Вот почему эта теорема в греческой геометрии носила название «моста ослов», то-есть истины, известной всем, кроме невежд.
В механике Пифагору принадлежит открытие, что гармонические звуки издаются струнами, длины которых находятся в простом числовом отношении. Пифагорейцы установили, что одинаково натянутые струны равной толщины, если их длины относятся как 1:2, 2:4, 3:4, 4:5, дают консонирующие звуки[1].
Но пифагорейцы приписали гармоничность сочетаний этих звуков числам, выражающим отношение между длинами струн. Подобную же «гармонию» они стали искать и во всех других явлениях природы.
Математика древних греков получила наибольшее развитие в александрийский период.
Александрия — мировой коммерческий порт античного времени — была основана Александром Македонским у устья Нила в 30-х годах IV века до н. э.
После смерти Александра Македонского в 323 году до н. э. Египтом правил Птолемей, сын Лага (Птолемей I Сотер). Он привлекал в Александрию ученых, писателей, архитекторов, инженеров. В начале III века до н. э. была основана Александрийская академия. Для этого учреждения воздвигли великолепное здание с аудиториями, рабочими комнатами и жилыми помещениями для ученых. При академии несколько позднее была собрана богатейшая библиотека, в которой хранились подлинники сочинений философов, математиков, астрономов и других ученых. Владельцам этих подлинников оставлялись только копии.
В эпоху расцвета научной деятельности Александрийской академии в ее библиотеке находилось четыреста тысяч пергаментных свитков и папирусов. Кроме того, триста тысяч свитков хранилось в храме Юпитера.
Александрия стала не только центром промышленности, но и средоточием научной деятельности и художественного творчества.
Науки, возникшие из потребностей практики, получили в трудах греческих ученых теоретическое завершение.
Астрономия на Востоке не имела других целей, кроме установления календарных дат и предсказания затмений. В Греции она стала наукой о строении вселенной.
Геометрия, бывшая в Египте, Вавилонии и Индии искусством землемеров и строителей храмов, была поднята александрийскими учеными на уровень математической теории.
Из греческих математиков раннего александрийского периода наибольшую известность получил Евклид, живший в конце IV и начале III века до н. э. Он оставил свои знаменитые «Начала» — сочинение по геометрии, в котором были исследованы свойства треугольника, параллелограммов, многоугольников, дано понятие о цилиндре, конусе и шаре. Евклид был занят задачей построения квадрата, площадь которого была бы равна площади треугольника, параллелограмма, многоугольника. Он вычислял объемы геометрических тел.
Но вычисление площади круга, поверхности и объема цилиндра и шара было еще нерешенной проблемой для Евклида.
В «Началах» Евклида геометрия впервые была приведена в стройную систему. Это сочинение служит образцом строгости доказательств и последовательности изложения.
В течение более двух тысячелетий «Начала» служили руководством при изучении геометрии. Все великие математики прошлого начинали знакомство с геометрией по этой книге.
Евклид не стремился приложить свои математические способности к физике или технике. Он, правда, разработал учение об отражении лучей света от плоских и кривых зеркал. Но это было для него чисто геометрической задачей.
По свидетельству историков, о приложении геометрии к механике Евклид и не думал. Когда один юноша спросил его, какую пользу получит он от изучения геометрии, Евклид, по преданию, сказал своему слуге: «Дай этому человеку три обола[2], он ищет от геометрии пользу».
Однако скоро нашелся ученый, который посмотрел на задачи механики с точки зрения геометрии.
До того времени механика была искусством техников, усваивавших различные чисто практические правила. Приложение к ней математики превратило механику в строгую науку.
Подобно геометрии, в механике делаются выводы, исходя из известных по опыту данных — аксиом.
Открытие законов равновесия тел
Знаменитейший из древнегреческих математиков, Архимед (287–212 до н. э.) первый заложил основы современной механики.
Архимед был сыном знатного, но небогатого гражданина Сиракуз — астронома Фидия. Он получил образование в Александрии, где основательно познакомился с трудами Евклида и других математиков.
Математическим дарованием Архимед превосходил всех своих предшественников и современников. Он по праву признан одним из величайших геометров всех времен и народов.
Архимед первый вычислил с точностью до третьего десятичного знака отношение длины окружности к диаметру.
Он исследовал свойства эллипса, параболы и гиперболы — кривых, полученных сечением конуса плоскостью.
Математики знали, что если пересечь прямой конус плоскостью, наклонной к его высоте, то получится эллипс. Пересечение параллельно образующей дает параболу, а параллельно высоте — гиперболу.
Но каковы свойства этих кривых? Как вычислить площадь круга, эллипса или сегмента параболы и гиперболы? Архимед нашел путь к решению подобных задач, названный в средние века «методом исчерпывания». Этот метод он и применил для вычисления площадей фигур, ограниченных кривыми.
Как найти с помощью этого метода, например, площадь круга?
Архимед вписал в круг правильный шестиугольник. Площадь этой фигуры равна сумме площадей шести треугольников, на которые разобьется шестиугольник, если соединить его вершины с центром круга.
Площадь круга больше площади этого шестиугольника на сумму площадей шести сегментов, ограниченных его сторонами и дугами круга.
Удвоив число сторон шестиугольника, Архимед получил двенадцатиугольник, площадь которого ближе к площади круга.
Затем легко вписать двадцатичетырехугольник, еще более близкий к кругу. Так постепенно «исчерпывается» площадь круга.
Тот же метод Архимед применил для вычисления площади эллипса и сегмента параболы и гиперболы.
Геометрия была главным занятием Архимеда. Он отдавал этой науке большую часть своего времени и сил. Рассказывают, будто бы Архимед решал геометрические задачи даже сидя в ванне. Он чертил на песке у своих ног, на стенах домов, везде, где это было возможно.
Но в отличие от Евклида, Архимед очень интересовался не только механикой, но и техникой. Он изобретал различные машины. Им были придуманы механизм для подъема воды — архимедов винт, полиспаст и множество других машин.
Чтобы показать значение механического расчета, Архимед устроил ручную подъемную машину, при помощи которой он мог собственными руками передвигать и поднимать огромные тяжести. Рассказывали, будто бы он подтянул этой машиной к берегу большое трехмачтовое судно, нагруженное товарами и людьми.
Конечно, чтобы собственной силой сделать эту работу, Архимед должен был в течение очень долгого времени крутить рукоять бесконечного винта своей машины: ведь выиграть в силе можно, лишь потеряв столько же во времени. Присутствовавший при этом опыте царь Гиерон был поражен необычайным зрелищем. Но Архимед будто бы сказал ему: «Дай мне, где стать, и я сдвину Землю».
Как техник Архимед прославил свое имя при защите родного города, осажденного в 210 году до н. э. римлянами. Только благодаря техническому гению этого великого математика удалось в течение двух лет отбивать приступы закаленных в боях римских воинов.
О защите Сиракуз Архимедом Полибий, Плутарх и другие историки сохранили множество легендарных рассказов.
Машины Архимеда бросали в наступавших крупные и мелкие камни, тучи стрел и копий. Они поражали ряды воинов, разбивали деревянные прикрытия, не допускали к стенам города разрушительных таранов.
Еще более поразительны сильно преувеличенные рассказы о борьбе Архимеда с морскими судами римлян.
Со стен города на них сбрасывались тяжелые бревна. Спускавшиеся огромные когти захватывали суда, приподнимали их на воздух, а затем опускали в воду кормой или бросали их на скалы.
«Придется нам прекратить войну против геометра, — сказал предводитель римлян Марцелл, — который поднимает вверх суда с моря и превосходит сказочного сторукого великана, бросая сразу на нас такое множество снарядов».
Римлянам удалось взять Сиракузы только вследствие недостаточной бдительности охраны города в одну из ночей. Архимед был, повидимому, случайно убит. На его могиле сограждане поставили невысокую гранитную колонну с выгравированным на ней рисунком шара, вписанного в цилиндр.
Через полтора столетия всеми забытая могила великого математика и защитника Сиракуз сровнялась с почвой. Стоявший на ней памятник был почти засыпан землей.
Только с большим трудом ее нашел писатель и политический деятель Цицерон, посланный в качестве правителя Сиракуз римским сенатом.
Технические изобретения Архимеда привели его к исследованию равновесия тел. Он первый дал математический вывод закона рычага. И хотя с тех пор прошло более двух тысяч лет, никто не мог сделать лучшего вывода.
Доказательство закона рычага приведено Архимедом в сочинении «О равновесии плоскостей». В нем впервые развито учение о центре тяжести.
Конечно, некоторое смутное представление об условиях равновесия имелось еще в глубокой древности. Египтяне при сооружении храмов и пирамид пользовались отвесом. Из опыта всем было известно, что на крутом косогоре колесница может опрокинуться.
Но никто не мог точно указать, при каком условии тело сохраняет равновесие: что отвес, опущенный из центра тяжести тела, не должен выйти за пределы его опоры. Если же подпереть в центре тяжести тонкую пластинку, то она останется в равновесии при любом положении.
Архимед нашел центр тяжести треугольника, трапеции и различных многоугольников.
Представим себе, что треугольник разбит на очень узкие полоски. Очевидно, что центр тяжести каждой из них лежит на ее середине. Середины же всех полосок лежат на линии, соединяющей середину стороны треугольника с противолежащим углом, — медиане.
Очевидно, что на медиане должен находиться и центр тяжести всего треугольника. Но он должен лежать и на другой медиане. Значит, пересечение двух медиан и есть центр тяжести треугольника.
Эти исследования помогли Архимеду вывести закон рычага, что не удалось ранее никому из греческих философов, занимавшихся проблемами механики.
Архимед исходил из некоторых неоспоримых допущений — аксиом — о равновесии грузов, действующих на стержень. Эти аксиомы были хорошо известны всем, кто пользовался безменом.
Из повседневного опыта известно, что равновесие грузов, подвешенных по концам стержня, зависит как от их веса, так и от расстояния до точки опоры стержня.
Очевидно, что два равных груза, подвешенных на равных расстояниях от точки опоры, уравновешивают друг друга: действительно, нет никакой причины, которая заставила бы один из них перевесить другой.
Столь же понятно, что в тех же условиях больший груз перевесит меньший.
Если же грузы равны между собой, но действуют на разных расстояниях от точки опоры, то перевесит тот, который дальше.
Вот аксиомы Архимеда, известные из повседневного опыта и положенные им в основу доказательства закона рычага.
Пусть по концам невесомого рычага подвешены грузы
Архимед делает предположение, что груз
Если этот стержень подперт посередине, то грузики взаимно уравновесятся, потому что по каждую сторону от точки опоры будет одинаковое число грузиков, равное
Не нарушая равновесия, можно заменить действие
Точно так же действие других
Легко видеть, что точка подвеса груза
Грузы
Вывод закона двуплечего рычага был началом учения о равновесии твердых тел — статики. Пользуясь этим законом, можно вывести условия равновесия блока, ворота, зубчатого колеса и других простых машин.
Архимед не ограничился изучением равновесия твердых тел. Он заложил и основы гидростатики. На эти исследования его навело решение одного практического вопроса.
Правитель Сиракуз, царь Гиерон, заказал мастеру отлить из золота корону. Когда заказ был выполнен, возникло подозрение, что мастер утаил часть данного ему драгоценного металла. Однако корона весила столько же, сколько было выдано золота.
Как же узнать, не заменена ли часть золота серебром?
Решение этой задачи царь возложил на Архимеда.
Труднейшие проблемы Архимед решал всегда гениально просто. Так было и в этом случае.
Чем плотнее тело, тем меньше его объем при равном весе. А об объеме легко судить по количеству вытесняемой воды при погружении в нее тела.
Значит, если в короне содержится серебро, то ее объем будет больше объема того куска золота, который был выдан мастеру. С другой стороны, он будет меньше объема куска серебра, по весу одинакового с короной.
Архимед приказал дать ему кусок золота и кусок серебра такого же веса, как корона. После этого он погрузил в сосуд с водой золото, серебро и корону, собирая отдельно воду, вытесненную каждым из этих предметов.
Оказалось, что меньше всего воды вытеснил кусок золота, больше — корона и еще больше — кусок серебра. Так Архимед доказал, что корона отлита из сплава серебра и золота.
Архимед не ограничился решением заданной ему практической задачи. Из этого опыта он вывел общий закон: «тела, которые тяжелее жидкости, будучи опущены в жидкость, погружаются все глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своем весе столько, сколько весит жидкость, взятая в объеме этих тел».
Этот закон было легко проверить, подвешивая тело под чашкой весов и опуская его в воду: весы показывали, что тело становилось как бы легче на вес вытесненной воды. Это, конечно, объясняется давлением снизу вверх, оказываемым водой на погруженное в нее тело, а не действительной «потерей веса».
В наше время закон Архимеда формулируется так: жидкость действует на погруженное в нее тело с силой, направленной вертикально вверх и равной весу жидкости в объеме погруженной в нее части тела.
Продолжая исследование равновесия жидкости и плавающих тел, Архимед исходил из единственного допущения, что «при равномерном и непрерывном расположении ее частиц менее сдавленная частица вытесняется более сдавленной» и «отдельные частицы этой жидкости испытывают давление отвесно расположенной над ними жидкости».
Архимед исследовал все случаи равновесия плавающих тел. Он указал, что тело, более легкое, чем жидкость, погружается ровно настолько, что вытесненная им вода по весу равна ему. Он вывел условия равновесия плавающего шарового сегмента и сегмента параболоида вращения (тела, образованного вращением параболы около ее оси).
Наконец, Архимед первый доказал, что «поверхность всякой жидкости, пребывающей в покое, имеет форму сферы, центр которой совпадает с центром Земли».
В течение ряда веков ученые не могли ничего прибавить к этим открытиям. Инженеры и конструкторы машин пользовались статикой и гидростатикой Архимеда. Установленные великим греческим ученым принципы и в настоящее время сохраняют свое значение. Его математические методы заключают в себе зачатки высшего анализа.