Серьезные сомнения в проявлении золотого сечения в Парфеноне высказал математик из Университета штата Мэн Джордж Марковски в статье «Заблуждения относительно золотого сечения», которая была опубликована в «
Так использовалось ли золотое сечение при проектировании Парфенона? Точно сказать трудно. Хотя большинство математических теорем, имеющих касательство к золотому сечению (или к делению «в крайнем и среднем отношении»), видимо, были сформулированы уже после постройки Парфенона, однако пифагорейцы располагали значительными познаниями в этой области. Следовательно, зодчие Парфенона могли бы решить, что его конструкция будет основана на каком-то принципе эстетического канона. Однако это отнюдь не так очевидно, как убеждают нас многие книги, и не очень хорошо подтверждаются размерами, которыми обладает Парфенон в действительности. Учитывалось золотое сечение при строительстве Парфенона или нет, неизвестно, зато мы точно знаем, что сводом всех математических «программ», связанных с золотым сечением и выведенных древними греками в IV веке до н. э., стали «Начала» Евклида, вышедшие в свет примерно в 300 году до н. э. И в самом деле, с точки зрения логики, глубины и последовательности «Начала» издавна считались апофеозом достоверности человеческого познания.
В крайнем и среднем отношении
В 336 году до н. э. двадцатилетний Александр Македонский унаследовал трон, а затем одержал череду блистательных побед, завоевал большую часть Малой Азии, Сирию, Египет и Вавилон и стал правителем Персидской империи. За несколько лет до безвременной смерти – Александр умер в тридцать три года – он основал величайший памятник самому себе: город Александрию в устье Нила.
Александрия располагалась на пересечении трех великих цивилизаций – египетской, греческой и иудейской. В результате она превратилась в незаурядный интеллектуальный центр, просуществовавший много сотен лет и давший жизнь выдающимся открытиям и шедеврам – в том числе «Септуагинте» («переводе семидесяти»), переводу Ветхого Завета на древнегреческий, который, согласно легенде, выполнили 72 переводчика. Работа началась в III веке до н. э. и продолжалась в несколько этапов свыше ста лет.
После смерти Александра власть над Египтом и африканскими владениями Александра получил Птолемей I, и в числе первых его распоряжений было учреждение в Александрии подобия университета (Музейона). В него входила и библиотека; на ее комплектацию были брошены значительные силы, и считается, что в определенный момент в ней хранилось 700 000 книг (некоторые были конфискованы у незадачливых заезжих иностранцев). В первый штат преподавателей Александрийской школы входил и Евклид, автор «Начал», самой прославленной книги за всю историю математики. Хотя Евклид был «автором бестселлера» (по количеству проданных экземпляров «Начала» до ХХ века уступали лишь Библии), весьма вероятно, что он учился в Афинах у кого-то из учеников Платона. Прокл, в частности, пишет о Евклиде: «Этот муж жил при Птолемее I… Он моложе окружения Платона и старше Эратосфена и Архимеда».
«Начала», тринадцатитомный труд по геометрии и теории чисел, настолько колоссален по размаху, что мы иногда забываем, что Евклид написал еще с десяток книг на самые разные темы – от музыки до механики и оптики. До нас дошли лишь четыре его трактата: «О делении», «Оптика», «Явления» и «Данные». В «Оптике» содержатся некоторые первые исследования перспективы. Едва ли кто-нибудь станет спорить, что «Начала» – величайший и авторитетнейший учебник математики в истории человечества. Рассказывают, что Авраам Линкольн, желая разобраться, что на самом деле значит слово «доказательство» в юридическом контексте, изучал «Начала» в своей хижине в Кентукки. Знаменитый английский философ и логик Бертран Рассел описывает в автобиографии свое знакомство с «Началами» Евклида (в одиннадцать лет!) и говорит, что это была «величайшая веха в моей жизни, событие ослепительное, словно первая любовь».
При прочтении «Начал» складывается впечатление, что автор этого труда – человек совестливый, почитающий традиции и очень скромный. Евклид нигде не пытается присвоить себе чужие мысли и достижения. В сущности, он вообще не претендует на оригинальность, несмотря на совершенно очевидный факт, что он предлагает множество новых доказательств, совершенно иначе организует знания, которым другие ученые посвятили целые тома, и самостоятельно продумывает структуру своего труда. Дотошность, честность и скромность Евклида снискали восхищение Паппа Александрийского, который около 340 года н. э. составил «Математическое собрание» – бесценный обзор многих аспектов греческой математики.
В «Началах» Евклид делает попытку охватить основную часть всего свода математических знаний своего времени. Книги I–VI посвящены геометрии плоских фигур, которую мы теперь изучаем в школе и которая получила название в честь Евклида – евклидова геометрия. Из них в книгах I, II, IV и VI говорится о линиях и плоских фигурах, в книге III собраны теоремы об окружности, а в книге V подробно рассказывается о следствиях из предположения, которое сделал Евдокс Книдский (408–355 г. до н. э.). Книги VII–X посвящены теории чисел и основам арифметики. В частности, в книге Х подробно рассказывается об иррациональных числах, и ее содержание в основном посвящено трудам Теэтета. В книге XI излагаются основы стереометрии, в книге XII, где в основном разобраны труды Евдокса, дана теорема о площади круга, а в книге XIII, также основанной на трудах Теэтета, рассказано, как построить пять платоновых тел.
Еще в античности к «Началам» писали комментарии – этим занимались Герон (I в. н. э.), Папп (IV в.) и Прокл (V в.) – все из Александрии – и Симпликий Афинский (VI в.). В IV в. н. э. появилась новая редакция труда, выполненная Теоном Александрийским; именно с нее делались все переводы вплоть до XIX века, когда в Ватикане была обнаружена рукопись с несколько иным текстом. В Средние века «Начала» трижды переводили на арабский. Первый из переводов выполнил Аль-Хаджжадж ибн Юсуф по заказу халифа Гарун-аль-Рашида (правил в 786–809 гг.), о котором мы знаем по сказкам из «Тысячи и одной ночи». В Европе «Начала» стали известны в латинских переводах арабской версии. Арабский текст получил в свое распоряжение английский монах-бенедиктинец Аделард (Аделяр) Батский (ок. 1070–1145), который, как рассказывают, путешествовал по Испании, называясь студентом-магометанином; около 1120 года он выполнил перевод на латынь. Этот перевод лег в основу всех европейских изданий вплоть до XVI века. Затем последовали переводы на многие современные языки.
Сам Евклид, вероятно, и не был величайшим математиком в истории, однако нет никаких сомнений, что как преподавателю математики ему не было и нет равных. Его учебником практически в неизменном виде пользовались больше двух тысяч лет, до середины XIX века. Даже сыщик Шерлок Холмс, плод воображения Артура Конан-Дойла, в «Этюде в багровых тонах» утверждает, что его выводы, сделанные методом дедукции, «безошибочны, как теоремы Евклида» (
Речь о золотом сечении заходит в «Началах» несколько раз. Первое определение золотого сечения («в крайнем и среднем отношении») мы встречаем в книге II, где оно применяется к площадям и о нем говорится несколько расплывчато. Второе, более четкое определение – применительно к пропорциям – дано в книге VI. Евклид опирается на золотое сечение, в частности, при построении правильного пятиугольника (в книге IV), додекаэдра и икосаэдра (в книге XIII).
Рис. 24
Давайте при помощи самой простой геометрии изучим определение Евклида и поймем, почему золотое сечение играет такую важную роль в построении пятиугольника. На рис. 24 изображен отрезок АВ, разделенный на две части точкой С. Евклидово определение из книги IV, где говорится о крайнем и среднем отношении, означает, в сущности, что (длинная часть) / (короткая часть) = (целый отрезок/длинная часть). Иначе говоря, на рис. 24:
Так как же подобное деление отрезка связано с пятиугольником? У любой правильной плоской фигуры (то есть с равными сторонами и внутренними углами, такие фигуры еще называют правильными многоугольниками) сумма углов равна 180 × (
Рис. 25
Поэтому получается, что углы среднего треугольника равны 36–72–72, как помечено на рис. 25,
Связь золотого сечения с правильными пятиугольниками, пятисторонняя симметрия и платоновы тела представляют интерес сами по себе, и их, конечно, было бы более чем достаточно, чтобы возбудить любознательность древних греков. Пифагорейцы были прямо-таки очарованы правильным пятиугольником и пентаграммой, а Платон пристально интересовался правильными многогранниками и был убежден, что они служат отражением фундаментальных вселенских сущностей; поэтому поколения математиков, не покладая рук, трудились над формулировкой многочисленных теорем, имеющих отношение к φ. Однако золотое сечение никогда не заняло бы такого видного места и не снискало бы почтения на грани поклонения, если бы не некоторые его алгебраические свойства, поистине уникальные. Но чтобы понять, каковы эти свойства, нам нужно сначала точно вычислить значение φ.
Снова рассмотрим рис. 24; возьмем длину короткой части СВ за единицу, а длину длинной части АС за
Умножим обе части на
Если вы вдруг подзабыли, как решать квадратные уравнения, в Приложении 5 приведена краткая памятка. Два корня уравнения золотого сечения равны
Положительный корень
Пол С. Брукманс из города Конкорд в штате Калифорния в 1977 году опубликовал в журнале «
Итак, мы получили алгебраическое выражение золотого сечения и теперь можем, в принципе, вычислить его с высокой точностью. Именно это и проделал М. Берг в 1966 году, когда он за 20 минут на большом компьютере
Конечно, все вышеприведенные свойства числа φ весьма интересны, однако читатель вправе решить, что они едва ли оправдывают звание «золотого» или «божественного» числа – и будет, конечно, прав. Однако пока что мы лишь стоим на пороге поразительных чудес.
Сокровищница сюрпризов
Всем знакомо это восхитительное чувство, когда мы приходим на вечеринку, где, как мы были твердо убеждены, никого не знаем, и вдруг узнаем лицо старого друга. Такой же наплыв эмоций возникает, когда на выставке сворачиваешь за угол и вдруг видишь свою любимую картину. Близкие устраивают нам приятные сюрпризы именно потому, что нежданная радость многим из нас приносит колоссальное удовольствие. А у математики и, в частности, у золотого сечения в запасе полным-полно сюрпризов.
Представьте себе, что мы хотим вычислить значение вот такого необычного выражения, состоящего из бесконечного числа квадратных корней:
Как тут вообще подступиться к ответу? Есть один довольно-таки громоздкий метод: сначала вычислить, что даст нам √2=1,414…, затем вычислить и т. д., уповая на то, что рано или поздно значения начнут быстро сходиться к какому-то числу. Но ведь, возможно, есть и другой метод вычисления, проще и изящнее. Обозначим искомую величину
Теперь возведем в квадрат обе части равенства. В левой получим
Однако обратите внимание, что поскольку выражение в правой части нашего равенства тянется до бесконечности, оно равно нашему первоначальному
А теперь рассмотрим совсем другое бесконечное выражение, на сей раз – с дробями:
Это особое математическое понятие, известное как
Однако отметим, что поскольку непрерывная дробь тянется бесконечно, знаменатель второго слагаемого в правой части равен
Умножим обе части на
Поскольку непрерывная дробь, соответствующая золотому сечению, состоит из одних единиц, она очень медленно сходится. В этом отношении золотое сечение «труднее» выразить в виде непрерывной дроби, нежели любое другое иррациональное число: воистину оно самое иррациональное из всех иррациональных чисел!
Рис. 26
Теперь оставим бесконечные выражения и обратимся к золотому прямоугольнику с рис. 26. Длины сторон этого прямоугольника соотносятся друг с другом в соответствии с золотым сечением. Теперь предположим, что мы отрезаем от этого прямоугольника квадрат, как показано на рисунке. У нас останется прямоугольник поменьше, и это тоже будет золотой прямоугольник. Габариты этого «производного» прямоугольника меньше, чем у «исходного», с коэффициентом ровно φ. Теперь отрежем квадрат от «производного» золотого прямоугольника – и у нас получится еще один золотой прямоугольник с габаритами, которые опять же меньше с коэффициентом φ. Этот процесс можно продолжать до бесконечности, создавая золотые прямоугольники все меньше и меньше (каждый раз их габариты «сдуваются» на множитель φ). Если бы мы изучали все уменьшающиеся по размеру золотые прямоугольники в лупу, причем брали бы линзу все сильнее и сильнее, они были бы все одинаковые. Золотой прямоугольник – единственный прямоугольник, обладающий таким свойством, что если отрезать от него квадрат, получится подобный прямоугольник. Проведите диагонали в любой паре из «исходного» и «производного» треугольника из этой череды, как на рис. 26, и они все пересекутся в одной точке. К этой недостижимой точке и сходятся уменьшающиеся прямоугольники. Благодаря «божественным» качествам, приписываемым золотому сечению, математик Клиффорд А. Пиковер предложил назвать эту точку «Оком Господним».
Если у вас не идет кругом голова при одной мысли, что во всех этих математических обстоятельствах, таких разных, мы приходим к одному и тому же числу φ, возьмите простенький карманный калькулятор, и я покажу вам потрясающий фокус. Выберите два любых числа (число разрядов не имеет значения) и запишите их подряд. Теперь при помощи калькулятора (или в уме) составьте (и запишите) третье число, сумму первых двух. Теперь составьте четвертое число – прибавив к получившейся сумме третье, пятое – прибавив четвертое к третьему, шестое – сложив пятое с четвертым и т. д., пока у вас не получится последовательность из двадцати чисел. Скажем, если первыми числами у вас были 2 и 5, у вас должна получиться последовательность 2, 5, 7, 12, 19, 31, 50, 81, 131… Теперь при помощи калькулятора поделите двадцатое число на девятнадцатое. Узнаете результат? Разумеется, это φ. К этому фокусу и его «разоблачению» я вернусь в главе 5.
Мрачное Средневековье
Когда Евклид в «Началах» давал определение золотого сечения, его интересовала в первую очередь геометрическая интерпретация этого понятия и его применение в построении правильного пятиугольника и некоторых платоновых тел. Греческие математики следующих столетий вывели еще несколько геометрических результатов, связанных с золотым сечением. Например, в дополнительной книге к «Началам» Евклида (ее иногда так и называют книгой XIV «Начал») содержится важная теорема о додекаэдре и икосаэдре, вписанных в одну и ту же сферу. Текст книги XIV приписывают Гипсиклу Александрийскому, который, вероятно, жил во II веке н. э., однако считается, что в ней содержатся также теоремы Аполлония Пергского (ок. 262–190 до н. э.), одного из трех светил Золотого Века греческой математики (приблизительно 300–200 годы до н. э.) наряду с Евклидом и Архимедом. После этого к изучению золотого сечения возвращались лишь от случая к случаю, и эти исследования были связаны в основном с именами Герона (I в. н. э.), Птолемея (II в. н. э.) и Паппа (IV в. н. э.). Герон в своей «Метрике» предлагает формулы для приближенного вычисления площади поверхности правильного пятиугольника и правильного десятиугольника и объема икосаэдра и додекаэдра, однако умалчивает о том, как эти формулы были получены.
Птолемей (Клавдий Птолемей) жил примерно в 100–179 г. н. э., однако о его жизни практически ничего неизвестно, кроме того, что работал он в основном в Александрии. На основании своих собственных астрономических наблюдений, а также знаний, полученных его предшественниками, Птолемей разработал знаменитую геоцентрическую модель Вселенной, согласно которой солнце и небесные тела вращаются вокруг Земли. Конечно, в рассуждениях Птолемея была фундаментальная ошибка, однако при помощи этой модели удалось объяснить наблюдаемое движение планет (хотя бы в первом приближении), и идеи Птолемея определяли ход мыслей астрономов в течение тринадцати веков.
Собственные астрономические изыскания Птолемей согласовал с выводами других греческих астрономов, в особенности Гиппарха Никейского, и свел весь корпус знаний воедино в своем энциклопедическом тринадцатитомном труде «Великое математическое построение по астрономии», или попросту «Великое» (по-гречески «мегисте»), которое в Европе стало известно под арабизированным названием «Альмагест» – «мегисте» с приставкой «аль-» – определенным артиклем. Кроме того, Птолемею принадлежат важные заслуги и в географической науке, он написал авторитетный труд «Руководство по географии».
В «Альмагесте» и «Руководстве по географии» Птолемей приводит один из самых ранних эквивалентов тригонометрической таблицы для множества углов. В частности, он вычислил длины хорд, соединяющих две точки на окружности под разными углами, в том числе под углами 36, 72 и 108 градусов: эти величины, если вы помните, появляются и в правильном пятиугольнике, а следовательно, тесно связаны с золотым сечением.
Последним великим греческим геометром, который занимался теоремами, связанными с золотым сечением, был Папп Александрийский. В своем «Математическом собрании» (ок. 340 г. н. э.) Папп предлагает новый метод построения додекаэдра и икосаэдра, а также сравнивает объемы платоновых тел, и во всех этих выкладках присутствует золотое сечение. Комментарии Паппа к евклидовой теории иррациональных чисел сохранились в арабских переводах трудов Паппа и прекрасно отражают историческое развитие представлений об иррациональных числах. Однако эти героические усилия остановить общий упадок и разложение математики и, в частности, геометрии оказались безуспешны, и после смерти Паппа интерес к золотому сечению угас на долгие годы, что, впрочем, соответствовало общей тенденции: Запад утратил интерес к науке. Великая Александрийская библиотека была уничтожена в несколько этапов, сначала римлянами, а затем христианами и магометанами. Даже Платоновской Академии пришел конец – это случилось в 529 году, когда византийский император Юстиниан распорядился закрыть все греческие учебные заведения. Последовало мрачное Средневековье, и французский историк и епископ Григорий Турский (538–594) сокрушался, что «ученость среди нас погибла». В сущности, научно-исследовательская жизнь в Европе заглохла, и интеллектуальное первенство осталось за Индией и арабским миром. Знаменательным событием в этот период стало введение так называемых индо-арабских цифр и десятичной позиционной системы счисления. Виднейшим индийским математиком VI века был Ариабхата (476–ок. 550). Самая известная его книга называется «Ариабхатия», и там мы находим следующую фразу: «От разряда к разряду каждое в десять раз больше предыдущего», что свидетельствует о введении разрядов чисел, то есть записи, где важно положение цифры. Сохранилась индийская надпись, относящаяся к 595 году, где содержится запись даты индийскими цифрами в десятичной позиционной системе, а значит, к этому времени подобная запись уже была в ходу. Первым признаком того, что индийские цифры проникают на Запад (хотя тогда они еще не прижились), можно считать их упоминание в трудах Севера Себохта, жившего в Кенешре на реке Евфрат. В 662 году он писал: «Не стану обсуждать индийскую науку… и их ценные методы вычисления, которые превосходят всяческие описания. Скажу лишь, что они производят вычисления посредством девяти знаков».
По мере того, как набирал силу ислам, важным центром математических исследований становился магометанский мир. Если бы не интеллектуальный подъем в мусульманских странах в VIII веке, до нас не дошли бы труды большинства античных математиков. В частности, халиф аль-Мамун (786–853) учредил в Багдаде Бейт аль-хикма («Дом мудрости»), похожий на знаменитый александрийский университет – Музейон. В сущности, Аббасидский халифад по крупицам собирал остатки александрийской учености. Легенда гласит, что калифу во сне явился Аристотель, после чего он решил перевести все греческие ученые труды на арабский.
Важнейшие изыскания магометанских ученых в основном касались алгебры и если и затрагивали золотое сечение, то лишь весьма поверхностно. Тем не менее, следует упомянуть по меньшей мере троих математиков: это аль-Хорезми и Абу Камил Шуджа, жившие в IX веке, и Абу-л-Вафа, живший в Х веке.
Мухаммад ибн-Муса аль-Хорезми работал в Багдаде и примерно в 825 году написал здесь книгу, которая считается самым авторитетным трудом по алгебре той эпохи – «Книга восполнения и противопоставления», «
Другой арабский математик, внесший свой вклад в историю золотого сечения, – это Абу Камил Шуджа по прозвищу аль-Хасиб аль-Мисри, что значит «вычислитель из Египта». Родился он около 850 года, вероятно, в Египте, а умер около 930 года. Он написал много книг, некоторые из которых, в том числе «Книга об алгебре», «Книга о редкостях искусства арифметики» и «Книга о геометрии», дошли до нас. Возможно, Абу Камил был первым математиком, который не просто искал решения задачи, а интересовался поиском всех возможных решений. В своей книге «О редкостях искусства арифметики» он даже описывает задачу, к которой нашел 2678 решений! Однако с точки зрения истории золотого сечения главное – что книги Абу Камила стали основой для некоторых книг итальянского математика Леонардо Пизанского, известного под прозвищем Фибоначчи, с которым мы скоро познакомимся. Трактат Абу Камила «О пятиугольнике и десятиугольнике» содержит двадцать задач с решениями, где ученый вычисляет площади фигур, длины их сторон и радиусы описанных вокруг них окружностей. В некоторых этих вычислениях, но не везде, он применяет и золотое сечение. Несколько алгебраических задач из «Алгебры» Абу Камила, вероятно, тоже вдохновлены понятием золотого сечения.
Последний исламский математик, которого мне хочется здесь упомянуть, – Мухаммад Абу-л-Вафа (940–998). Абу-л-Вафа родился в Бузгане на территории современного Ирана и жил в правление династии Буидов в западном Иране и Ираке. Эта династия достигла расцвета в царствование Адуда аль-Давла, который был горячим поклонником и покровителем математики, естественных наук и искусств. Абу-л-Вафа был среди математиков, которых в 959 году пригласили в Багдад ко двору Адуда аль-Давла. В его первом солидном труде – книге «О том, что нужно знать писцам, дельцам и другим в науке арифметики», по словам самого ученого, «содержатся все арифметические знания, которые необходимы ученику, подчиненному или начальнику». Интересно, что хотя сам Абу-л-Вафа был специалистом в применении индийских цифр, весь текст его книги написан вообще без цифр, одними словами, а вычисления проводятся только в уме. К Х веку индийские цифры еще не нашли применения в деловых кругах. То, что Абу-л-Вафа интересуется золотым сечением, видно из другой его книги – «О том, что необходимо ремесленнику из геометрических построений». В этой книге Абу-л-Вафа приводит изобретательные методы построения правильного пятиугольника и десятиугольника, вписывания правильных многоугольников в окружности и в другие многоугольники. Уникальную черту его работы составляет серия задач, которые он решает при помощи линейки (прямой, без делений) и циркуля, в котором угол между ножками зафиксирован (так называемый «ржавый циркуль»). Возможно, на этот жанр ученого вдохновило «Собрание» Паппа, однако не исключено, что такие решения просто отражают подход Абу-л-Вафы к практическим задачам: решения при помощи циркуля с фиксированным углом между ножками более точны.
Книги этих и других арабских математиков несколько углубили знания о золотом сечении, и их открытия сыграли важную, хотя и не очень большую роль. Как часто бывает в науке, подобные подготовительные периоды медленного прогресса необходимы для следующего прорыва. Великий драматург Джордж Бернард Шоу как-то выразил свое представление о прогрессе следующими словами: «Разумный человек приспосабливается к миру; неразумный – упорно пытается приспособить мир к себе. Поэтому прогресс зависит от неразумных людей». В случае золотого сечения квантовый скачок дожидался появления одного из самых выдающихся математиков Средневековой Европы – Леонардо Пизанского.
Сын доброй матери-природы
Девять индийских цифр – 1, 2, 3, 4, 5, 6, 7, 8 и 9 – и знак 0… позволяют записать любое число, как будет показано ниже.