет порогового значения. В любом случае осциллятор B в конечном счете синхронизируется с A. Есть лишь одно исключение: если напряжение осциллятора B в точности равно критическому значению напряжения, его невозможно изменить ни в сторону увеличения, ни в сторону уменьшения, поэтому оно остается в равновесном критическом значении. Осцилляторы A и B запускаются повторно, однако этот запуск происходит несинфазно, а с разницей во времени, составляющей половину цикла. Но это равновесие оказывается неустойчивым: малейший толчок смещает систему в направлении синхронизма.
Несмотря на успешный анализ такого двухосцилляторного случая, выполненный Пескином, случай произвольного количества осцилляторов ждал соответствующего доказательства целых 15 лет. На протяжении этих 15 лет о результатах, полученных Пескином, почти никто не вспоминал. Сведения об этих результатах были похоронены в какой-то заумной монографии, которая, по сути, представляла собой фотокопию конспекта его лекций и которую можно было получить из его отдела лишь по специальному запросу.
Однажды, в 1989 г., я листал книгу под названием The Geometry of Biological Time («Геометрия биологического времени»), написанную биологом-теоретиком Артом Уинфри, одним из героев моей нынешней книги[14]. В то время я был научным сотрудником с ученой степенью, специализировавшимся на прикладной математике в Гарвардском университете, и пытался подобрать какую-либо интересную тему для своих дальнейших исследований. Хотя я размышлял над книгой Уинфри предыдущие восемь лет, она продолжала казаться мне неисчерпаемым источником идей и вдохновения. Она представляла собой не просто изложение результатов последних исследований по биологическим осцилляторам, а своего рода карту для охотников за удачей, руководство к будущим научным открытиям. Почти на каждой странице Уинфри указывал путь к интересным нерешенным проблемам и высказывал собственные соображения относительно того, какие из них в наибольшей степени созрели для того, чтобы за их решение можно было приняться прямо сейчас.
В этой книге я натолкнулся на вариант, которого не замечал прежде: в разделе, посвященном осцилляторам, взаимодействующим посредством ритмических импульсов, Уинфри упоминал о модели, описывающей поведение клеток-ритмоводителей сердца, предложенной Пескином в его монографии. Хотя Пескину удалось проанализировать лишь случай двух идентичных осцилляторов, писал Уинфри, «задача со многими осцилляторами еще ожидает своего решения».
Это разожгло мое любопытство. Что же представляет собой эта фундаментальная загадка, которая все еще ожидает своего решения? Я никогда прежде не слышал о работах Пескина, но указанная им проблема произвела на меня сильное впечатление. Никто даже еще не пытался придумать математический аппарат, который описывал бы большую популяцию из «импульсно-связанных» осцилляторов, взаимодействие в которой осуществляется посредством кратковременных пульсирующих сигналов. Это было ощутимым пробелом в литературе по математической биологии – и к тому же весьма подозрительным пробелом, если принять во внимание широкую распространенность в природе именно такого способа взаимодействия между биологическими осцилляторами. Светлячки мерцают. Сверчки стрекочут. Нейроны посылают электрические сигналы. Все они используют внезапные импульсы для общения друг с другом. Тем не менее, теоретики уклонялись от изучения такой импульсной связи по причине отсутствия подходящего математического аппарата. Импульсы вызывают постоянные скачк
В нашей библиотеке не оказалось экземпляра монографии Пескина, однако Пескин любезно согласился переслать мне соответствующие страницы из этой монографии. Его анализ показался мне весьма элегантным и понятным. Но я быстро понял, почему он ограничился системой лишь с двумя идентичными осцилляторами: несмотря на всю элегантность выполненного им анализа, его формулы оказались чересчур громоздкими. С тремя осцилляторами дело обстояло еще хуже, а система из произвольного количества (
Чтобы получить более полное представление об этой проблеме, я попытался решить ее на компьютере двумя разными способами. Первый подход заключался в постепенном наращивании сложности системы: я пробовал, подражая стратегии Пескина, найти решение для системы с тремя осцилляторами, используя малые толчки и утечки и перекладывая на компьютер решение всех алгебраических вопросов. Формулы оказались просто устрашающими – некоторые из них простирались на несколько страниц, – но с помощью компьютера мне удалось сократить их до вполне приемлемого вида. Полученные мною результаты показали, что предположение Пескина является, по-видимому, правильным для системы с тремя осцилляторами. Однако эти результаты также говорили о необходимости найти какой-то другой способ решения данной проблемы. С ростом количества осцилляторов используемый мною математический аппарат оказывался неприемлемым.
Второй подход заключался в компьютерном моделировании. Попытаемся на данном этапе обойтись без формул и предоставим возможность компьютеру продвигать систему во времени шаг за шагом вперед, а затем посмотрим, что из этого получится. Компьютерное моделирование ни в коей мере не заменяет собою математический аппарат – оно никогда не позволит получить доказательство, – но если гипотеза Пескина ложна, то такой подход сэкономит массу времени, убедив меня в необходимости поиска других путей решения проблемы. Такой подход чрезвычайно ценен в математике. Когда вы пытаетесь доказать что-либо, желательно быть уверенным в том, что вы не пытаетесь доказать нечто изначально ложное. Такая уверенность придаст вам силы, которые понадобятся вам для поиска строгого доказательства.
Разработать компьютерную программу для моего случая оказалось сравнительно простым делом. Когда запускается один осциллятор, он подталкивает все остальные осцилляторы на определенную, фиксированную величину. Если какие-либо из «продвинутых» таким образом осцилляторов преодолеют определенный порог, предоставляем им возможность также запуститься – и соответствующим образом обновляем другие осцилляторы. В противном случае используем в промежутках между запусками формулы Пескина для подталкивания соответствующих осцилляторов в направлении их порогов.
Я испытал этот механизм на популяции из 100 идентичных осцилляторов. Изначально был создан случайный разброс их напряжений между базовым (нулевым) уровнем и порогом. Я отобразил этот разброс на диаграмме в виде совокупности точек, взбирающихся в направлении порога по общей для них кривой заряда, которая представляет собой зависимость напряжения от времени. Даже с помощью средств компьютерной графики мне не удалось выявить какой-либо определенной картины в их коллективном движении – полная путаница.
В данном случае проблемой оказался слишком большой объем информации. И здесь я оценил по достоинству еще одно преимущество метода стробов, предложенного Пескином: этот метод не только позволяет упростить анализ, но и представляет собой наилучший способ визуализации поведения системы. Все осцилляторы остаются невидимыми за исключением именно тех моментов, когда запускается какой-то конкретный осциллятор. В такие моменты свет воображаемого строба подсвечивает остальные осцилляторы, показывая их мгновенные напряжения. Затем вся эта система вновь погружается в темноту до наступления следующего момента, когда запускается определенный осциллятор. Модель Пескина обладает тем свойством, что осцилляторы запускаются по очереди – никто и никогда не нарушает эту очередь; таким образом, 99 других осцилляторов запускаются в темноте, до того как произойдет вспышка следующего строба.
Отображаемые на компьютере, эти вычисления мелькали так быстро, что изображение на экране буквально мельтешило: 99 осцилляторов быстро взбирались вдоль кривой заряда, изменяя свои позиции с каждой очередной вспышкой строба. Теперь полученная картина не вызывала сомнений. Точки собирались в группы, образуя маленькие пакеты синхронизма, которые объединялись в более крупные пакеты, подобно каплям дождя, которые собираются в ручейки, стекающие по оконному стеклу.
Это казалось просто сверхъестественным – система синхронизировала сама себя. Бросая вызов Филипу Лорену и всем прочим скептикам, которые утверждали, что синхронизация светлячков невозможна в принципе и что такое явление «противоречило бы всем законам природы», компьютер демонстрировал, что большая совокупность маленьких осцилляторов, не обладающих разумом,
Чтобы убедиться в том, что картина, увиденная мною с первой попытки, не была чистой случайностью, я повторял моделирование десятки раз, каждый раз при других произвольно выбранных начальных условиях и для других количеств осцилляторов – и каждый раз я наблюдал тенденцию к синхронизации. Похоже, Пескин пришел к правильному выводу. Теперь моя задача заключалась в том, чтобы получить строгое математическое доказательство. Только «железное» математическое доказательство продемонстрировало бы – причем так, как не мог бы сделать ни один компьютер в мире – неизбежность синхронизма, а еще лучше, если бы такое доказательство показало,
К тому времени я был знаком с Ренни Миролло уже около десяти лет. Будучи студентами-выпускниками Гарвардского университета, мы вместе отдыхали по выходным дням, вместе обедали по будням, уделяя в своих беседах примерно равное количество времени математике и женщинам. Но в те дни нам не приходилось работать вместе. По своему образованию Ренни Миролло был «чистым» математиком, тогда как я специализировался в прикладной математике. По этой причине мы понимали друг друга – но не всегда и не во всем.
Для своей докторской диссертации Ренни выбрал очень абстрактную тему. Интуиция подсказывала ему правильность некой теоремы – проблема заключалась лишь в том, чтобы найти доказательство этой теоремы. Ренни потратил три года на поиск доказательства и в конце концов понял, что доказать ее невозможно: он нашел контрпример, опровергающий эту теорему. Таким образом, три года жизни были потрачены зря. Однако этот отрицательный результат не поверг Ренни в отчаяние – он решил переключиться на какое-нибудь новое направление математики, решить какую-либо из ключевых проблем этого направления и написать диссертацию. На все это Ренни решил отвести себе один год.
Моя совместная работа с Ренни началась примерно в 1987 г. В этой совместной работе мы как бы дополняли друг друга. Обычно я предлагал ему какую-либо задачу, разъяснял ее научный контекст, выполнял компьютерное моделирование и предлагал интуитивные аргументы. Ренни придумывал стратегии, позволяющие прояснить проблему, а затем находил способы доказательства соответствующей теоремы.
Когда я рассказал Ренни о своих компьютерных экспериментах с моделью Пескина, поначалу он проявил, скажем так, спокойный интерес к этой проблеме. Однако после того как он разобрался в ней глубже, его начало разбирать нетерпение: в то время он напоминал мне боксера, готовящегося выйти на ринг. Он предоставил мне совсем немного времени, чтобы подытожить выполненную мною работу, но уже вскоре начал настаивать на том, что будет использовать свой собственный подход к решению этой проблемы.
Ренни безжалостно упростил мою модель. Его не заботили подробности, предусмотренные в исходной модели цепи, которую предложил Пескин – со всеми ее конденсаторами, резисторами и напряжениями. Единственной важной чертой этой модели, по мнению Ренни, является то, что каждый осциллятор следует кривой напряжения с замедлением роста в верхней ее части – по мере приближения к пороговому значению. Таким образом, он с самого начала заложил именно такую геометрию. Он отказался от схемы электрической цепи, которую предложил Пескин, заменив ее некой абстрактной переменной, изменяющейся по тому же закону, что и напряжение осциллятора: периодический подъем до порогового значения, запуск, сброс. Затем его воображение нарисовало совокупность из
Эта усеченная модель не только оказалась значительно проще первоначальной (что сильно упрощало математические выкладки), но и допускала более широкую область применения. Вместо чисто электрической интерпретации в терминах напряжения мы могли теперь рассматривать такую переменную как меру готовности любого из осцилляторов к запуску, будь то клетка сердца или сверчок, нейрон или светлячок.
Нам удалось доказать, что такая обобщенная система почти всегда становится синхронизированной – при любом количестве осцилляторов и при любых начальных условиях[15]. Ключевым ингредиентом в доказательстве является понятие «абсорбции» – обозначение идеи о том, что если один осциллятор проталкивает другой осциллятор за пороговое значение, они остаются синхронизированными навсегда, как если бы один осциллятор поглотил другой. Такие поглощения были заметны в моих компьютерных экспериментах, когда у наблюдателя складывалось впечатление, будто осцилляторы сливаются вместе, подобно каплям дождя, стекающим по оконному стеклу. Кроме того, такие слияния необратимы: как только два осциллятора запускаются вместе, они никогда не рассинхронизируются сами по себе, поскольку их динамика идентична; к тому же они одинаково связаны со всеми остальными осцилляторами, поэтому даже когда они испытывают толчок, их синхронизм не нарушается: ведь они испытывают одинаковый толчок. Следовательно, абсорбции действуют подобно храповому механизму, всегда приближая систему к синхронизму.
Основой доказательства является аргумент, демонстрирующий, что последовательность поглощений объединяет осцилляторы в группы, размеры которых все время увеличиваются – до тех пор, пока все они не образуют одну гигантскую совокупность. Если вы не математик, вас, наверное, интересует, как можно доказать все это. Существует бесконечно большое число способов запуска такой системы; как же в таком случае можно охватить одним доказательством все эти бесчисленные варианты? И где гарантия, что в конечном счете произойдет количество поглощений, достаточное для того, чтобы привести такую систему к полному синхронизму?
Ниже излагаются наши рассуждения по этому поводу. Не волнуйтесь, если какие-то детали этих рассуждений покажутся вам непонятными. Моя задача в данном случае заключается лишь в том, чтобы дать вам самое общее представление о том, как выстраиваются такие доказательства. Трудно рассчитывать на что-либо большее, если ваши познания в области математики ограничиваются курсом геометрии, который вы проходили в старших классах школы и который зачастую преподается в механистическом и авторитарном стиле. На самом деле конструирование математического доказательства – весьма творческий процесс, полный нечетких идей и образов, особенно на ранних стадиях этого процесса. Строгие формулировки появляются позже. (Если это не особенно интересует вас, можете пропустить следующие несколько страниц.)
Первым шагом является каталогизация всех возможных начальных конфигураций. Вернемся, например, к случаю двух осцилляторов. По причине использования Пескином уловки со стробами нам вовсе необязательно наблюдать за осцилляторами все время. Достаточно сосредоточиться на одном моменте в каждом цикле. В качестве такого момента мы выбрали момент непосредственно после запуска осциллятора A и его возвращения к исходному состоянию. Тогда на осцилляторе B может быть любое «напряжение» между исходным состоянием и порогом. Представляя напряжение на осцилляторе B в виде точки на числовой оси, исходное состояние на которой отображается нулем, а порог – единицей, мы видим, что существует линейный сегмент разных возможностей. Этот одномерный сегмент охватывает все возможные начальные условия для данной системы (поскольку нам известно, что осциллятор A находится в 0 [только что запустился и сбросился в исходное состояние], единственной переменной является B, который должен пребывать где-то вдоль линейного сегмента между 0 и 1).
Три осциллятора создают большее пространство возможностей. В этом случае нам нужно знать два числа: учитывая, что A только что запустился и находится в 0, нам все еще нужно указать напряжения осцилляторов B и C в этот момент. Как выглядит геометрия, соответствующая какой-то паре чисел? Мы можем представлять их как две координаты некой точки в двумерном пространстве.
Изобразим плоскость
Когда мы предоставляем возможность B и C изменяться независимо, принимая любые напряжения в промежутке между 0 и 1 (охватывая все возможные варианты), соответствующая точка, изображающая пару напряжений, движется внутри некой области, представляющей собой квадрат.
Таким образом, в случае трех осцилляторов мы получаем квадрат возможных начальных условий: одна ось для осциллятора B и одна для осциллятора C. Обратите внимание, что для A нам не нужна ось, поскольку этот осциллятор всегда стартует с нуля (в соответствии с тем, как мы решили стробировать эту систему).