Целые числа подразделяются на четные и нечетные, и более всех подчеркивали их различия и приписывали им всевозможные диковинные качества не кто иные как пифагорейцы. В частности, как мы вскоре убедимся, интерес к золотому сечению пробудился именно благодаря тому, что пифагорейцы весьма почитали число 5 и восхищались пятиконечной звездой.
Пифагор и пифагорейцы
Пифагор родился около 570 года до н. э. на острове Самос в Эгейском море (у побережья Малой Азии), а где-то между 530 и 510 годом переселился в греческую колонию Кротон в южной Италии, которую тогда называли Великой Грецией. По всей видимости, покинуть Самос Пифагору пришлось из-за безжалостной тирании Поликрата (казнен ок. 522 г. до н. э.), который добился доминирования Самоса в Эгейском море. Вероятно, Пифагор последовал совету математика Фалеса Милетского, который, возможно, был его учителем; так или иначе, он некоторое время (чуть ли не 22 года, по некоторым источникам) прожил в Египте, где, видимо, изучал математику и философию и перенимал религиозные воззрения у египетских жрецов. Когда Египет захватили персидские войска, Пифагора, возможно, взяли в плен и вместе с египетскими священнослужителями доставили в Вавилон. Там он, вероятно, и познакомился с математическими достижениями Междуречья. Однако египетской и вавилонской математики пытливому уму Пифагора оказалось мало. Для обоих этих народов математика ограничивалась практическими «рецептами» для конкретных вычислений. А Пифагор был одним из первых, кто понял, что числа – это абстрактные понятия, существующие сами по себе.
В Италии Пифагор начал читать лекции по философии и математике, и вокруг него быстро сложился кружок последователей, в который, возможно, входила и юная прелестная Феано (дочь Милона, оказавшего ученому гостеприимство), на которой Пифагор впоследствии женился. Атмосфера Кротона оказалась крайне благоприятной для учения Пифагора, поскольку в тамошнем обществе была мода на самые разные полумистическипе культы. Для своих последователей Пифагор установил жесткие правила, обратив особое внимание на час пробуждения и час отхода ко сну. «Все дела сначала обдумай, чтоб не было худо», – повторял про себя каждый пифагореец поутру. А вечером напоминал себе:
Подробности жизни Пифагора и подлинный его вклад в развитие математики скрыты завесой неопределенности. Одна легенда гласит, что на бедре у него было золотое родимое пятно (либо бедро было целиком золотое), по которому его последователи определили, что он сын бога Аполлона. До нас не дошло ни одной биографии Пифагора, написанной в античные времена, а более поздние жизнеописания, например, «О жизни, учениях и изречениях знаменитых философов» Диогена Лаэртского, относящееся к III в., зачастую полагаются на множество различных источников, не всегда надежных. Очевидно, сам Пифагор не оставил сочинений, и все же его влияние было так велико, что наиболее преданные его последователи образовали тайное общество – братство – и впоследствии стали называться пифагорейцами. Аристипп из Кирены рассказывал, что Пифагора так нарекли потому, что он излагал (άγορεύω) истину, подобно дельфийскому оракулу (Πύθιος).
Обстоятельства смерти Пифагора столь же туманны, сколь и факты его биографии. Согласно одной легенде, дом в Кротоне, где он жил, подожгла возмущенная толпа завистников – пифагорейцы считались элитой общества, – а сам Пифагор пытался бежать и был убит, поскольку очутился у поля, засеянного бобами, а топтать бобы он не мог: для пифагорейцев они были священны. Другую версию предложил греческий ученый и философ Дикеарх из Мессены (ок. 355–280 гг. до н. э.), который утверждал, что Пифагор укрылся в храме Муз в Метапонте, где и умер, по доброй воле прожив сорок дней без пищи и воды. Совершенно иную историю рассказывал Гермипп: якобы Пифагора убили сиракузяне во время войны против армии Акраганта, к которой примкнул Пифагор.
Хотя ни самому Пифагору, ни его последователям нельзя с уверенностью приписать никаких конкретных математических достижений, несомненно, именно им удалось слить воедино математику, жизненную философию и религию, и это единство не знает себе равных в истории. С этой точки зрения интересно, пожалуй, отметить одно хронологическое совпадение: Пифагор был современником Будды и Конфуция.
В сущности, считается, что именно Пифагору мы обязаны словами «философия» («любовь к мудрости») и «математика» («предмет изучения»). «Философ» для Пифагора – тот, кто «всецело отдается поиску смысла и цели самой жизни… раскрытию тайн природы». Учение Пифагор ставил выше всех других занятий, поскольку, по его словам, «большинству людей от рождения или по природе недостает средств для достижения благосостояния и обретения власти, однако способность приобретать новые знания есть у всех». Кроме того, он прославился и доктриной метемпсихоза, переселения душ: согласно Пифагору, душа бессмертна и возрождается в телах людей и животных. Из этой доктрины следовало и строгое вегетарианство, которого придерживались пифагорейцы, поскольку в убитых животных, возможно, переселились души их друзей. Для очищения души пифагорейцы соблюдали строгие правила: например, им было запрещено есть бобы и предписывалось всячески упражнять память. Великий греческий философ Аристотель, по свидетельству Диогена Лаэртского, приводит несколько причин, по которым пифагорейцы воздерживались от бобов: «…то ли потому, что они подобны срамным членам, то ли вратам Аида, то ли потому, что они – не коленчатые, то ли вредоносны, то ли подобны природе целокупности, то ли служат власти немногих (ибо ими бросают жребий)» (
Более всего Пифагор и пифагорейцы прославились тем, что, скорее всего, сыграли важнейшую роль в развитии математики и в ее применении к концепции порядка – будь то порядок музыкальный, космический или даже этический. Каждый ребенок в школе изучает теорему Пифагора: в прямоугольном треугольнике сумма квадратов двух катетов равна квадрату гипотенузы. Геометрический смысл этой теоремы (рис. 7, справа) состоит в том, что площадь квадрата, построенного на самой длинной стороне (гипотенузе) прямоугольного треугольника, равна сумме площадей квадратов, построенных на двух коротких сторонах. Иначе говоря, если длина гипотенузы составляет
рис. 7
Кроме того, на рис. 7 представлено, пожалуй, самое простое доказательство теоремы Пифагора: с одной стороны, если вычесть из квадрата со стороной
На самом деле, пифагоровы тройки научились распознавать задолго до Пифагора, хотя теорема Пифагора как «истина», объединяющая все прямоугольные треугольники, еще не была сформулирована. Пятнадцать таких троек перечислены на вавилонской глиняной табличке, относящейся к старовавилонскому периоду (до 1600 г. до н. э.).
Вавилоняне открыли, что пифагоровы тройки можно составлять по простому правилу – «алгоритму». Возьмите любые два целые числа
Однако в пифагорейском мире закономерности отнюдь не ограничивались одними треугольниками и вообще геометрией. Традиционно Пифагору приписывают открытие гармонических последовательностей музыкальных нот: он обнаружил, что музыкальные интервалы и высота нот соотносятся с относительной длиной вибрирующей струны. Пифагор отметил, что если разделить струну на целое количество равных промежутков, это (до некоторого предела) приводит к гармоническим и красивым (созвучным) музыкальным интервалам. Когда две произвольно выбранные музыкальные ноты звучат одновременно, обычно их сочетание кажется на наш слух грубым (несозвучным). Приятные звуки получаются лишь в отдельных сочетаниях. Пифагор обнаружил, что эти редкие созвучия возникают тогда, когда ноты производят похожие струны, чьи длины соотносятся как первые несколько целых чисел. Унисон достигается, если струны одинаковой длины (соотношение 1:1), октава – когда струны соотносятся как 1:2, квинта – 2:3, кварта – 3:4. Иначе говоря, можно ущипнуть струну и извлечь ноту. Если ущипнуть струну, которая натянута так же, как первая, но длиной вдвое меньше, услышишь ноту, которая выше первой ровно на одну гармоническую октаву. Подобным же образом 6/5 струны до дают ноту ля, 4/3 от нее дают ноту соль, 3/2 – ноту фа и т. д. Эти замечательные открытия, сделанные еще в древности, заложили основу для более глубокого понимания музыкальных интервалов, которое возникло в XVI веке (вышло так, что в разработке музыкальной теории в то время участвовал и Винченцо Галилей, отец Галилео Галилея). В 1492 году на фронтисписе книги «Theorica Musice» Франкино Гафури поместил чудесный рисунок, изображающий Пифагора, экспериментирующего со звукоизвлечением из различных предметов и устройств – тут и молотки, и струны, и бубенцы, и свирели (рис. 8; справа вверху – библейский Иувал, «отец всех играющих на гуслях и свирели» (Быт. 4:21)).
Но тут пифагорейцы задумались: если даже музыкальную гармонию можно выразить в числах, вдруг получится математически описать все мироздание? Поэтому они сделали вывод, что все предметы во Вселенной обязаны своими свойствами природе числа. Скажем, астрономические наблюдения показывали, что движение небесных светил также подчинено вполне определенному порядку. Это привело к концепции прекрасной «гармонии сфер» – идее о том, что небесные тела в своем размеренном движении также создают некую гармоническую музыку. Философ Порфирий (ок. 232–304 гг. н. э.), создавший свыше семидесяти трудов по истории, метафизике и литературе, написал также (в рамках четырехтомной «Истории философии») краткое жизнеописание Пифагора – оно так и называется «Жизнь Пифагора». Вот что рассказывает Порфирий: «сам же [Пифагор] умел слышать даже вселенскую гармонию, улавливая созвучия всех сфер и движущихся по ним светил, чего нам не дано слышать по слабости нашей природы» (
Великий Аристотель даже посмеивался над пифагорейской одержимостью математикой. В своем труде «Метафизика» (IV век до н. э.) он писал: «В это же время и раньше так называемые пифагорейцы, занявшись математикой, первые развили ее и, овладев ею, стали считать ее начала началами всего существующего» (
Особенно пифагорейцев интересовали различия между четными и нечетными числами; возможно, это было связано с простыми гармоническими соотношениями в музыке – 1:2, 2:3, 3:4. Пифагорейцы приписывали нечетным числам мужские качества, а также, не без предвзятости, свет и добро, а четным – женские качества, и связывали их с темнотой и злом. Некоторые предрассудки, связанные с четными и нечетными числами, сохранялись веками. Например, римский ученый Плиний Старший (23–79 н. э.) в своей «
Помимо ролей, которые пифагорейцы отвели четным и нечетным числам в целом, они еще и приписали особые качества некоторым отдельным числам. Например, число 1 считалось прародителем всех остальных чисел, а поэтому само оно словно бы не считалось числом. Кроме того, считалось, что оно характеризует здравый смысл. Геометрически число 1 соответствовало точке, которая сама по себе считалась прародительницей всех измерений. Число 2 было первым женским числом, а также числом разногласий и разделения. Это немного похоже на инь и ян китайской религиозной космологии, которым приписывались те же качества: инь – женское, отрицательное начало, пассивность и темнота, а ян – яркое, мужское начало. Даже в наши дни во многих языках число 2 так или иначе ассоциируется с лицемерием и ненадежностью – вспомним персидское слово «двуличный» или слово «двурушник» (или слова со значением «обладатель двойного языка», которые есть и в немецком, и в арабском). То, что число 2 изначально связали с женским началом, а 3 – с мужским, вероятно, было вызвано очертаниями женской груди и мужских гениталий. Этот вывод, пусть и с осторожностью, можно подтвердить тем обстоятельством, что такие же ассоциации возникли у восточно-африканской народности консо. В повседневной жизни мы прибегаем к разделению на две категории сплошь и рядом: хорошее и плохое, верх и низ, право и лево. С геометрической точки зрения, числу 2 соответствовала прямая (ее однозначно определяют две точки), у которой одно измерение. Три было первым настоящим мужским числом, а также числом гармонии, поскольку в нем сочетаются единство (число 1) и разделение (число 2). Для пифагорейцев число 3 вообще было в некотором смысле первым числом, поскольку у него есть и «начало», и «середина», и «конец», в отличие от числа 2, у которого «середины» нет. Геометрическое выражение числа 3 – треугольник, поскольку три точки, не лежащие на одной прямой, однозначно определяют треугольник, а сам он – двумерная геометрическая фигура.
Интересно, что военные подразделения в библейские времена также строились на основе тройки. Например, во Второй книге Царств (23) упоминаются «трое сих храбрых» воина под началом у царя Давида. В той же главе говорится и о «тридцати вождях», которые «пошли и вошли во время жатвы к Давиду в пещеру Одоллам», однако к концу главы редактор, перечислив храбрецов, вставляет ремарку: «Всех тридцать семь».
Очевидно, что «тридцать» здесь просто название подразделения, а на самом деле в нем могло быть и другое количество воинов. В Книге Судей, в главе 7, когда Гедеону предстоит воевать с мидьянитянами, он отбирает триста – три сотни – человек, всех тех, «кто будет лакать воду языком своим, как лакает пес». Если перейти к более крупным подразделениям, мы обнаружим, что в Первой Книге Царств, в главе 13, «выбрал Саул себе три тысячи из Израильтян», чтобы воевать с филистимлянами, поскольку «собрались Филистимляне на войну против Израиля: тридцать тысяч колесниц». Наконец, во Второй Книге Царств, «собрал снова Давид всех отборных людей из Израиля, тридцать тысяч», чтобы разгромить филистимлян.
Число 4 было для пифагорейцев числом порядка и справедливости. Четыре ветра – четыре направления – обеспечивали людям необходимые ориентиры, помогали понять, где они находятся в пространстве. Геометрически, четыре точки, не лежащие в одной плоскости, образуют тетраэдр (пирамиду с четырьмя треугольными гранями), обладающую объемом, то есть тремя измерениями. Однако особый вес числу 4 в глазах пифагорейцев придавало и еще одно обстоятельство: пифагорейцы почитали число 10, которое образовывало священную
Число 6 было первым
Приводя примеры особого отношения пифагорейцев к числам, я умышленно оставил число 5 напоследок, поскольку это число, кроме всего прочего, подводит нас к истокам золотого сечения. Пять – это союз между первым женским числом 2 и первым мужским числом 3, поэтому это число любви и брака. Очевидно, пифагорейцы считали пентаграмму – пятиконечную звезду (рис. 3) – символом принадлежности к своему братству и называли ее «гигия» – «здоровье». Греческий писатель и ритор II века Лукиан писал в своем «Оправдании ошибки, допущенной в приветствии»: «… Все ученики его [Пифагора] при переписке друг с другом, всякий раз как писали о чем-нибудь значительном, в самом начале письма ставили пожелание здоровья, как наиболее отвечающее ладу и души, и тела и обнимающее собою всю совокупность человеческих благ. Трижды повторенный треугольник пифагорейцев, образующий взаимосечениями пентаграмму, которой они пользовались, как условным знаком, при встрече с единомышленниками, называлась у них тем же словом, что и здоровье» (
Изобретательное (хотя, пожалуй, не совсем логичное) объяснение, почему пентаграмма связывалась со здоровьем, предложил А. де ла Фей в своей книге «Пифагорейская пентаграмма, ее распространенность и применение в клинописи» (
Рис. 9
Рис. 10
Кроме того, пентаграмма тесно связана с правильным пятиугольником – геометрической фигурой с пятью равными сторонами и равными углами (рис. 10). Если соединить все вершины правильного пятиугольника диагоналями, получится пентаграмма. Кроме того, диагонали образуют еще и маленький пятиугольник в центре, а диагонали этого пятиугольника образуют пентаграмму и пятиугольник еще меньше (рис. 10). Продолжать это можно до бесконечности, создавая пятиугольники и пентаграммы все меньше и меньше. Поразительное свойство всех этих фигур состоит в том, что если посмотреть на получившиеся отрезки в порядке убывания длины (на рисунке они помечены
Несколько ученых (в том числе Курт фон Фриц в статье под названием «Гиппас из Метапонта как первооткрыватель несоизмеримости» (
Для существа рационального невыносимо только нерациональное[2]
Хотя, разумеется, возможно, и даже, пожалуй, вероятно, что несоизмеримость и иррациональные числа были открыты в связи с золотым сечением, более традиционная точка зрения гласит, что на эти концепции мыслителей натолкнуло соотношение стороны и диагонали квадрата. Аристотель в своей «Первой аналитике» пишет, что диагональ квадрата несоизмерима со стороной, «потому что, если допустить их соизмеримость, то нечетное было бы равно четному» (
Изящный метод «от противного» основывается на том, что верность утверждения доказывается тем, что противоположное ему утверждение ложно. Самый авторитетный иудейский ученый Средневековья Маймонид (Моше бен Маймон, 1135–1204) даже пытался применить этот логический прием, дабы доказать существование Творца. В своем фундаментальном труде «Мишне Тора» (Законы основ Торы), где делается попытка охватить все стороны религии, Маймонид пишет: «Основа основ и столп мудрости – знать, что есть Первичная Сущность, которая является причиной существования всего сущего. И все, что есть на небесах и на земле, и все, что между ними, существует благодаря Истинной Сущности. И если представить, что Его нет – ничто не могло бы существовать» (
Рис. 11
Прежде всего, посмотрите на квадрат на рис. 11, сторону которого мы примем за единицу. Если мы хотим найти длину диагонали, можно при помощи теоремы Пифагора вычислить гипотенузу любого из двух прямоугольных треугольников, на которые разделен квадрат. Вспомним, что теорема гласит, что квадрат гипотенузы равен сумме квадратов двух катетов. Пусть длина гипотенузы –
Вот как выглядит доказательство «от противного» в данном случае. Начнем мы с того, что предположим, что верно противоположное тому, что мы стремимся доказать, а именно предположим, что на самом деле √2 равен какому-то отношению двух целых чисел
Похожим способом можно доказать, что квадратный корень любого натурального числа, не являющегося полным квадратом (вроде 9 или 16), – иррациональное число. Числа вроде √3 и √5 – иррациональные.
Невозможно переоценить значимость открытия несоизмеримости и иррациональных чисел. До этого открытия математики предполагали, что если у вас есть любые два отрезка, один из которых длиннее другого, всегда можно найти какую-то меньшую единицу, чтобы измерить длины обоих отрезков и получить целое число этих единиц. Если, скажем, один отрезок длиной 21,37 дюймов, а второй – 11,475 дюймов, можно измерить оба в единицах в одну тысячную дюйма, и тогда в первом будет 21 370, а во втором – 11 475 таких единиц. Поэтому древние ученые были убеждены, что подобную общую единицу измерения можно найти всегда, надо только набраться терпения. Открытие несоизмеримости означает, что два отрезка прямой, находящиеся между собой в отношении золотого сечения (АС и СВ на рис. 2), диагональ и сторона квадрата или диагональ и сторона правильного пятиугольника не обладают такой общей единицей измерения, и найти ее невозможно. В 1988 году в журнале «
Нам станет легче осознать, какой огромный интеллектуальный скачок был проделан, чтобы открыть иррациональные числа, если мы поймем, каким судьбоносным открытием (или изобретением) для человечества стали даже дроби – рациональные числа вроде 1/2, 3/5 или 11/13. Живший в XIX веке математик Леопольд Кронекер (1823–1891) выразил свое мнение по этому вопросу следующим образом: «Господь сотворил натуральные числа, а все остальное – измышления человека».
О том, насколько древние египтяне были знакомы с дробями, мы знаем в основном по папирусу Ринда (Ахмеса). Это огромный папирус (18 футов длиной и 12 дюймов шириной), скопированный около 1650 года до н. э. писцом по имени Ахмес с более ранних документов. Найден папирус в Фивах, в 1858 году его приобрел шотландский антиквар Генри Ринд, а сейчас папирус хранится в Британском музее (за исключением нескольких фрагментов, которые неожиданно оказались собранием медицинских документов и сейчас находятся в Бруклинском музее). Папирус Ринда, в сущности, представляет собой справочник счетовода, и простыми словами в нем называются лишь дроби с числителем 1–1/2, 1/3, 1/4 и т. д., – а также 2/3. В некоторых других папирусах есть еще особое название для 3/4. Все прочие дроби древние египтяне выражали в виде суммы дробей с числителем 1. Например, чтобы выразить 4/5, они писали 1/2 + 1/5 + 1/10, а 2/29 выражали как 1/24 + 1/58 + 1/174 + 1/232. Чтобы выразить доли меры объема зерна под названием «гекат», древние египтяне применяли так называемые дроби «глаз Гора». Легенда гласит, что в битве между богом Гором, сыном Осириса и Изиды, и убийцей Осириса Сетом Гор потерял глаз, а Сет то ли раздавил его пальцем, то ли наступил на него. Затем бог письма и вычислений Тот нашел части глаза и хотел собрать его. Однако он обнаружил лишь части, которые соответствовали дробям 1/2, 1/4, 1/8, 1/16, 1/32 и 1/64. Тот подсчитал сумму и выяснил, что собрал лишь 63/64 глаза, и тогда он наколдовал оставшуюся 1/64, что и позволило ему восстановить глаз.
Как ни странно, египетская система дробей с числителем 1 еще много столетий применялась и в Европе. В эпоху Возрождения составители учебников по математике приводили для тех, кому было трудно запомнить, как складывать и вычитать дроби, стихотворные правила. Забавный пример приводит Томас Хиллес в книге «Искусство популярной арифметики в целых числах и в дробях» (
Несмотря на завесу тайны, которая окутывала Пифагора и содружество пифагорейцев, а может быть (в некоторой степени), и благодаря ей, пифагорейцам стремились приписать некоторые значительные математические открытия, в число которых входят и золотое сечение, и несоизмеримость. Однако если учесть колоссальный авторитет и успехи математиков Древнего Египта и Вавилона, а также то обстоятельство, что и сам Пифагор, вероятно, учился математике в Египте и Вавилоне, можно задаться вопросом: быть может, эти (или еще какие-нибудь) цивилизации открыли золотое сечение еще до пифагорейцев? Особенно интересным этот вопрос покажется, когда мы обнаружим, как много книг и статей написано о том, что золотое сечение обнаруживается в параметрах Великой пирамиды Хеопса в Гизе. Чтобы найти ответ, нам придется предпринять исследовательскую экспедицию в область археологической математики.
В пирамиде, к звездам обращенной
Первыми мы назовем египетские пирамиды,
Далее – сад в Вавилоне, разбитый прекрасной Амитис,
Третьей – гробницу Мавсола, творенье любви и страданий,
Следом, конечно же, храм Артемиды Эфесской,
Колосс Родосский, что медью сверкает на солнце,
Статую Зевса, что Фидий божественный создал,
И, наконец, маяк, воздвигнутый в Александрии,
Или же Кира чертог, чистым золотом запечатленный.
Название этой главы позаимствовано из «Посвящения Шекспиру» великого английского поэта Джона Мильтона (1608–1674). Мильтон, которого считали вторым по гениальности поэтом после Шекспира, писал:
Как мы вскоре убедимся, пирамиды и в самом деле ориентировали по звездам. Однако многим писателям, похоже, оказалось мало того, что эти сооружения сами по себе столь грандиозны: они настаивают, что параметры великих пирамид основаны на золотом сечении. Для всех поклонников золотого сечения подобная связь лишь добавляет загадочности, которая в целом свойственна числу φ. Но правда ли это? Знали ли древние египтяне о числе φ – и если да, сознательно ли они обессмертили его, создав на его основе одно из Семи чудес света?
Если учесть, что первоначально интерес к золотому сечению вспыхнул, вероятно, из-за его связи с пентаграммой, нам сперва придется проследить историю пентаграммы с самого начала, поскольку это приведет нас к самым первым появлениям золотого сечения на исторической арене.
Попросите любого ребенка нарисовать звездочку – и он, скорее всего, нацарапает пентаграмму. На самом деле это следствие того, что звезды мы видим сквозь атмосферу Земли. Движение воздуха рассеивает звездный свет, и кажется, что звезды постоянно меняют очертания – вот почему они мерцают. Люди хотели передать лучики, которые видятся нам в результате мерцания, и нарисовали пентаграмму, у которой есть и еще одна привлекательная черта – ее можно начертить, не отрывая инструмента для письма от глины, папируса или бумаги.
Шли годы, и подобные «звезды» стали символом качества (вспомним пятизвездочные отели, кинофильмы и рецензии на книги), достижений (кино– и телезвезды), способностей («хватает с неба звезды») и авторитета (воинские знаки отличия). А если вспомнить, что эта символика сочетается с романтическим очарованием звездной ночи, неудивительно, что пятиконечные звезды украшают флаги более шестидесяти государств и что подобный рисунок встречается на бесчисленном множестве фирменных логотипов – от «Тексако» до «Крайслера».
Некоторые из первых дошедших до нас пентаграмм относятся к IV тысячелетию до нашей эры и найдены в Междуречье. Изображения пентаграмм были обнаружены при раскопках города Урук, где также были обнаружены и первые памятники письменности, и в Джемдет-Насре. Древний вавилонский город Урук – это, вероятно, библейский Эрех, упоминаемый в Книге Бытия (глава 10) как один из городов во владениях «сильного зверолова» Нимрода. Пентаграмма обнаружена на глиняной табличке, датируемой примерно 3200 г. до н. э. В Джемдет-Насре пентаграммы примерно того же периода были обнаружены на вазе и на пряслице. В шумерской культуре пентаграмма или ее клинописный вариант означали «все края Вселенной». Пентаграммы рисовали и в других частях древнего Ближнего Востока. В Тель-Эсдаре в израильской пустыне Негев нашли пентаграмму на кремневом скребке эпохи халколита («Медного века», 4500–3100 до н. э.). В Израиле пентаграммы обнаруживали и в других местах – при раскопках в Гезере и Тель-Захария, – однако они датируются существенно более поздним временем (V в. до н. э.). Несмотря на то что пятиконечные звезды довольно часто встречаются на древнеегипетских артефактах, геометрически правильные пентаграммы распространены не слишком сильно, хотя на кувшине в Накаде близ Фив обнаружена пентаграмма, относящаяся примерно к 3100 г. до н. э. В целом иероглифический символ звезды, вписанной в круг, означал «подземный мир» или мифическое место пребывания звезд в сумерки, а звезды без кругов служили просто обозначением ночных светил.
Однако главный вопрос, на который нам нужно ответить в контексте этой книги, состоит не в том, придавали ли ранние цивилизации какое-либо символическое или мистическое значение пентаграммам и правильным пятиугольникам, а в том, осознавали ли эти цивилизации особые геометрические свойства этих фигур, а в особенности – золотое сечение.
В те дни, как не был прахом Вавилон[3]
Исследования клинописных табличек, датируемых II тысячелетием до н. э. и найденных в 1936 году в Сузах в Иране, практически не оставляют сомнений, что вавилоняне времен первой династии знали формулу, позволяющую хотя бы приблизительно вычислить площадь правильного пятиугольника. Интерес вавилонян к пятиугольнику, вероятно, объяснялся тем простым фактом, что это фигура, которая получается, если прижать к глиняной табличке кончики всех пяти пальцев. На одной табличке из Суз мы читаем: «1 40, постоянная пятисторонней фигуры». Поскольку у вавилонян была принята шестидесятеричная система счисления, числа 1 40 следует толковать как 1 + 40/60, то есть площадь правильного пятиугольника со стороной 1 равна 1,666… На самом деле площадь правильного пятиугольника со стороной 1 не так уж далека от этой величины – 1,720. Вавилоняне вычислили подобное приближенное значение и для числа π – отношения длины окружности к диаметру. По сути дела, вычисление приближенного значения и числа π, и площади правильного пятиугольника опирается на одно и то же соотношение. Вавилоняне предположили, что периметр любого правильного многоугольника (фигуры с любым количеством равных сторон и равных углов) равен радиусу окружности, в которую вписан этот многоугольник, умноженному на 6 (рис. 12). На самом деле это совершенно справедливо для правильного шестиугольника (он и изображен на рис. 12), поскольку все шесть треугольников, из которых он состоит, равнобедренные. Согласно вычислениям вавилонян, число π равнялось 3 + 1/8, то есть 3,125. И правда, очень неплохое приближение, ведь значение числа π составляет 3,14159… Для правильного пятиугольника неточное предположение, что «периметр равен шести радиусам», дает приблизительное значение площади в 1,666… – то есть тот самый коэффициент, который мы видим на табличке из Суз.
Несмотря на эти важные ранние открытия в математике и на теснейшую связь системы пентаграммы-пятиугольника и золотого сечения, нет ни малейших математических свидетельств, что вавилоняне знали о золотом сечении. Тем не менее, в некоторых книгах и статьях утверждается, что золотое сечение будто бы наблюдается в пропорциях ассиро-вавилонских стел и барельефов. Например, в увлекательной книге Майкла Шнайдера «Конструирование Вселенной. Руководство для начинающих» (
Так можно ли сказать, что при создании всех этих артефактов из Междуречья действительно было использовано золотое сечение, или это просто научное заблуждение?
Чтобы ответить на этот вопрос, нам придется ввести какие-то критерии, которые позволят определить, истинны или ложны те или иные заявления о появлении золотого сечения. Очевидно, что присутствие золотого сечения можно доказать безо всяких сомнений лишь в том случае, если сохранилась какая-то документация, из которой следует, что художники или архитекторы сознательно прибегали к этому соотношению. К несчастью, вавилонские таблички и барельефы никакой подобной документацией не подкрепляются.
Разумеется, преданный поклонник золотого сечения возразит на это, что отсутствие доказательств не есть доказательство отсутствия, и что достаточным подтверждением применения золотого сечения могут стать параметры произведения искусства сами по себе. Однако, как мы вскоре увидим, попытки найти золотое сечение в параметрах предметов – затея, которая ни к чему хорошему не приводит. Позвольте подтвердить это простым примером. На рис. 14 приведен чертеж маленького телевизора, который стоит у меня в кухне. На чертеже указаны некоторые измерения – их я сделал сам. Легко видеть, что соотношение толщины и высоты задней части телевизора равно 10,6/6,5 дюймов, то есть 1,63, а соотношение ширины передней части и высоты экрана 14/8,75 = 1,6, то есть оба эти соотношения, несомненно, очень близки к золотому сечению – 1,618…. Означает ли это, что изготовители телевизора решили выстроить его архитектуру в соответствии с золотым сечением? Ясно, что нет. Это пример просто показывает две главные ошибки тех, кто ищет золотое сечение в архитектуре или в произведениях искусства на основании одних размеров: (1) подсчеты всегда несколько натянуты, а (2) неточность измерений не учитываются. Каждый раз, измеряя параметры какой-то относительно сложной структуры (картины, стелы, телевизора), вы получаете в свое распоряжение большой набор длин – есть из чего выбрать. И есть чем пренебречь – можно не обращать внимания на остальные детали изучаемого предмета, так что нужно лишь набраться терпения и по-всякому играть и манипулировать числами, и тогда обязательно найдется какая-нибудь интересная комбинация. Вот и я, исследуя телевизор, «открыл» некоторые измерения, отношения которых близки к золотому сечению.
Второе обстоятельство, которое часто не принимают во внимание излишне рьяные любители золотого сечения, состоит в том, что я измерял все эти длины с некоторой погрешностью. Важно понимать, что любая неточность в измерении длин приводит к еще большей неточности в вычислении их отношения. Представьте себе, например, что вы измерили две длины по 10 дюймов с погрешностью в 1 %. Это значит, что результат измерения каждой длины может попасть в промежуток от 9,9 до 10,1 дюймов. Отношение этих длин может получиться даже 9,9/10,1 = 0,98, то есть погрешность окажется уже в 2 %, вдвое больше, чем при измерении каждой длины по отдельности! Таким образом, излишне страстные почитатели золотого сечения вполне могут изменить два параметра на 1 % – а это повлияет на итоговое отношение уже на 2 %.
Теперь снова рассмотрим рис. 13 с учетом этих предостережений – и окажется, в частности, что длинный вертикальный сегмент был выбран так, что в него входит и база барельефа, а не только клинописный текст. Подобным же образом и точка, до которой измеряется длинный горизонтальный сегмент, выбрана произвольно и расположена правее, а не левее края барельефа.
Пересмотрев с этой точки зрения все существующие материалы, я был вынужден сделать заключение, что открытие вавилонянами золотого сечения крайне маловероятно.
По всей египетской земле[4]
Что же касается древних египтян, тут ситуация несколько сложнее и требует основательного детективного расследования. Здесь мы сталкиваемся с огромным количеством текстов, где утверждается, что число φ встречается, например, в пропорциях великих пирамид и других древнеегипетских монументов; казалось бы, возразить против таких доказательств нечего.
Однако позвольте начать с двух самых простых случаев – Осириона и гробницы Петосириса. Осирион – это храм, который считают кенотафом фараона Сети I, правившего Египтом в период XIX династии (ок. 1500 г. – ок. г. 1290 до н. э.). Храм обнаружил в 1901 году известный археолог сэр Флиндерс Петри, масштабные раскопки завершились в 1927 году. Сам храм, судя по архитектурной символике, служит иллюстрацией к мифу об Осирисе. Осирис, супруг Изиды, когда-то был египетским фараоном. Его брат Сет убил его, расчленил тело и разбросал куски. Изида собрала их и возродила Осириса к жизни. Впоследствии Осирис стал царем подземного мира и богом циклических превращений – жизни, смерти и возрождения – и на личном, и на вселенском уровне. В период Среднего царства (2000–1786 гг. до н. э.) культ мертвых был развит еще больше, и Осирис стал судьей, определяющим судьбу души после смерти.
Храм Осирион был целиком засыпан землей и напоминал, таким образом, могилу. На плане Осириона (рис. 15, а) видна центральная часть с десятью квадратными колоннами; видимо, она была окружена рвом, наполненным водой. Считается, что такая структура символизирует сотворение первобытных вод.
В небезынтересной книге Роберта Лоулора «Священная геометрия. Философия и практика» (
Несмотря на то что геометрический анализ Лоулора отличается красотой и зрелищностью, мне он кажется неубедительным. Мало того, что линии, которые, как предполагается, отражают золотое сечение, проводятся, похоже, в совершенно произвольных местах, но и видеть правильные пятиугольники там, где ясно читается прямоугольник, это, сдается мне, некоторая натяжка. То, что сам Лоулор предлагает и другие интерпретации геометрии храма, где опять же то и дело возникает φ в соотношениях самых разных измерений, лишь подтверждает, что подобное вчитывание – в сущности, произвол и спекуляция и что при желании золотое сечение можно увидеть и там, где его нет.
Положение дел с гробницей Петосириса, которую раскопал в начале 1920 годов археолог Гюстав Лефевр, примерно такое же. Гробница гораздо моложе Осириона, она датируется лишь примерно 500 г. до н. э. и построена для верховного жреца бога Тота. Поскольку гробница датируется периодом, когда золотое сечение уже было известно (грекам), оно в принципе могло проявиться в геометрии гробницы. Более того, Лоулор в той же «Священной геометрии» приходит к выводу, что «Жрец Петосирис обладал полным и крайне глубоким представлением о золотом сечении». Этот вывод основан на анализе геометрии раскрашенного барельефа с восточной стены священной части гробницы (рис. 16,