Апория об Ахиллесе и черепахе доказывает, что Зенон не отрицал чувственного восприятия движения. Ведь Ахиллес бежит, а черепаха ползет — значит, оба движутся. Но Зенон заявлял, что движение — кажущееся явление. В действительности же, как доказывал он, оно не существует.
В этом и заключается его апория о летящей стреле: полет стрелы, по мнению Зенона, — только иллюзия наших чувств; на самом деле летящая стрела находится в покое.
Вот как рассуждал Зенон: в каждый данный момент стрела может находиться только в одном месте, но ни перед ним, ни за ним; значит, в каждый момент стрела покоится. А из множества моментов состояния покоя не может составиться движение.
Однако возникают вопросы: почему же мы отличаем состояние стрелы, выпущенной из лука, от состояния упавшей стрелы? Ведь обе они «покоятся». И почему «покоящаяся» летящая стрела пробивает грудь воина, а покоящаяся на земле не угрожает ему?
Ответ на все эти вопросы с точки зрения Зенона один: свидетельства наших чувств обманчивы, они не соответствуют тому, что существует в действительности.
Конечно, это неверно. Наши чувства подают нам сигналы о действительно происходящих явлениях.
Слух воспринимает колебания воздуха как звук. Но эти колебания существуют. Их можно записать на граммофонной пластинке.
Воспринимая глазом световые волны, отразившиеся от поверхности физического тела, мы получаем представление о действительно существующем предмете.
Если бы наши ощущения не отражали действительно существующего мира, то не могло бы быть науки о природе.
На самом деле природа и ее силы существуют независимо от нашего сознания. А главнейшая цель науки — покорение сил природы.
Механика древних философов
В трудах философов древней Греции механика получила наибольшее развитие у Аристотеля.
Хотя этот философ и считал необходимыми для изучения механики опыт и наблюдение, но его учение о движении тел нередко противоречило фактам.
По его мнению, чем тяжелее тело, тем оно падает быстрее. Например, большой камень, как думал Аристотель, упадет скорее на землю, чем маленький, сброшенный с той же высоты.
Почему же Аристотель пришел к такому выводу? Быть может, потому, что оторвавшийся древесный лист падает гораздо медленнее, чем яблоко? Но это было бы слишком поверхностным наблюдением. Ведь Аристотелю было известно сопротивление воздуха, которое должно больше задерживать падение легкого листа, чем тяжелого яблока.
Более вероятно, что Аристотель умозрительно сделал этот вывод: на то тело, которое тяжелее, действует большая сила, влекущая его к земле, следовательно, оно должно падать с большей скоростью, чем легкое.
Если бы Аристотель прибег к простейшему опыту, он не сделал бы такого неправильного вывода. Стоило ему подняться на любую башню или на крышу дома и уронить одновременно сразу два камня разной величины, чтобы убедиться в своей ошибке.
Только опыт мог указать тогда на независимость скорости падения тела от его веса. Объяснить это явление стало возможным лишь после установления закона всемирного тяготения.
Сила, сообщающая ускорение свободно падающему телу, пропорциональна массе. Поэтому на каждую единицу массы, независимо от веса тела, действует одинаковая сила, сообщающая ей одно и то же ускорение.
Даже Галилей не мог бы сделать такое умозаключение.
Опыт был совершенно необходим, чтобы установить, что как легкое, так и тяжелое тело должно падать с одинаковой скоростью.
Аристотель знал, что свободно падающее тело движется ускоренно, но он не пытался объяснить причину этого явления. А между тем оно должно было навести его на мысль об инерции движения.
Ускорение падения можно было объяснить чисто умозрительно двумя причинами: во-первых, что сила тяжести, влекущая тело к земной поверхности, по мере движения быстро возрастает; во-вторых, что сообщенная телу скорость движения сохраняется и в каждый момент к ней прибавляется скорость, сообщаемая непрерывно действующей силой тяжести.
Первое предположение не подтвердилось бы опытом того времени: тело, взвешенное на вершине башни, весило бы столько же, как и у ее подножия. Следовательно, сила тяжести в этих пределах высот постоянна.
Между тем второе предположение находило подтверждение в ежедневном опыте.
Например, каменное ядро, выброшенное метательной машиной, сохраняло сообщенное ему движение и летело очень далеко. Его останавливало только падение на земную поверхность.
Лодка также продолжала свое движение, хотя гребцы вблизи берега поднимали весла. Она останавливалась, лишь ударившись носом о берег.
Из этих наблюдений трудно сделать другой вывод, кроме того, что тела сохраняют свое движение. Но Аристотель его не сделал. Напротив, он всю силу своего ума направил на то, чтобы объяснить эти явления с точки зрения своего ошибочного учения.
Аристотель утверждал, будто тело движется только до тех пор, пока на него действует сила. И если величина этой силы постоянна, то движение тела равномерно. Ошибка Аристотеля проистекала из поверхностного наблюдения: например, для движения колесницы нужно постоянное усилие лошади. Аристотель не понял, что колесница встречает постоянное сопротивление в трении колес о дорогу и осей во втулках колес, преодолеваемое силой лошади. Если бы он обратил больше внимания на то, что и летящий камень и плывущая лодка сохраняют свое движение, он открыл бы инерцию движущихся тел.
А зная, что движущиеся тела не останавливаются сами собой, он понял бы, что постоянно действующая сила сообщает ускоренное движение. Тогда стало бы понятно, почему ускоренно движется и свободно падающее тело, находящееся под постоянным действием силы тяжести.
Исходя из своего неверного положения о движении тел, Аристотель объяснял движение брошенного камня так: воздух, врываясь в пустоту, образующуюся позади камня, подталкивает его; если бы не было этого, то камень, брошенный онагром, немедленно упал бы возле машины.
Механика — наука о количественных соотношениях между силой, скоростью движения, временем и пройденным расстоянием. Но Аристотель редко занимался поисками этих отношений. Во всей «Физике» лишь один раз он попытался сформулировать закон, похожий на законы современной механики. Именно в конце VII главы он писал: «если α будет движущее,
Правда, Аристотель имел некоторое представление об инерции тел, но он был далек от современного понятия об этом свойстве тел.
«Однако, — писал он, — не следует думать, что если
Это рассуждение доказывает, как было чуждо Аристотелю современное понимание инерции.
Как известно, любая сила сообщает произвольно большой массе свободного (незакрепленного) тела некоторое ускорение.
Например, Земля сообщает оторвавшемуся яблоку ускорение, равное 981 сантиметру в секунду за каждую секунду. Яблоко действует на Землю с той же силой. Но сообщаемое им ускорение во столько раз меньше, во сколько масса Земли больше массы яблока.
Это представление было введено в механику только Ньютоном.
Оставив без внимания количественные законы движения, Аристотель отдал много труда чисто словесным качественным определениям, не имевшим физического смысла.
Одни движения он считал «естественными», другие — «насильственными», одни — «совершенными», другие — «несовершенными». И, основываясь на этих определениях, он делал свои выводы.
Вот как наш известный ученый-академик А. Н. Крылов (1863–1945) оценил значение «Физики» Аристотеля в истории механики: «По теперешней терминологии это сочинение относится к области чистой философии, а не к той группе знаний, которую мы теперь называем физикой, хотя значительная часть этого сочинения и посвящена учению о движении, но с иной точки зрения, нежели это явление рассматривается в теперешней физике и механике. Теперешняя физика и механика, основанные во многом на опыте и наблюдении, так же мало удовлетворяли бы склонность ума древних греков к точным отвлеченным рассуждениям, как эти рассуждения, представляющиеся нам во многом не относящимися к естествознанию, мало удовлетворяют нас».
Даже в тех случаях, когда древние философы делали правильный вывод, они прибегали к умозрительным, часто странным объяснениям причины наблюдаемого явления.
О взглядах Аристотеля на причину, например, выигрыша в силе при употреблении рычага мы узнаем из сочинения «Проблемы механики», написанного одним из его учеников. В этом сочинении рассмотрены колесо, руль, клещи, весло и другие орудия, применявшиеся в древности.
Объяснить действие рычага казалось древним философам труднейшей проблемой; они не удовлетворялись знанием обратной пропорциональности груза и приложенной силы плечам рычага, а хотели знать «причину» этой зависимости.
Правда, автор «Проблем механики», говоря о действии рычага, упоминал, что «тела, у которых произведения весов на скорость равны, обнаруживают равное действие» и что «сила, приложенная на большем расстоянии от точки опоры, легче двигает груз, так как она описывает больший круг». Но объяснял он эти правильные положения какими-то «загадочными» свойствами круга, пускаясь в рассуждения, очень далекие от современной механики.
Концы рычага при движении описывают дуги круга. Свойствами круга и объясняется действие рычага. Таково мнение автора «Проблем механики». Но окружность, как ему кажется, — очень загадочная кривая линия.
«Нет ничего странного в том, — говорит он, — что из удивительного проистекает нечто удивительное. Но самое удивительное есть соединение в одном противоположных свойств. А круг есть действительно соединение таковых».
Автору кажется удивительным, что окружность одновременно выпукла и вогнута, что точка на окружности, движущаяся вперед, одновременно движется и назад.
Если, однако, оставить без внимания эти рассуждения, то можно признать, что закон рычага уже был известен во времена Аристотеля. Правда, не в той четкой форме, какая была ему дана позднее Архимедом.
Конечно, свойства рычага были хорошо изучены техниками, применявшими его для поднятия тяжестей. Философам принадлежит только попытка «объяснить» эти свойства.
В «Проблемах механики» рассмотрено много случаев приложения закона рычага. Например, когда два человека несут груз на шесте, положив к себе на плечи его концы.
«Почему, — спрашивает автор, — груз сильнее давит на того, к кому он ближе?» Ответ таков: «Шест является здесь рычагом. Ближайший к грузу носильщик есть движимое, другой носильщик — движущее, и чем дальше последний удален от груза, тем легче он движет».
Это сравнение не вполне ясно. Но оно свидетельствует о знании обратной пропорциональности уравновешивающихся грузов плечам рычага.
В действительности давление груза разлагается на две силы, приложенные к плечам носильщиков. Эти силы, в сумме равные грузу, по величине обратно пропорциональны расстояниям его от концов шеста.
В «Проблемах механики» уже был решен один из важнейших вопросов науки о движении тел: как будет двигаться тело, которому сообщено движение одновременно по двум направлениям?
«Если что-нибудь, — говорит автор, — движется в каком-нибудь отношении так, что оно должно пройти по одной линии, то эта прямая будет диагональю фигуры, которая определяется слагаемыми в данном отношении линиями».
Пусть, например, гребец направляет лодку наискось поперек течения, которое, в свою очередь, уносит лодку.
В каждом из этих направлений движение происходит одновременно.
В результате лодка будет двигаться по диагонали параллелограмма, сторонами которого служат пройденные ею расстояния в каждом из направлений. А стороны этого параллелограмма относятся друг к другу, как скорости движения лодки под ударами весел и течения реки.
Пользуясь этим правилом, автор сочинения рассматривает движение по кругу как результат сложения одновременных движений к центру круга и по касательной к нему. Такое представление было большим шагом вперед в науке о движении тел.
Положим, что нужно изучить вращательное движение гирьки на шнурке вокруг руки.
В каждый момент можно считать, что она движется по двум направлениям: во-первых, по касательной к кругу, то-есть по направлению перпендикуляра к шнурку; во-вторых, по направлению к центру круга — к руке, держащей конец шнурка.
Значит, в течение очень короткого времени гирька перемещается по диагонали параллелограмма этих двух движений. Из сложения очень большого числа таких перемещений и слагается криволинейное движение гирьки.
Наконец, от внимания древних механиков не ускользнуло, что удар действует гораздо сильнее, чем давление.
Ударяя, например, молотком по вертикальному клину, можно вогнать его в раскалываемое бревно. Но сколько бы ни лежал этот молоток сверху клина, он не произведет никакого заметного действия.
Объяснение разницы между ударом и давлением, конечно, намного превышало механические познания древних ученых. Оно стало возможным только через два тысячелетия — после глубоких исследований голландского математика Гюйгенса.
Закон рычага, параллелограмм скоростей и представление о круговом движении как получающемся из сложения прямолинейных движений — вот то положительное, что дал Аристотель для механики. Дальнейшее ее развитие в античное время зависело от применения к ней математики.
Возникновение математики у греков
Первые попытки приложения математики к механике были сделаны еще Аристотелем и его ближайшими последователями. В «Проблемах механики» впервые встречаются чертежи и буквенные обозначения величин. Но математические познания древних греков были гораздо значительнее, чем примененные философами в механике.
Греческая математика возникла не на «пустом месте». Египтяне и вавилоняне значительно ранее древних греков обладали большими по тому времени математическими познаниями. Находясь в постоянных сношениях с этими народами, греки могли пользоваться уже имевшимися знаниями и развивать их дальше.
Одновременно возникла математика и у индийцев. После похода Александра Македонского в Индию на границе этой страны были основаны небольшие греческие государства. Через их посредство Греция поддерживала торговые отношения и обмен знаниями с народами Индии.
Еще в IV веке до н. э. строителям жертвенников в Индии были известны свойства катетов и гипотенузы прямоугольного треугольника. Индийцы сформулировали их в следующем выражении: «Диагональ прямоугольника производит то, что производят отдельно длинная и короткая стороны прямоугольника», то-есть им была известна теорема Пифагора.
Позднее именно индийцы придумали знаки для обозначения чисел и нуля, которые были заимствованы у них арабами, а от них перешли как «арабские» в Европу. Индийцам принадлежит и честь изобретения «позиционной» системы написания чисел: в ней каждая цифра обозначает десятки, сотни и так далее, в зависимости от места.
В V–VI веках н. э. дроби изображались индийцами так же, как и теперь: вверху — числитель, внизу — знаменатель; только они не были разделены чертой.
Математики Индии уже противопоставляли положительным величинам отрицательные, над которыми для отличия ставилась точка. Они признавали отрицательные корни уравнений, считавшиеся недопустимыми даже в III–IV веках знаменитым греческим математиком Диофантом.
Положительным количествам, «имуществу», они противопоставляли отрицательные— «долг».
Задачи индийских математиков большей частью имели необычайную для нас форму. Вот, например, одна из них:
«Из пчелиного роя 1/4 опустилась на один цветок, а 2/3 полетело на другой цветок. Одна пчела, равно привлекаемая сладостным благоуханием обоих цветков, жужжит в воздухе. Скажи мне, прелестная женщина, сколько было всего пчел?»
Решение этих задач требовало знания уравнений как первой степени, так и квадратных, которые уже были известны индийцам.
Греческие философы поняли практическое значение математики, как только познакомились с геометрией в Египте.
Философ Фалес (конец VII — начало VI века до н. э.) и его ученик Анаксимандр (около 610–546 до н. э.) уже применяли свои геометрические познания к решению астрономических задач.
Первые греческие математики обладали лишь элементарными познаниями. Фалесу были известны свойства равнобедренного треугольника, равенство вертикальных углов (то-есть образованных пересечением двух линий и лежащих друг против друга), деление на две равные части круга его диаметром. Эти знания он заимствовал у египетских жрецов.
«Побывав в Египте, — гласит старинное греческое предание, — Фалес привез в Элладу геометрию. Многое он открыл сам, зачатки многого передал своим преемникам». Но, заимствовав математические познания у египтян и вавилонян, греки стремились развить их, привести в систему и лишить ореола таинственности.
Совсем иное направление дал математике один из учеников Фалеса, прославленный Пифагор (около 580–500 до н. э.).
Пифагор долгое время прожил в Египте и путешествовал по Вавилонии. Общаясь с жрецами этих стран, он заимствовал от них не только познания в геометрии и арифметике. Его заинтересовала также магия — «колдовское» искусство, тесно связанное с религиозными предрассудками. Он увлекался и астрологией — ложной наукой предсказания будущего по положению на небесной сфере светил.
Пифагор поддался влиянию мистицизма жрецов, наложившего отпечаток на его философское учение. Даже математика в его изложении имела мистический характер.
Числа, обозначающие лишь величину или количество, получили в глазах пифагорейцев какое-то особенное значение. В них видели «начало» всех вещей природы, которое было предметом поисков греческих философов. Им приписывалось «совершенство» и «несовершенство» и другие качества, свойственные телам природы. Число 6 считалось пифагорейцами воплощением оживления, 7 — здоровья, 8 — дружбы, и так далее.
Пифагорейская мистика чисел в течение ряда веков действовала на воображение ученых Европы.
Предание связало с именем Пифагора известную теорему о равенстве площади квадрата, построенного на гипотенузе, сумме площадей квадратов, построенных на катетах прямоугольного треугольника.
Письменного доказательства открытия этой теоремы Пифагором не осталось. Но вероятно, что он первый сформулировал в виде теоремы эмпирический вывод из практики кровельщиков, плотников, строителей и «натягивателей веревок» — землемеров.
Каждый кровельщик, конечно, знал, что квадраты, построенные на катетах прямоугольного треугольника, содержат вместе столько черепиц, сколько их укладывается в квадрате, построенном на гипотенузе. Оставалось выразить это знание в терминах геометрии, чтобы «открыть» теорему Пифагора.