Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Рис. 16, а


Рис. 16, б

К сожалению, геометрический анализ, который предлагает Лоулор, представляется несколько надуманным (рис. 16, б): линии проведены из произвольно выбранных точек, которые никак нельзя назвать узловыми. Более того, и отношения, которые в результате получаются, слишком громоздки (например, (2√1–φ2)/φ2) и потому неправдоподобны. Поэтому лично мне представляется, что хотя представление Лоулора о том, что «погребальные практики в традиции фараонов были призваны не только воздать дань уважения физическому телу покойного, но и создать вместилище метафизических знаний, которые он накопил при жизни», исключительно верно, но все же, в сокровищницу метафизических знаний Петосириса золотое сечение не входило.

Следует подчеркнуть, что доказать, что золотое сечение не встречается в египетских археологических памятниках, когда об этом свидетельствуют только геометрические параметры, практически невозможно. Однако никаких документов, которые подтверждают, что египтяне сознательно применяли золотое сечение, до нас не дошло, а без них золотое сечение в произведениях искусства или в архитектуре должно прямо-таки бросаться в глаза, а не прятаться так глубоко, что для его выявления требуется очень сложный анализ. Как мы еще увидим, подробный разбор нескольких более поздних случаев, когда некоторые исследователи также полагали, что художники применяли золотое сечение, показывает, что эти предположения столь же необоснованны.

Однако я, пожалуй, не стану разбирать другие относительно малоизвестные объекты, например, египетскую стелу, датируемую примерно 2150 годом до н. э., размеры которой, как полагают некоторые ученые, также относятся как золотое сечение, а перейду сразу к кульминации – к великой пирамиде Хеопса.

Пирамида чисел

По традиции, правителем Верхнего Египта, который завоевал мятежное царство Нижнего Египта (в дельте Нила) и тем самым объединил Египет около 3110 г. до н. э., был Менес (или Нармер). В правление III династии (ок. 2780–2680 гг. до н. э.) был введен культ Солнца в качестве главной религии, а также вошли в обиход мумифицирование умерших и строительство крупных каменных монументов. Эпоха великих пирамид достигла расцвета при IV династии, около 2500 г. до н. э. – и ее высочайшим достижением стали три знаменитые пирамиды в Гизе (рис. 17). «Великая пирамида» (на фотографии она на заднем плане) служит не только памятником фараону, но и символом успеха организации древнеегипетского общества в целом. Ученый Курт Мендельсон в своей книге «Загадка пирамид» (Kurt Mendelssohn. The Riddle of the Pyramids, 1974) пришел к заключению, что целью всего сооружения пирамид было в большой степени не применение их по назначению, то есть в качестве надгробных сооружений, но их возведение само по себе. Иначе говоря, главным были не сами пирамиды, а их строительство. Это объясняет очевидное несоответствие между колоссальным вложением сил в то, чтобы нагромоздить около 20 миллионов тонн добытого в каменоломнях песчаника, и единственным предназначением пирамид – похоронить трех фараонов.

В 1996 году египтолог-любитель Стюарт Киркленд Вьер, работавший под эгидой Денверского музея естествознания, подсчитал, что на строительстве великой пирамиды в Гизе должны были трудиться примерно 10 000 рабочих. Оценка количества энергии, необходимой, чтобы доставить каменные блоки из каменоломни к месту строительства, а также поднять камни на требуемую высоту, позволила Вьеру прикинуть необходимое количество работы. Предположив, что строительство заняло двадцать три года (продолжительность царствования фараона Хеопса), и сделав несколько разумных допущений – сколько энергии мог потратить египетский рабочий в день и как выглядел распорядок рабочего дня, – Вьер сумел оценить количество потребовавшейся рабочей силы.


Рис. 17

До самого недавнего времени датировка пирамид в Гизе опиралась в основном на сохранившиеся перечни фараонов и продолжительность их царствования. Поскольку такие списки редки, почти никогда не бывают полными и, как известно, противоречивы, хронология, как правило, составляется с точностью примерно до ста лет. (Такая же погрешность у датировки методом радиоуглеродного анализа). В ноябре 2000 года в журнале «Nature» была опубликована статья, в которой Кейт Спенс (Kate Spence) из Кембриджского университета предлагает иной метод датировки, согласно которому великая пирамида Хеопса была выстроена в 2480 году до н. э. (с погрешностью всего в пять лет). Метод Спенс – тот самый метод, который первым предложил астроном сэр Джон Гершель в середине XIX века, а основан он на том, что пирамиды всегда ставили с очень точной ориентацией на север. В частности, пирамида Хеопса ориентирована на север с погрешностью меньше чем 3 угловые минуты (всего 5 % градуса!) Несомненно, что египтяне определяли север с такой точностью благодаря астрономическим наблюдениям.

Северный полюс небесной сферы определяется как точка в небе, соответствующая оси вращения Земли – та точка, вокруг которой, как видится глазу, вращаются звезды. Однако сама по себе ось Земли не закреплена в пространстве, она медленно вращается, примерно как ось вращающегося волчка или гироскопа. В результате этого движения – оно называется прецессией – северный полюс небесной сферы каждые 26 000 лет описывает на северном небе большой круг. В наши дни северный полюс небесной сферы определяется с погрешностью в 1 градус по положению Полярной звезды (астрономы называют ее Альфой Малой Медведицы), однако во времена строительства великих пирамид дело обстояло иначе. Спенс предположила, по каким двум звездам древние египтяне находили север – это Дзета Большой Медведицы и Альфа Малой Медведицы, – а затем тщательно изучила ориентацию восьми пирамид и сумела определить дату возведения пирамиды Хеопса: 2480 год до н. э., то есть примерно на 74 года позднее, чем полагали раньше.

Мало какие археологические сооружения окутаны такой плотной завесой легенд и противоречий, как пирамида Хеопса. Например, пристальное внимание к пирамидам и к оккультной стороне их изучения было центральной темой учения розенкрейцеров (его основал Христиан Розенкрейц в 1459 г.). Члены этой секты претендовали на весьма глубокое знание тайн природы, магических знаков и знамений и т. п. Из отдельных ответвлений культа розенкрейцеров берет начало масонство. Ближе к нашему времени интерес к науке о пирамидах вспыхнул снова – возможно, благодаря вышедшей в 1859 году книге ушедшего на покой английского издателя Джона Тейлора «Великая пирамида. Кто и зачем ее построил?» (John Taylor. The Great Pyramid: Why Was It Built and Who Built It?), проникнутой религиозным духом. Тейлор был настолько убежден, что пирамида до мельчайших деталей построена по математическим формулам, о которых древние египтяне и не подозревали, что сделал вывод, будто это сооружение – результат божественного вмешательства. Находясь под влиянием модного в те годы представления, что англичане будто бы потомки потерянных колен Израилевых, Тейлор, в частности, предположил, что основной единицей измерения при строительстве пирамид был библейский «локоть» (чуть больше 25 английских дюймов и в точности 25 «пирамидальных дюймов»). Предполагается, что именно на эту меру длины опирался Ной при строительстве Ковчега и царь Соломон при строительстве Храма. Тейлор пошел дальше и заявил, что этот священный локоть был дарован свыше, поскольку основан на длине радиуса Земли – расстояния от центра до полюса: «пирамидальный дюйм» якобы равен одной пятисотмиллионной доле полярной оси Земли. Эта книга, совершенно безумная, обрела горячего сторонника в лице Чарльза Пиацци Смита, королевского астронома Шотландии (то есть директора Королевской обсерватории Эдинбурга), который в 1860-е годы опубликовал ни много ни мало три объемистых тома о великой пирамиде, первый из которых назывался «Великая пирамида как наше наследие» (Charles Piazzi Smyth. Our Inheritance in the Great Pyramid). Энтузиазм Пиацци Смита был вызван отчасти тем обстоятельством, что он был ярым противником введения в Великобритании метрической системы. Его псевдонаучная или теологическая логика была примерно такова: великая пирамида Хеопса рассчитана в дюймах, математические свойства пирамиды показывают, что ее строительство вдохновлялось свыше, следовательно, дюйм – величина богоданная, не то что сантиметр, порождение «самой дикой, самой кровожадной, самой безбожной революции» (Великой Французской, разумеется). Далее Пиацци Смит излагает свою точку зрения на диспут о системе мер и пишет, в частности, в книге «Великая пирамида, ее секреты и раскрытые тайны» («The Great Pyramid, Its Secrets and Mysteries Revealed»):

А значит, те билли, которые предлагали в Парламенте профранцузски настроенные агитаторы за метрическую систему, столь часто не проходили не благодаря усилиям отдельных защитников британских мер и весов, а скорее из-за того, что эта весьма пронырливая система греховна сама по себе, и наша задача – уберечь избранный народ, сохранившийся, несмотря на все исторические коллизии, не допустить, чтобы этот народ по недомыслию облачился в отравленные одежды, в те самые, в каких явится антихрист, и, словно Исав за чечевичную похлебку, за жалкую сиюминутную выгоду в торговле отказался от установления, принадлежащего ему по праву рождения, от установления, которое наши авраамические предки так стремились сохранить до той поры, когда таинства Господни затронут, наконец, все человечество.

Прочитав этот текст, мы уже не станем удивляться, когда узнаем, что писатель Леонард Коттрел решил назвать главу о Чарльзе Пиацци Смите в своей книге «Горы фараоновы» (Leonard Cottrell. The Mountains of Pharaoh) «Великий пирамидиот».

И Пиацци Смит, и Тейлор своим нумерологическим анализом параметров пирамид, в сущности, поспособствовали возрождению пифагорейской одержимости числом 5. Они отметили, что у пирамиды (что очевидно) пять вершин и пять граней, если считать основание, что «священный локоть» содержит примерно 25 (5 в квадрате) дюймов (или ровно 25 «пирамидальных дюймов»), что «пирамидальный дюйм» составляет одну пятисотмиллионную земной оси и т. д. Писатель и популяризатор науки Мартин Гарднер обнаружил прелестный пример, демонстрирующий нелепость «пятерочного» анализа Пиацци Смита. В своей книге «Чудачества и заблуждения во имя науки» (Martin Gardner. Fads and Fallacies in the Name of Science, 1957) Гарднер пишет:

Если заглянуть в «World Almanac» и выяснить некоторые факты, касающиеся монумента Вашингтона, можно найти довольно много «пятерочностей». Высота его составляет 555 футов 5 дюймов. Основание – квадрат со стороной 55 футов, а окна расположены на высоте в 500 футов от основания. Если умножить основание на 60 (а это число месяцев в году, умноженное на 5), получим 3300 – а это точный вес его замкового камня в фунтах. К тому же в слове «Washington» ровно десять букв – то есть дважды пять. А если умножить вес замкового камня на площадь основания, получится 181 500 – достаточно точное приближение к скорости света в милях в секунду.

Однако настала пора сделать самое скандальное заявление о великой пирамиде Хеопса с точки зрения нашего интереса к золотому сечению. В той же книге Гарднер упоминает одно утверждение, которое, если оно истинно, доказывает, что золотое сечение и вправду использовалось при проектировании великой пирамиды. Гарднер пишет: «Геродот утверждает, что пирамиду построили с таким расчетом, чтобы площадь каждой грани равнялась площади квадрата, сторона которого равна высоте пирамиды». Греческого историка Геродота (ок. 485–425 гг. до н. э.), великий римский оратор Цицерон (106–43 гг. до н. э.) назвал «отцом истории». Гарднер не понимал, что, в сущности, следует из утверждения Геродота, однако был не первым и не последним, кто его приводит.

Знаменитый английский астроном сэр Джон (Фредерик Уильям) Гершель (1792–1871) в статье под названием «Британский модульный стандарт длины» («British Modular Standard of Length»), опубликованной в «The Athenaeum» 28 апреля 1860 года, пишет:

Такой же уклон… принадлежит пирамиде, характеризуемой таким свойством, что каждая из ее граней равна квадрату со стороной, равной высоте пирамиды. Это характерное соотношение, которое, как ясно и очевидно говорит нам Геродот, умышленно придали пирамиде ее строители – и теперь нам известно, что оно ей действительно придано.

А уже совсем недавно, в 1999 году, французский писатель и специалист по телекоммуникациям Мидхат Газале написал в своей интересной книге «Гномон. От фараонов до фракталов»[5]: «Говорили, что греческий историк Геродот узнал у египетских жрецов, что квадрат высоты великой пирамиды равен площади ее треугольной боковой стороны». Почему это утверждение так важно? По той простой причине, что это все равно что сказать, что великая пирамида была создана так, чтобы отношение высоты ее треугольной стороны к половине стороны основания было равно золотому сечению!


Рис. 18

Не пожалейте минуты и внимательно посмотрите на чертеж пирамиды на рис. 18, где а – половина стороны основания, s – высота треугольной стороны, а h – высота самой пирамиды. Если утверждение, которое приписывают Геродоту, верно, это будет означать, что h2 (квадрат высоты пирамиды) равен × а (площади треугольной стороны, см. Приложение 3). Элементарные геометрические выкладки показывают, что это равенство означает, что соотношение s/a в точности равно золотому сечению (доказательство см. в Приложении 3). Естественно, на ум сразу же приходит вопрос, так ли это. Основание великой пирамиды Хеопса на самом деле не совсем правильный квадрат, длины его сторон разнятся от 755,43 футов до 756,08 футов. Средняя длина стороны, 2а, равна, таким образом, 755,79 футов. Высота пирамиды h = 481,4 фута. Применив теорему Пифагора, мы находим, исходя из этих величин, что высота треугольной стороны s равна 612,01 футов. Итак, мы нашли, что отношение s/a = 612,01/377,90 = 1,62, что и в самом деле очень близко к золотому сечению (погрешность составляет меньше 0,1 %).

Если понимать это буквально, получается, что древние египтяне и правда знали, что такое золотое сечение, поскольку это число не просто появляется в параметрах великой пирамиды, но и существует исторический документ, подтверждающий, что именно таково было намерение создателей сооружения: об этом нам говорит Геродот. Но так ли это? Или мы просто стали свидетелями явления, которое канадский математик Роджер Герц-Фишлер называл «одной из самых хитроумных оплошностей в истории науки»?

Очевидно, что параметры пирамиды изменить нельзя, поэтому единственная часть «доказательства» наличия золотого сечения, в которой можно усомниться, это утверждение Геродота. Несмотря на то что это высказывание многократно цитируется на протяжении истории, несмотря даже на то, что невозможно устроить перекрестный допрос человеку, жившему 2500 лет назад, по меньшей мере четверо ученых взяли на себя труд проделать «детективную» работу и выяснить, что именно сказал Геродот и что он на самом деле имел в виду. Результаты двух таких расследований подытожили Герц-Фишлер и математик из Университета штата Мэн Джордж Марковски.

Оригинальный отрывок содержится в 124 параграфе книги II «Истории» Геродота, которая называется «Евтерпа». В классическом переводе читаем: «Она четырехсторонняя, каждая сторона ее шириной в 8 плефров и такой же высоты» (пер. Г. Стратановского). Обратите внимание, что плефр – это 100 греческих футов (примерно 101 английский). Что-то этот текст совсем не похож на то, что нам представляют как цитату из Геродота (что квадрат высоты равен площади стороны). Более того, параметры пирамиды, которые приводит Геродот, вообще не соответствуют действительности. Великая пирамида высотой далеко не 800 футов (напомним, что ее высота всего 481 фут), и даже сторона ее квадратного основания (около 756 футов) и то существенно меньше 800 футов. Так откуда же взялась эта «цитата»? Первая подсказка – статья сэра Джона Гершеля в «The Athenaeum». Согласно Гершелю, «заслуга выявления» этой особенности пирамиды и обнаружения цитаты из Геродота принадлежит не кому-нибудь, а Джону Тейлору в его книге «Великая пирамида. Кто и зачем ее построил?» Герц-Фишлер проследил, откуда пошла дезинформация, которая, видимо, была вызвана всего лишь неверным толкованием Геродота в книге Джона Тейлора, которая в наши дни приобрела мрачную славу.

Начинает Тейлор с перевода из Геродота, который не слишком отличается от процитированного: «Каждая грань этой пирамиды, которых четыре, с каждой стороны имеет по восемь плефров, и высота такова же». Однако тут автор дает волю воображению – и предполагает, что Геродот имел в виду, будто количество квадратных футов в каждой грани равняется количеству квадратных футов в квадрате со стороной, такой же, как высота пирамиды. Однако даже при такой «вольной» интерпретации у Тейлора остается еще одна небольшая трудность – упомянутое число (восемь плефров) сильно расходится с действительными размерами пирамиды. Тейлор предлагает способ преодолеть эту трудность – и этот способ еще возмутительнее. Без какой бы то ни было логической аргументации Тейлор заявляет, что нужно умножить восемь плефров на площадь основания одной из меньших пирамид, стоящих к востоку от пирамиды Хеопса.

Из всего этого следует, что текст Геродота едва ли можно считать документальным подтверждением наличия в проекте великой пирамиды золотого сечения. Совершенно необоснованная интерпретация текста, порожденная книгой Тейлора и впоследствии повторявшаяся бесчисленное множество раз, на самом деле бессмысленна и служит разве что очередным примером подтасовки данных.

С этим выводом согласны не все. В статье под названием «Икосаэдр как основа дизайна великой пирамиды», опубликованной в 1992 году, Хьюго Ф. Ферхейен выдвигает предположение, что золотое сечение как мистический символ, вероятно, умышленно скрыли в параметрах великой пирамиды как «послание к посвященным». Однако, как мы еще увидим, для сомнений, что золотое сечение вообще учитывалось при строительстве пирамид, есть и другие основания.

Когда мы поймем, что великая пирамида Хеопса по количеству книг, ей посвященных, опережает даже легендарную Атлантиду, нас уже не слишком удивит, что пирамидология интересуется не только числом φ – ее привлекает и другое уникальное число, число π.

Теория π впервые появилась в 1838 году в произведении Г. Эгнью под названием «Письмо из Александрии о свидетельствах практического применения квадратуры круга в конфигурации великих египетских пирамид» (H. Agnew. Letter from Alexandria, on the Evidence of the Practical Application of the Quadrature of the Circle, in the Configuration of the Great Pyramids of Egypt), однако в целом ее приписывают Тейлору, который на самом деле просто пересказал теорию Эгнью. Суть ее в том, что отношение периметра основания пирамиды (8а в наших прежних обозначениях, где а – половина стороны основания) к высоте пирамиды h равна 2 π. Если мы подставим в эту формулу те же числа, что и раньше, то получим, что 8а/h = 4 × 755,79/481,4 = 6,28, что с достаточной точностью равно 2 π (погрешность всего около 0,05 %).

Следовательно, прежде всего надо отметить, что из параметров великой пирамиды как таковых было бы невозможно определить, использовались ли при ее строительстве φ и π (или хотя бы одно из этих чисел). Более того, в статье, напечатанной в 1968 году в журнале «The Fibonacci Quarterly», полковник Р. С. Бирд из Беркли (Калифорния) сделал следующий вывод: «Бросьте кости и выбирайте себе теорию».

Если выбирать между φ и π как потенциальными мерилами архитектуры пирамид, очевидно, что у π перед φ есть преимущество. Во-первых, папирус Ринда (Ахмеса), один из основных источников о познаниях египетских математиков, сообщает нам, что древние египтяне, жившие в XVII веке до н. э., по крайней мере приблизительно знали значение π, а о том, что им было известно число φ, нет никаких свидетельств. Вспомним, что Ахмес переписывал свой справочник по математике примерно в 1650 году до н. э., в гиксосский период или период «царей-пастухов». Однако он отмечает, что оригинальный документ относился к периоду фараона Аменмехмета (Аменемеса) III из Двенадцатой династии, и в принципе возможно, хотя и маловероятно, что содержание документа было известно и во времена строительства великой пирамиды Хеопса. В папирусе содержится 87 математических задач, которым предшествует таблица дробей. У нас есть достаточно доказательств (и другие папирусы, и исторические источники), что этой таблицей продолжали пользоваться как справочным материалом почти две тысячи лет. Ахмес пишет, что этот документ – «врата в знания обо всем сущем и обо всех неведомых тайнах». Принятое в Египте приближенное значение числа π фигурирует в задаче номер 50 папируса Ринда, где идет речь о вычислении площади круглого поля. Ахмес предлагает такое решение: «Отними 1/9 диаметра, а остаток возведи в квадрат». Из этого мы делаем вывод, что египтяне предполагали, что π = 3,16049…, что отличается от точного значения 3,14159… менее чем на 1 процент.

Второе преимущество π перед φ следует из интересной теории о том, что строители учитывали π при проектировании пирамид, даже не зная его точного значения. Эту теорию выдвинул Курт Мендельсон в «Загадке пирамид». Логика Мендельсона такова. Поскольку нет абсолютно никаких свидетельств, что египтяне времен Древнего Царства знали математику на уровне хоть сколько-нибудь выше самого элементарного, присутствие π в геометрии пирамид наверняка можно считать следствием не теоретических, а практических строительных приемов. Мендельсон предполагает, что древние египтяне, вероятно, при измерении вертикальных и горизонтальных размеров пользовались разными мерами длины. Похоже, чтобы измерять высоту пирамид (в локтях), они применяли веревки из пальмового волокна, а чтобы измерять длину стороны основания – каталки-барабаны (диаметром в локоть). То есть горизонтальную длину считали в оборотах – можно сказать, в «катальных локтях». Выходит, египетскому зодчему оставалось всего лишь выбрать, сколько локтей в высоту должны построить рабочие на каждый горизонтальный катальный локоть. Поскольку каждый катальный локоть равен π локтям (длина окружности с диаметром в 1 локоть), этот метод строительства придал бы параметрам пирамид соотношение π, даже если строители не имели бы об этом ни малейшего представления.

Разумеется, проверить умозаключения Мендельсона у нас нет никакой возможности. Однако некоторые египтологи утверждают, что есть прямые свидетельства, что при проектировании великих пирамид не учитывалось ни золотое сечение, ни π. Эта теория основана на концепции секеда. Секед – это всего-навсего мера наклона граней пирамиды или, точнее, количество горизонтальных локтей, на которое надо было сместиться на каждый вертикальный локоть. Очевидно, для строителей это была важная практическая величина, ведь им нужно было, выкладывая очередной ряд каменных блоков, сохранять форму всего сооружения. Задачи, которые в папирусе Ринда значатся под номерами 56–60, как раз и относятся к вычислению секеда и подробно разобраны в великолепной книге Ричарда Дж. Джиллингса «Математика во времена фараонов» (Richard J. Gillings. Mathematics in the Time of the Pharaohs). В 1883 году сэр Флиндерс Петри обнаружил, что при строительстве великой пирамиды Хеопса конкретная величина секеда (наклона грани пирамиды) была выбрана таким образом, что «отношение периметра основания пирамиды к ее высоте равно 2 π» с довольно высокой точностью, однако само число π в ее дизайне не играет абсолютно никакой роли. Сторонники теории секеда подчеркивают, что точно такой же секед обнаруживается и в параметрах ступенчатой пирамиды в Медуме, выстроенной незадолго до великой пирамиды в Гизе.

С теорией секеда согласны не все. Курт Мендельсон пишет: «Было предложено великое множество математических объяснений, и среди них – даже гипотеза одного видного археолога [Петри], которая гласит, что строители будто бы случайно применили соотношение 14/11 [очень близко к 4/π], но все они, к сожалению, крайне неубедительны». С другой стороны, Роджер Герц-Фишер, изучивший ни много ни мало девять теорий, претендующих на истолкование проекта великой пирамиды, в статье, опубликованной в 1978 году в журнале «Crux Mathematicorum», пришел к выводу, что теория секеда, весьма вероятно, верна.

Однако с нашей точки зрения, если верна любая из двух гипотез – теория секеда или теория катальных локтей, – золотое сечение не играло никакой роли при создании великой пирамиды.

Так можно ли считать, что вопрос о золотом сечении и великой пирамиде, насчитывающий 4500 лет, наконец-то закрыт? Мы, конечно, от души на это надеемся, однако история, к несчастью, доказывает, что мистическое очарование пирамид и нумерологическая «тайна» золотого сечения оказываются сильнее даже самых основательных доказательств. Доводы, которые выдвигали Петри, Джиллингс, Мендельсон и Герц-Фишер, известны уже много десятков лет, однако это ничуть не мешает публиковать многочисленные новые книги, на все лады рассказывающие о надуманной «загадке» золотого сечения.

Так что с нашей точки зрения можно заключить, что крайне маловероятно, чтобы золотое сечение и его свойства открыли древние вавилоняне или древние египтяне – эту задачу предстояло решить греческим математикам.

Второе сокровище

У геометрии есть два великих сокровища: одно – теорема Пифагора, второе – деление отрезка в крайнем и среднем отношении. Первое мы уподобим мерке золота, второе же – драгоценному самоцвету.

Иоганн Кеплер (1571–1650)

Нет никаких сомнений, что каждый, кто воспитан в западной или ближневосточной цивилизации, во всем, что касается математики, естественных наук, философии, литературы и искусства, является учеником древних греков. Немецкий поэт Гёте писал: «Именно греки умели мечтать о жизни слаще всех народов», и это лишь скромная дань уважения отважным первопроходцам и всем открытиям, которые сделали греки в различных областях знания, ими же разработанных и названных.

Однако даже самые блестящие достижения греков во всех прочих сферах меркнут рядом с их головокружительными открытиями в математике. К примеру, всего за четыреста лет – от Фалеса Милетского (ок. 600 г. до н. э.) до «великого геометра» Аполлония Пергского (ок. 200 г. до н. э.) греки полностью сформировали основы геометрической теории.

Успехи греков в математике во многом были прямым следствием страсти к познанию ради познания, а не ради практических целей. Рассказывают, что один ученик Евклида, изучив вместе с ним некую теорему, спросил: «А что я с этого получу?» Евклид приказал рабу дать мальчику медную монету, чтобы тот увидел, что наука и в самом деле занятие прибыльное.

Образование государственного деятеля во времена Платона должно было включать в себя арифметику, геометрию, стереометрию, астрономию и музыку – и все это, как рассказывает нам пифагореец Архит, подпадало под общее название «математика». По легенде, когда Александр Великий спросил своего учителя Менехма (которому приписывают открытие эллиптической кривой, параболы и гиперболы), нельзя ли изучить геометрию как-нибудь поскорее, получил ответ: «О повелитель, в странствиях по нашему царству можно найти дороги для царей и дороги для простых граждан, однако в геометрию нет царского пути».

Платон

В таком интеллектуальном окружении и вырос Платон (428/427 г. до н. э. – 348/347 г. до н. э.), один из самых влиятельных умов Древней Греции и западной цивилизации в целом. Считается, что Платон изучал математику у пифагорейца Феодора Киренского, который первым доказал, что не только √2, но и √3, √5 и так далее вплоть до √17 – иррациональные числа. Почему он остановился на 17, никто в точности не знает, однако общего доказательства он, очевидно, вывести не сумел. Некоторые исследователи утверждают, что Феодор, вероятно, приводит самое легкое доказательство несоизмеримости, опираясь на понятие золотого сечения (идея примерно та же, что и в Приложении 2).

В своем «Государстве» Платон пишет, что математику совершенно необходимо включать в программу образования всех философов и государственных деятелей. Подобным же образом надпись над входом в его школу (Академию) гласила: «Не геометр да не войдет!» Историк математики Дэвид Юджин Смит в своей книге «Наш долг перед Грецией и Римом» (David Eugene Smith. Our Debt to Greece and Rome) называет это первым требованием к абитуриентам в истории. Восхищение математикой очевидно и тогда, когда Платон не без зависти пишет об отношении к математике в Египте, где на потеху детишкам изобрели арифметические игры, которые они изучают с удовольствием и забавы ради.

Оценивая роль Платона в развитии математики в целом и в понимании золотого сечения в частности, мы должны будем изучить не только его вклад в собственно математику, достаточно скромный, но и последствия его влияния на математические изыскания других ученых и в его собственном, и в последующих поколениях, и поддержки, которую он оказывал науке в целом. В некотором смысле Платона можно считать одним из первых чистых теоретиков. Примером его теоретических наклонностей может служить отношение к астрономии, где он предпочитал не наблюдать движение светил, а советовал «оставить небеса в покое» и сосредоточиться на более абстрактных математических небесах. Согласно Платону, настоящие звезды – это всего лишь отображение математических небес, подобно тому как геометрические чертежи – отображение абстрактных понятий точки, линии и окружности. Любопытно, что в своей выдающейся книге «История греческой математики» (Thomas Heath. A History of Greek Mathematics), изданной в 1921 году, сэр Томас Хит пишет: «Трудно разобраться, что же имел в виду Платон, когда проводил различие между видимой небесной тканью (то есть видимыми звездами, их расположением и движением), которая, безусловно, прекрасна, и подлинной небесной тканью, которым видимые небеса лишь подражают и которые бесконечно чудеснее и прекраснее».

Как астрофизик-теоретик я должен отметить, что Платон в неявном виде высказывает некоторые соображения, которым я симпатизирую. Здесь проводится различие между красотой космоса как такового и красотой теории, которая объясняет устройство Вселенной. Для наглядности приведу принцип, который открыл великий немецкий художник Альбрехт Дюрер (1471–1528).

Сложим шесть правильных пятиугольников (рис. 19) так, чтобы получился один большой пятиугольник с пятью отверстиями в форме золотых треугольников (равнобедренных треугольников с отношением стороны к основанию, равным φ). Шесть таких пятиугольников, в свою очередь, образуют еще один правильный пятиугольник, большой и более дырчатый – и так до бесконечности.

Думаю, все согласятся, что получившаяся фигура (рис. 19) удивительно красива. Однако у нее есть и обаяние другого рода – математическое: оно состоит в простоте принципа, по которому она строится. Так вот, мне кажется, это и есть математические небеса, о которых говорил Платон.

Не приходится сомневаться, что общее руководство научными изысканиями, которое осуществлял Платон в годы своего правления, гораздо важнее его непосредственного вклада в исследования. В тексте, который приписывают Филодему и относят к первому веку, мы читаем: «В те времена в математике [был достигнут] большой прогресс, и Платон им руководил и задавал задачи, которые математики ревностно решали».


Рис. 19

Тем не менее, Платон и сам очень интересовался свойствами чисел и геометрических фигур. В частности, в «Законах» он предполагает, что оптимальное число граждан в государстве – 5040, поскольку это число (а) делится на 12, 20 и 21, (б) его двенадцатая часть тоже делится на 12, (в) у него 59 делителей, в том числе все целые числа от 1 до 12, кроме 11, зато на 11 делится практически соседнее число 5038. Выбор этого числа с его свойствами позволил Платону разработать свою социально-экономическую утопию. Скажем, земля в государстве делится на 5040 наделов, а 420 из них составляют территорию каждой из двенадцати «фил». Сами жители государства делятся на четыре общественные категории – класса: свободные граждане с женами и детьми, их рабы, поселенцы-иностранцы и разнообразные заезжие гости. При выборах совета члены каждого из четырех классов избирают из своей среды по девяносто человек.

С Платоном связано и еще одно число – 216. Его он упоминает в «Государстве» в довольно-таки темном отрывке, где речь идет о том, что 216 – это шесть в кубе, а 6 – это одно из чисел, символизирующих брак (поскольку это произведение женского числа 2 и мужского числа 3). Платон и сам был учеником пифагорейцев и прекрасно знал, что сумма кубов сторон знаменитого пифагорейского треугольника – 3–4–5 – тоже равна 216.

Золотое сечение интересовало Платона, поскольку его очень занимали две темы: несоизмеримость и платоновы тела. В «Законах» Платон признается, что ему неловко, что с идеей несоизмеримости длин и с иррациональными числами он познакомился сравнительно поздно, и сокрушается, что многие греки его поколения до сих пор о них не знают.

В диалоге «Гиппий Больший» Платон признает, что подобно тому, как любое четное число может быть суммой либо двух четных, либо двух нечетных чисел, так и сумма двух иррациональных чисел может быть и иррациональной, и рациональной. Поскольку мы уже знаем, что φ – число иррациональное, рациональный отрезок прямой (то есть отрезок единичной длины), разделенный в соответствии с золотым сечением, служит примером последнего случая, хотя Платон этого, возможно, и не знал. Некоторые ученые придерживаются той точки зрения, что Платон интересовался золотым сечением как таковым. В доказательство они приводят слова Прокла Диадоха (ок. 411–485), который в «Комментарии к I книге «Начал» Евклида» пишет: «Евдокс… взяв у Платона начала сечений, разработал множество их видов» (здесь и далее пер. А. Щетникова), и полагают, что здесь говорится о том, что Платон (и Евдокс) занимались золотым сечением. Однако такое толкование вызывает серьезные сомнения со второй половины XIX века, когда многие исследователи сделали вывод, что слово «сечение», вероятно, не имеет здесь никакого отношения к золотому сечению – Прокл говорит о сечениях геометрических тел или вообще о разделении отрезков. Так или иначе, не приходится сомневаться, что основы для того, чтобы сформировать понятие о золотом сечении и вывести его определение, были заложены в годы, предшествующие открытию Платоновской Академии в 386 г. до н. э., и за время ее существования. Вероятно, ключевой фигурой и движущей силой при выведении теорем, относящихся к золотому сечению, был Теэтет (ок. 417 г. – ок. 369 г. до н. э.), который, согласно византийской энциклопедии «Суды», «первым построил пять так называемых правильных геометрических тел». Математик Папп, живший в IV веке, пишет, что Теэтет к тому же «отличал соизмеримые длины от несоизмеримых». Теэтет не принадлежал к Академии непосредственно, однако наверняка поддерживал с ней неофициальные связи.

В диалоге «Тимей» Платон берет на себя сложнейшую задачу – рассказывает о происхождении и устройстве космоса. В частности, он пытается объяснить структуру материи на примере пяти правильных многогранников, которые уже были в некоторой степени изучены пифагорейцами и подробно – Теэтетом. Пять платоновых тел (рис. 20) отличаются следующими свойствами: это единственные геометрические тела, у каждого из которых все грани – равные и равносторонние и которые можно вписать в сферу (то есть поместить все их вершины на поверхность сферы). Платоновы тела – это тетраэдр (рис. 20, а, с четырьмя гранями в виде равносторонних треугольников), куб (рис. 20, b, шесть квадратных граней), октаэдр (рис. 20, с, восемь треугольных граней), додекаэдр (рис. 20, d, двенадцать граней в виде правильных пятиугольников) и икосаэдр (рис. 20, е, двадцать треугольных граней).


Рис. 20

Платон свел воедино идеи Эмпедокла (ок. 490–430 гг. до н. э.), согласно которому материя состоит из четырех стихий – земли, воды, огня и воздуха, – и «атомарную» теорию материи (существование невидимых частиц), которую выдвинул Демокрит из Абдеры (ок. 460 г. – ок. 370 г. до н. э.). «Единая» теория Платона предполагала, что каждой из четырех стихий соответствует своя фундаментальная частица и одно из платоновых тел. Надо понимать, что за исключением некоторых подробностей, пусть и заметных, основная идея, на которой основана теория Платона, не слишком отличается от того, как формулировал суть современной химии в XIX веке Джон Дальтон. Согласно Платону, стихия земли связана с устойчивым кубом, «всепроникающее» свойство огня – с относительно простым заостренным тетраэдром, воздух с его «подвижностью» – с октаэдром, а многоликая вода – с многогранным икосаэдром. А пятый правильный многогранник – додекаэдр – символизирует по Платону (или Тимею) Вселенную в целом или, по его словам, «его бог определил для Вселенной и прибегнул к нему в качестве образца» (пер. С. Аверинцева). Вот почему художник Сальвадор Дали решил включить в композицию своей «Тайной Вечери» парящий над столом огромный додекаэдр (см. рис. 5).

Некоторые последователи Платона никак не могли примириться с отсутствием фундаментальной стихии, которая была бы связана с додекаэдром, и кое-кто постулировал существование пятой стихии. Например, Аристотель считал, что пятая вселенская стихия (квинтэссенция) – это эфир, материал, из которого созданы небесные тела и который, по мнению Аристотеля, пронизывал всю Вселенную. Аристотель утверждал, что пятая стихия, пронизывающая всю материю, обеспечивает движение и изменение в соответствии с законами природы. Идея субстанции, пропитывающей пространство и служащей средой для распространения света, доминировала в науке вплоть до 1887 года, когда американский физик Альберт Абрахам Майкельсон и химик Эдвард Уильямс Морли провели свой знаменитый опыт и доказали, что такой среды не существует (согласно современной теории света, она и не нужна). В сущности, в ходе опыта ученые измерили скорость двух лучей света, направленных в разные стороны. Ожидалось, что поскольку Земля движется сквозь эфир, скорости двух лучей окажутся разными, однако опыт однозначно показал, что это не так. Результат опыта Майкельсона-Морли натолкнул Эйнштейна на поиски теории относительности.

Затем события приняли неожиданный поворот: в 1998 году две группы астрономов обнаружили, что наша Вселенная не просто расширяется (что уже доказал астроном Эдвин Хаббл в двадцатые годы), но расширяется с ускорением. Это открытие вызвало настоящее потрясение, поскольку астрономы, естественно, полагали, что расширение должно замедляться из-за силы тяготения. Ведь если бросить мяч вверх, стоя на поверхности Земли, его движение будет замедляться, поскольку на него действует сила тяготения, которая в конце концов и заставит его изменить направление движения на противоположное, – так и сила тяготения всей материи во Вселенной, казалось бы, должна замедлить скорость космического расширения. Открытие, что расширение не замедляется, а ускоряется, наводит на мысль о существовании какой-то «темной энергии», которая проявляется как отталкивающая сила, которая в нашей нынешней Вселенной пересиливает силу тяготения. Физики еще спорят о том, каков источник и природа этой «темной энергии». Согласно одной гипотезе эта энергия связана с квантовым полем, пронизывающим весь космос наподобие знакомого нам электромагнитного поля. Это поле очень похоже на невидимую среду Аристотеля и даже иногда называется «квинтэссенция». Кстати, в научно-фантастическом фильме Люка Бессона «Пятый элемент» «пятой стихией» – «квинтэссенцией» – была названа сила самой жизни, то, что оживляет неживое.

Теория Платона отнюдь не сводилась к символической связи фигур и стихий. Он отметил, что грани первых четырех правильных многогранников можно составить из двух видов прямоугольных треугольников: равнобедренного, с углами 45°–90°–45°, и треугольника с углами 30°–90°–60°. Далее Платон объясняет, как при помощи этих свойств можно объяснить основные «химические реакции». Например, согласно платоновой «химии», когда огонь нагревает воду, получается две частицы пара (воздуха) и одна частица огня. Формулу этой реакции можно записать так:

[вода] → 2 [воздух] + [огонь]

А если сбалансировать количество участвующих в реакции граней платоновых тел, которые соответствуют этим стихиям, то получится 20 = 2 × 8 + 4. Хотя это, конечно, никак не соответствует современному пониманию структуры материи, основная идея, что большинство фундаментальных частиц в нашей Вселенной и их взаимодействия можно описать математической теорией, которой свойственна некоторая симметрия, – краеугольный камень современных исследований в области физики частиц.

Сложные явления, которые мы наблюдаем во Вселенной, для Платона не играли существенной роли: он считал, что подлинно фундаментальна именно лежащая в их основе симметрия, а она не меняется. Это представление отнюдь не противоречит современным представлениям о законах природы. Ведь эти законы, в частности, одинаковы во всех уголках Вселенной. По этой причине законы, которые мы выводим из лабораторных экспериментов, можно применить, скажем, при изучении атома водорода и здесь, на Земле, и в галактике, лежащей в миллиардах световых лет от нас. Эта симметрия законов природы проявляется и в том, что величина, которую мы называем импульсом (равная произведению массы тела и его скорости и имеющая направление), сохраняется, то есть имеет одно и то же значение что сегодня, что через год. Подобным же образом, поскольку законы природы с течением времени не меняются, сохраняется и величина, которую мы называем энергией. Энергию невозможно получить из ничего. Вот почему современные теории, основанные на симметриях и на законах сохранения, – законы подлинно платонические.

Вероятно, интерес к многогранникам у пифагорейцев был первоначально вызван наблюдениями над кристаллами пирита в Южной Италии, где находилась пифагорейская школа. Кристаллы пирита, он же серный колчедан, часто имеют в форму додекаэдра. Однако платоновы тела, их красота и математические свойства поражали воображение ученых и спустя много столетий после Платона – и упоминания о них мы встречаем в самых неожиданных местах. Например, в научно-фантастическом романе Сирано де Бержерака (1619–1655) «Иной мир» автор строит летательный аппарат в виде икосаэдра, чтобы сбежать из башни, где он заточен, и приземлиться на Солнце.

Золотое сечение, число φ, играет важнейшую роль в пропорциях и симметрических свойствах некоторых платоновых тел. В частности, додекаэдр с длиной ребра (места, где сходятся две грани) в одну единицу, имеет площадь поверхности в 15 × φ / (√3 – φ) и объем 5 × φ3 / (6–2 × φ). Подобным же образом икосаэдр с длиной ребра в одну единицу имеет объем (5 × φ5)/6.

Из симметрии платоновых тел можно вывести интересные следствия. Например, у куба и октаэдра одинаковое число ребер – 12, – однако число граней и вершин взаимно обратное – у куба шесть граней и восемь вершин, а у октаэдра восемь граней и шесть вершин. То же самое можно сказать о додекаэдре и икосаэдре – у обоих по 30 ребер, но у додекаэдра 12 граней и 20 вершин, а у икосаэдра – наоборот. Это симметрическое сходство платоновых тел позволяет очень интересно вписывать правильный многогранник в его «двойник». Если соединить центры граней куба, получится октаэдр (рис. 21), а если соединить центры граней октаэдра, получится куб. Ту же самую процедуру можно проделать, чтобы вписать икосаэдр в додекаэдр и наоборот – а соотношение длин ребер каждого многогранника (одного в другом) опять же можно выразить при помощи золотого сечения: это φ2/√5. А тетраэдр – сам себе «двойник»: если соединить четыре центра граней тетраэдра, получится другой тетраэдр.


Рис. 21

Хотя в античности были известны не все свойства платоновых тел, ни от Платона, ни от его последователей не скрылась их красота. В некотором смысле даже трудности при построении этих фигур, которые поначалу возникали (пока не были выведены методы, связанные с золотым сечением), можно считать их имманентными свойствами. Ведь последние слова диалога «Гиппий Больший» гласят: «Прекрасное – трудно». Греческий историк Плутарх (ок. 46 – ок. 120) в своем сочинении «Об упадке оракулов» пишет: «Пирамида [тетраэдр], октаэдр, икосаэдр, додекаэдр, все первоначальные фигуры, которые предсказывает Платон, прекрасны благодаря симметрии и равенствам в их отношениях, и ничего лучше и даже ничего сопоставимого с ними Природа не создала».


Рис. 22

Как уже упоминалось, икосаэдр и додекаэдр тесно связаны с золотым сечением, и связей этих несколько. Например, 12 вершин икосаэдра можно объединить в три группы по четыре, и вершины из каждой группы будут лежать на углах золотого прямоугольника, то есть прямоугольника, у которого длины сторон соотносятся как φ. Прямоугольники перпендикулярны друг другу, а единственная их общая точка лежит в геометрическом центре икосаэдра (рис. 22). Подобным же образом центры 12 пятиугольных граней додекаэдра можно объединить в три группы по четыре, и каждая из этих групп также составит золотой прямоугольник. Тесные связи между некоторыми плоскими фигурами, скажем, правильным пятиугольником и пентаграммой, и золотым сечением привели к неизбежному выводу, что интерес греков к золотому сечению начался, вероятно, с попыток построить подобные плоские фигуры и геометрические тела. Подобные математические изыскания велись примерно в начале IV века до н. э. Однако до нас дошли и многочисленные утверждения, что на основе золотого сечения создан и архитектурный проект Парфенона, который был построен и украшен в 447–432 годах до н. э., в правление Перикла. Насколько обоснованны подобные заявления?

Обитель Девы

Храм Парфенон (по-гречески «Обитель Девы») был выстроен на Афинском Акрополе для отправления культа Афины Парфенос (Афины Девы). Зодчих звали Иктин и Калликрат, а Фидию с учениками и помощниками было поручено обеспечить храм скульптурами. Фронтоны с западной и восточной стороны здания украшали скульптурные группы. На одной из них изображалось рождение Афины и состязание между Афиной и Посейдоном. Со своей кажущейся простотой Парфенон по сей день остается одним из прекраснейших шедевров архитектуры, идеалом единства и ясности линий. Двадцать шестого сентября 1687 года при попытке отбить Афины у Османской Империи Парфенон был разрушен прямым попаданием венецианского снаряда; турки устроили в храме пороховой склад. Разрушения были очень велики, однако основная конструкция здания осталась нетронутой. Генерал Кёнигсмарк, сопровождавший главнокомандующего, вспоминал: «Как огорчила его светлость гибель прекрасного храма, простоявшего три тысячи лет!» В дальнейшем, особенно после окончания турецкого владычества (в 1830 году), были предприняты многочисленные попытки выявить математические и геометрические принципы, которые, предположительно, легли в основу проекта Парфенона и обеспечили его совершенную красоту. В большинстве книг о золотом сечении утверждается, что параметры Парфенона – когда треугольные фронтоны были еще целы – идеально соответствовали золотому прямоугольнику. Обычно в доказательство приводят чертеж наподобие того, что мы видим на рис. 23. Считается, что золотое сечение соблюдено и в других параметрах Парфенона. Например, одна из самых дотошных монографий о золотом сечении – «Золотое сечение» Адольфа Цайзинга (Adolph Zeising. Der Goldener Schnitt, 1884) – сообщает, что высота фасада от вершины тимпана (внутреннего поля фронтона) до подножия пьедестала под колоннами разделяется вершиной колонн в соответствии с золотым сечением. Это утверждение повторяется во множестве книг, в том числе, например, в достаточно известном и авторитетном труде Матилы Гика «Золотое сечение» (Matila Ghyka. Le Nombre dor, 1931). Другие авторы, например, Милутин Бориссавлевич в книге «Золотое сечение и научная эстетика архитектуры» (Miloutine Borissavlievitch. The Golden Number and the Scientific Aesthetics of Architecture, 1958), хотя и не отрицают наличие числа φ в дизайне Парфенона, предполагают, что своей красотой и гармонией храм обязан скорее правильному ритму, который обеспечивается повторением одинаковых колонн.




Поделиться книгой:

На главную
Назад