Заметьте теперь, что эллипсоид имеет очень интересное свойство — его всегда можно описать простым заданием направления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наименьшего и наибольшего диаметра и направление, перпендикулярное к ним. На фиг. 31.3 они обозначены буквами
По отношению к этим осям уравнение эллипсоида имеет особенно простую форму:
Итак, по отношению к главным осям у тензора поляризуемости останутся только три ненулевые компоненты a
Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.
Тензор часто записывается в виде таблицы из девяти коэффициентов, взятых в скобки:
Для главных же осей
Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически
Если все три элемента тензора поляризуемости в диагональной форме равны друг другу, т. е. если
то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изотропным. В тензорных обозначениях
где.dij—
что, разумеется, означает
Тензор dijчасто называют также «символом Кронекера». Для забавы вы можете доказать, что тензор (31.14) после замены одной прямоугольной системы координат на другую будет иметь в точности ту же самую форму. Тензор поляризуемости типа (31.13) дает
т. е. получается наш старый результат для изотропного диэлектрика:
Р=aЕ.
Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрии и что для многих целей их удобно разбить на 7 классов в соответствии с формой элементарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симметричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° относительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен переходить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно.
Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллипсоид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для кубического кристалла равными должны быть все три диаметра эллипсоида — он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях.
Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симметрии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемости увидеть, какова должна быть эта связь, относительно легко.
§ 4. Другие тензоры; тензор инерции
В физике есть еще немало других примеров тензоров. В металле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока j приблизительно пропорциональна электрическому полю Е, причем константа пропорциональности называется проводимостью s
j=sЕ.
Однако для кристалла соотношение между j и Е более сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем
Другим примером физического тензора является момент инерции. В гл. 18 (вып.
L = Iw.
Момент инерции тела произвольной формы зависит от его ориентации относительно оси вращения. Моменты инерции прямоугольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость со и момент количества движения L — оба векторы. Для вращения относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления to и L, вообще говоря, не совпадают (фиг. 31.4).
Они связаны точно таким же образом, как Е и Р, т. е. мы должны писать:
Девять коэффициентов
Мы можем снова воспользоваться этим выражением для определения эллипсоида инерции. Кроме того, снова можно воспользоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е.
Тензор инерции твердого тела можно написать, если известна форма тела. Нам нужно только выписать полную кинетическую энергию всех частиц тела. Частица с массой
S1/2mv2
по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью wтвердого тела. Предположим, что тело вращается относительно центра масс, который мы будем считать покоящимся. Если при этом r — положение частицы относительно центра масс, то ее скорость v задается выражением wXr. Поэтому полная кинетическая энергия равна
к. э.=S1/2m(wX г)2. (31.18)
Единственное, что нужно теперь сделать,— это переписать wXr через компоненты w
Умножая это уравнение на m/2, суммируя по всем частицам и сравнивая с уравнением (31.17), мы видим, что I
Это и есть та формула для момента инерции тела относительно оси
Ну а поскольку r2
Если хотите, его можно записать в «тензорных обозначениях»:
где через ri обозначены компоненты
Для любого тела независимо от его формы можно найти эллипсоид энергии, а следовательно, и три главные оси. Относительно этих осей тензор будет диагональным, так что для любого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.
§ 5. Векторное произведение
Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы определили там «момент силы, действующий в плоскости», например txy, следующим образом:
t
Обобщая это определение на три измерения, можно написать
tij=riFj-rjFi. (31.22)
Как видите, величина tij — это тензор второго ранга. Один из способов убедиться в этом — свернуть tij с каким-то вектором, скажем с единичным вектором е, т. е. составить
Если эта величина окажется
Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что tij-— действительно тензор.
Однако tijпринадлежит к особому сорту тензоров, он
tij=-tji.
Поэтому у такого тензора есть только три разные и неравные нулю компоненты: txy, tyz и tzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда
t=(tx,. ty, tz) = (tyz, tzx, txy).
Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет
Точно так же как аксиальный вектор t==rXF является тензором, по тем же соображениям тензором будет и любое векторное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.
Вообще говоря, для любых двух векторов а и b девять величин
§ 6. Тензор напряжений
Встречавшиеся до сих пор симметричные тензоры возникали как коэффициенты, связывающие один вектор с другим. Сейчас я познакомлю вас с тензором, имеющим совершенно другой физический смысл,— это
Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были действовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представьте себе, что мы смотрим на воображаемую плоскость, перпендикулярную оси
Материал, находящийся слева от площадки, действует на материал с правой стороны с силой DF1 (фиг. 31.5,
Вы уже знакомы с одним видом напряжений — статическим давлением жидкости. Там сила была равна давлению, умноженному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущейся вязкой жидкости сила не обязательно перпендикулярна поверхности: помимо давления (положительного или отрицательного), появляется еще и
Определим тензор напряжений следующим образом. Вообразите сначала разрез, перпендикулярный оси
Отношение этих сил к площади Dy/Dz мы назовем
Первый индекс
А теперь представьте себе разрез, перпендикулярный оси
Разлагая снова эту силу на три компоненты, как показано на фиг. 31.7, мы определяем три компоненты напряжения
Наконец, проведем воображаемый разрез, перпендикулярный оси z, и определим три компоненты
Я хочу теперь показать, что этих девяти величин достаточно, чтобы полностью описать внутреннее напряженное состояние, и что