Феофан Бублейников
О ДВИЖЕНИИ
Из истории механики
Древние машины
Наше время — эпоха господства человека над природой. Паровозы влекут за собой десятки тяжело нагруженных вагонов. Морские суда перевозят на далекие расстояния сотни тысяч тонн товаров. Самолеты с огромной скоростью «перебрасывают» пассажиров.
Так, пользуясь знанием законов природы, удается преодолевать с большой быстротой расстояния и перемещать огромные тяжести.
Но и в далеком прошлом, за тысячи лет до наших дней, техника культурных народов уже достигла больших успехов. Древние вавилоняне и египтяне возводили дворцы, храмы и грандиозные царские усыпальницы-пирамиды, которые сделали бы честь и современной технике.
В огромном храме бога Амона в древних Фивах потолок главного зала поддерживался 134 массивными колоннами, высотой от 14 до 24 метров.
На границе песчаной пустыни в Египте высится ступенчатая пирамида Хеопса высотой 146 метров. Она построена из плит весом по 2,5 тонны каждая. У входа в эту усыпальницу возведено сооружение из отесанных глыб длиной до 5,5 метра и весом до 42 тонн.
Очевидно, что рабочие, возводившие подобные сооружения, не могли поднимать на высоту такие плиты и глыбы без механических приспособлений.
Живший значительно позднее греческий историк Геродот (около середины V века до н. э.) так описал сооружение пирамиды Хеопса: «Эта пирамида была сделана уступами, которые шли вверх наподобие ступеней; одни называли эти уступы „лестницей“, другие — „столиками“. Сделав первые уступы, подымали потом на них камни вверх помощью некоторых машин, сделанных из коротких брусьев. Потом на другую ступень подымался камень другой машиной и так далее».
Легко догадаться, что эти машины были просто рычагами с точкой опоры на крепком станке. С конца короткого плеча рычага свешивалась цепь, обвивавшая плиту. При помощи двух таких устройств можно было поднять плиту на высоту ступени пирамиды.
Более удивительно, каким образом могли древние египтяне доставлять и устанавливать у входа в храмы массивные колонны-обелиски, высотой 30–40 метров и весом до 300–400 тонн. Решить эту инженерную задачу было возможно, только пользуясь блоками.
Что древним египтянам они были знакомы, доказывает находка деревянного блока, хранящегося теперь в Лондонском музее.
Значит, нет сомнения в том, что египетские и вавилонские строители хорошо знали, как применять рычаги, блоки и наклонную плоскость. Но были ли известны им механические принципы равновесия простых машин?
На этот вопрос еще не найден ответ ни в покрытых иероглифами египетских папирусах, ни на глиняных дощечках, заменявших в древнем Вавилоне книги и найденных в развалинах древних городов.
Никакие расчеты употреблявшихся египтянами простых машин, конечно, не были возможны без знания геометрии и арифметики. Но в этих науках вавилоняне и египтяне сделали значительные успехи еще за две тысячи лет до н. э.
Строительство больших зданий, орошение полей, выделение земельных участков требовали математического решения различных практических задач.
Клинообразные вавилонские письмена и египетские иероглифы дали возможность современным ученым познакомиться с тем, как справлялись с этими задачами древние математики.
Найдены даже руководства по арифметике и геометрии. Одно из них составлено писцом фараона Ахмесом в начале второго тысячелетия до н. э. Другое такое руководство — «Математический папирус» — хранится в Москве.
Египетские математики уже употребляли для указания арифметических действий вместо слов особые знаки: шагающие ноги в зависимости от направления шага указывали на сложение и вычитание; имелись знаки равенства и корня. Особыми знаками обозначались 1, 10, 100, 1000, 10 000 и 100 000. Имелось представление даже о миллионе, который обозначался фигуркой человека, поднявшего руки в знак удивления.
В руководстве Ахмеса даны решения различных вопросов, возникавших в практике земледельца, строителя, торговца.
Например, предлагалось разделить 700 хлебов между 4 лицами так, чтобы полученные ими количества относились как 2∕3, 1∕2, 1∕3 и 1∕4 (ее легко решить, составив уравнение 2/3∙х + 1∕2∙х + 1∕3∙х + 1∕4∙х = 700, которому удовлетворяет корень х = 400).
Там же решались вопросы, требовавшие и геометрических знаний. Например, вычислялась площадь полей, имевших форму многоугольника.
У древних египтян математикой занимались писцы. Они старались придать своим знаниям таинственный, магический характер, чтобы сделать их понятными только посвященным.
Папирус Ахмеса носил заголовок: «Руководство к достижению познания всех темных вещей и тайн, содержащихся в предметах».
Однако благодаря торговле, которую вели вавилонские, египетские и индийские купцы, математические, астрономические и механические познания распространялись. Они были усвоены и древними греками, игравшими видную роль среди культурных народов древности уже в VIII–VI веках до н. э.
Родовой общинный быт греческих племен сменялся тогда рабовладельческим. По сравнению с прежним, это было прогрессом в жизни греческого общества. Появилось много промышленных предприятий, на которых работали рабы. Возникла оживленная торговля, началось строение морских судов, бороздивших Средиземное море во всех направлениях.
В греческих городах сооружались прекрасные каменные храмы и общественные здания. Для постройки их были необходимы подъемные машины.
Греческие строители знакомились с техникой народов Востока и применяли ее у себя на родине. Постройка греческих храмов и театров не представляла таких затруднений, как сооружение пирамид или установка обелисков. Поэтому древние греки могли довольствоваться строительной техникой египтян.
Но в судостроении и военном деле скоро возникли новые задачи.
Древние греки были смелыми мореплавателями.
Поэма древнегреческого поэта Гомера «Одиссея» повествует о морском путешествии ее героя, длившемся двадцать лет. Греки заплывали через нынешние Дарданелльский и Босфорский проливы в Черное море. Оттуда через Маныч, соединявший тогда Азовское и Каспийское моря, их суда проплывали в «Пруд Солнца», как греки называли Каспий.
Морские суда греков ходили под парусами, а в тихую погоду — на веслах. На них устанавливалось по одной, по две и даже по три мачты, которыми служили длинные, тяжелые бревна.
Кроме торговых судов, у греков были и военные корабли. Особенно больших размеров они достигли в эпоху развития военного флота, после смерти Александра Македонского (356–323 до н. э.).
С IV века до н. э. в греческих и позднее — в римских войсках появились военные метательные машины. Самой простой из них был онагр, метавший на сотни метров тяжелые каменные ядра. Ядро бросалось подобно тому, как древний пращник швырял камень. Только вместо руки взмах производил деревянный рычаг с веревочной петлей на конце, в которую закладывалось ядро. А силу мышц руки заменяла упругость закручиваемой тетивы.
Имелись катапульты, метавшие стрелы и копья, полет которых направлялся желобом, позволявшим вести прицельный обстрел. Искусные наводчики попадали на расстоянии ста шагов в отдельного воина, а на двести шагов — в небольшую их группу.
Камнеметами разбивали деревянные прикрытия, сооружавшиеся для защиты воинов, осаждавших города, и причиняли повреждения кораблям. Известен даже случай, когда восьмидневным обстрелом из камнеметов была разрушена наскоро построенная стена.
Для разрушения крепостных стен устраивали таран: горизонтально подвешенное тяжелое бревно с бронзовым наконечником. Стоя под прикрытием, воины раскачивали таран, нанося им удары в стену. Так постепенно разрушалась часть стены, и через пролом в крепость проникали осаждавшие ее войска.
Это было мощное разрушительное орудие древнегреческой техники. Перед ним не могли устоять никакие стены.
Рассказывая об осаде одной римской крепости карфагенским полководцем Ганнибалом, историк Ливий (I век до н. э. — I век н. э.) писал: «И вот уже громились тараном стены, и многие части их были поколеблены, в одном месте сплошные разрушения обнажили город: три башни подряд со всей находящейся между ними стеной рухнули, издавая оглушительный грохот…»
Как ни разнообразны практические цели применения рычагов, блоков и других машин, но с механической точки зрения у них одна задача — приводить в движение физические тела.
Поэтому в результате изучения действия механизмов и возникла наука о движении тел — механика.
Что такое движение
Наблюдая поднятие больших тяжестей рычагами и блоками, строители не видели в движении этих грузов ничего загадочного. Едва ли и военные техники, бросая при помощи онагров каменные ядра, задумывались над вопросом: что такое движение?
Полет камня, копий и стрел, метавшихся военными машинами, был для них понятным явлением.
Быть может, если бы древние техники взялись за изучение условий равновесия машин и траектории брошенного каменного ядра, они бы заложили основы механики. Но, довольствуясь практическими знаниями механизмов, они не занимались теоретическими исследованиями.
Когда же изучением природы заинтересовались греческие философы, то они расширили проблемы механики, придав ей философский характер.
Греческие философы были естествоиспытателями-энциклопедистами. Они хотели сразу охватить в одном учении всю природу как единое целое.
Философ-материалист Гераклит из Эфеса (около 530–470 до н. э.) указывал, что в природе «все течет, все постоянно изменяется, все находится в постоянном процессе возникновения и исчезновения».
Этот процесс изменения тел природы греческие философы и назвали «движением».
Наиболее последовательно учение о движении изложил философ Аристотель (384–322 до н. э.).
Сын врача при дворе македонского царя, Аристотель получил хорошее образование. Он очень увлекался естествознанием и поступил в «Академию» философа Платона в Афинах, где пробыл до смерти Платона (в 347 году). В течение этого времени он не только изучал сочинения своего учителя, но и самостоятельно разрабатывал философские вопросы.
В 343 году Аристотель принял приглашение македонского царя Филиппа II быть воспитателем его тринадцатилетнего сына Александра.
Когда воспитанник Аристотеля — Александр Македонский — стал главой большого государства, он предпринял далекие походы — в Среднюю Азию, в Индию, в Египет. Советы философа-воспитателя были уже ему не нужны.
Тогда Аристотель возвратился в Афины. Там он основал свою философскую школу, приспособив для учебных целей одно из общественных зданий — Ликей. Туда съезжались к нему юноши из всех государств Греции, из Италии, Македонии и других культурных стран.
Прогуливаясь с учениками по аллеям парка, примыкавшего к Ликею, Аристотель беседовал с ними, излагая свои философские взгляды.
Аристотель оставил много сочинений. Вопросы механики были рассмотрены им в книгах «Физика» и «О небе».
Как и другие философы, Аристотель понимал под движением любое изменение тела: превращение воды в лед или в пар, созревание и высыхание плода на дереве, заболевание и выздоравливание… Он стремился объединить все эти разнородные явления в едином понятии. Размышляя о перемещении одного тела относительно другого, как понимается в современной механике движение, Аристотель задумывался вот над чем: что происходит с телом, когда оно перемещается из одного места в другое? И он решил, что тело в первом месте исчезает, перестает существовать, а во втором — вновь возникает.
Аристотель размышлял над тем, «что», в «чем» и «когда» движется, то-есть что такое материя (вещество), пространство и время. Он утверждал, что пространство заполнено материей, так как «природа боится пустоты».
Движение в заполненном пространстве возможно потому, что «тела могут уступать друг другу место», — доказательством чего служит водоворот в реке: частицы воды заполняют все русло, что не мешает их вихреобразному движению.
Но не все философы соглашались в этом вопросе с Аристотелем.
Противниками учения о сплошном строении материи были последователи жившего несколько ранее философа Демокрита (460–370 до н. э.).
Демокрит, сын богатого купца, обладал большими средствами. Он много путешествовал по культурным странам древнего Востока: Индии, Вавилонии, Египту. Там Демокрит познакомился с астрономией и математикой вавилонских и египетских жрецов.
Этот философ учил, что материя состоит из мельчайших неделимых частиц — атомов.
Доказательство правильности такого представления атомисты видели, например, в распространении запахов: очевидно, что от пахучего вещества отделяются мельчайшие частицы, производящие на орган обоняния впечатление запаха.
Маленький кусочек краски, растворяясь в большом количестве воды, также дает пример разделения вещества на мельчайшие частицы. Пар над кипящей водой, по мнению атомистов, образуется атомами, выделяющимися из ее массы.
Но атомы неделимы. Между ними — пустое пространство. По учению Демокрита, атомы находятся в постоянном движении с различной скоростью и во всевозможных направлениях. Этим и объясняются все явления природы.
Обладая значительными математическими познаниями, греческие философы не применяли их к механике. Они считали единственно правильным методом познания природы логические выводы из умозрительных положений (аксиом).
Размышляя над движением тел, философы не интересовались тем, каковы его причины. Они не стремились найти зависимость между пройденным пространством и промежутком времени, в течение которого длится движение.
Современная же механика изучает количественные законы движения. Для этого необходимы наблюдения и опыты.
Греческие философы, как члены правящего класса рабовладельческого общества, пренебрегали опытами: ведь опыт так близок к ремеслу и презиравшемуся ими физическому труду.
Правда, Аристотель говорил, что природу должно изучать путем наблюдения и опыта, но сам мало пользовался этим методом.
Рассуждения философов о «сущности» движения не имели практического значения. Они не могли помочь рассчитать механизм или предсказать траекторию полета каменного ядра, выброшенного онагром. Поэтому техники были вынуждены руководствоваться чисто опытными — эмпирическими — знаниями, усвоенными ими из практики.
Догонит ли Ахиллес черепаху?
Древние философы пренебрегали опытом. Только разум человека и его логика казались им надежным средством познания природы.
Поэтому нередко они сталкивались с «неразрешимыми» загадками. Особенную известность приобрели в древности так называемые «апории» философа Зенона (V век до н. э.). Остановимся лишь на двух из них.
Зенон доказывал, будто прославленный поэтом Гомером греческий герой, «быстроногий» Ахиллес, не может догнать черепаху.
Этот философ, конечно, знал, что во время осады Трои Ахиллес часто догонял убегавших от него троянцев. Да и сам он видел, как на улицах города, где он жил, одни пешеходы перегоняют других.
Но Зенон не придавал решающего значения наблюдению и опыту. Поэтому он и утверждал, будто Ахиллес не может догнать черепаху.
Зенон рассуждал строго логически: пока Ахиллес пробежит расстояние до того места, где находится черепаха, она проползет некоторое, хотя и небольшое, пространство; в то время как Ахиллес преодолеет и это расстояние, черепаха опять отползет немного, и так будто бы будет продолжаться вечно. Следовательно, делал вывод Зенон, Ахиллес никогда не догонит черепаху.
«Загадка» Зенона привлекла большое внимание не только философов, но и математиков. Всех удивляло, что рассуждение с логической точки зрения правильно, а приводит к явно нелепому заключению.
Однако эту задачу нетрудно разрешить: стоит только ввести понятие о скорости движения и применить арифметику.
Предположим, что Ахиллес пробегает в секунду
Ошибочность вывода Зенона тем и объясняется, что этот философ ни с опытом не посчитался, ни математику не применил для разрешения своей апории.