Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Кто угрожает России? Вызовы будущего - Антон Иванович Первушин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Вторая трудность – отсутствие кооперации между производителями. В России неоправданно большое количество конструкторских бюро и завязанных на них производств. Вместо того чтобы консолидироваться для конкуренции на международном рынке, фирмы и организации «подсиживают» друг друга, тратя свои и государственные средства на параллельные разработки. Из-за обилия моделей авиаперевозчики вынуждены эксплуатировать большое число типов самолетов. Например, в парк «Аэрофлота», ненамного превышающий сто машин, входит 11 (!) типов самолетов. Обычная же практика западных авиакомпаний – эксплуатация парка из двух-четырех типов. Организовать эффективное обслуживание большего количества типов практически невозможно. А ведь все эти издержки «забиваются» потом в цену билета, которую правительство предполагает частично оплачивать. Получается, наше государство берет на себя оплату низкой эффективности авиапроизводства.

Третья трудность – избыточный парк старых самолетов вступает в конкуренцию с новыми машинами. На самом деле в России в несколько раз больше самолетов, чем требуется для обеспечения перевозок, ведь объемы перевозок по сравнению с СССР упали на порядок, а машины, не выработавшие ресурс, остались. Причем эти самолеты по существу даром достались их нынешним владельцам. Еще и на заводах имеется довольно большой задел полусобранных корпусов, а заводы в условиях простоя готовы реализовывать их намного дешевле действительной стоимости. В такой ситуации крайне сложно начинать производство новых самолетов, ведь за них уже придется платить реальную цену.

Где эксперты видят выход? Они полагают, что государство, являясь собственником или совладельцем большинства предприятий авиапрома, просто обязано в срочном порядке выделить одно-два приоритетных направления в развитии авиации и сосредоточиться на них. Для этого необходимо принятие непопулярных решений по закрытию заведомо убыточных компаний и производств с переброской ресурсов и специалистов тем из конкурентов, у кого есть прорывные проекты, ориентированные на будущее. Однако к кардинальному решению назревших проблем в авиапроме современное российское правительство пока не готово. Возможно, к действенным шагам его подтолкнет экономический кризис?..

Война за позиционирование

Современный мир уже трудно представить себе без спутниковых систем навигации и позиционирования. Этими системами пользуются моряки и таксисты, путешественники и жители мегаполисов, строители и географы, военные и спасатели. И спрос на мобильные устройства, способные по сигналу со спутника указать ваше точное местонахождение и подсказать, куда двигаться дальше, неуклонно растет. Близится время, когда такие устройства будут в каждом автомобиле, в каждом сотовом телефоне, в каждом компьютере. Понятно, что системы спутниковой навигации приносят колоссальную прибыль, и до сих пор у американской системы GPS не было конкурентов. Однако монополистами США оставались совсем недолго: на исходе XX века о себе заявила российская система ГЛОНАСС.

Прежде чем обсуждать аспекты конкурентной борьбы между системами GPS и ГЛОНАСС, необходимо разобраться, как функционирует спутниковая навигация.

Если отбросить незначительные подробности, то принцип действия системы глобального позиционирования (Global Positioning System) довольно прост. Он основан на измерении расстояний от навигационных спутников, траектории которых хорошо известны. Замеряя скорость прохождения сигнала от GPS-навигатора и вычисляя его запаздывание, два из них определяют ваше положение на уровне моря, третий уточняет и по атомным часам увязывает его с текущим временем, четвертый – дает поправку по высоте. Серийный GPS-навигатор ловит сигналы от всех находящихся над горизонтом спутников (до 12 штук), что позволяет повысить точность определения координат, а также избавляет от сбоев и задержек, если сигнал одного из спутников внезапно теряется.

Американская система GPS использует в своей работе спутниковую группировку NAVSTAR (NAVigation Satellites providing Time And Range) – штатно она состоит из 24 спутников, однако американцы держат на орбите до 30 аппаратов, с запасом. Спутники обращаются вокруг Земли по шести орбитам. Орбитальный период составляет 11 часов 58 минут. Соответственно, это довольно высокие орбиты – с радиусом 24 560 километров (то есть около 20 тысяч километров над поверхностью Земли). Для сравнения: высота орбиты Международной космической станции – 350–400 километров над поверхностью Земли. Такое размещение группировки GPS позволяет из любой точки Земли и в любое время «видеть» не менее десяти спутников, причем три или четыре будут находиться достаточно высоко над горизонтом.

Первоначально система GPS разрабатывалась только для военных нужд, а конкретнее – для наведения высокоточного оружия: крылатых и баллистических ракет, бомбардировщиков нового поколения, способных поражать цель с точностью до метра. Первые спутники NAVSTAR были запущены на орбиту в 1978 году, и долгое время американское правительство опасалось предоставить столь изощренный инструмент по определению координат наземных объектов гражданским пользователям. Вплоть до 2003 года в сигналы спутников GPS вносились искусственные ошибки, которые увеличивали («загрубляли») погрешность определения координат примерно на 100 метров. Обойти это ограничение могли только сами военные, использовавшие дополнительную шифрованную информацию. Теперь ограничений больше нет, и точность определения координат при помощи GPS составляет плюс-минус один метр.

Итак, положение мобильного GPS-навигатора на Земле определяется относительно орбитальной группировки NAVSTAR.

Положение самих спутников рассчитывается в соответствии с параметрами орбитального движения, а сами эти параметры в свою очередь регулярно уточняются. Дело в том, что, кроме земного тяготения, на движение спутников оказывает влияние множество других факторов: давление солнечного света, земное магнитное поле, сопротивление атмосферы, которая имеет свойство «разбухать» в летнее время под воздействием интенсивного нагрева. Все эти воздействия кажутся незначительными, однако с течением времени они могут изменить траекторию движения спутника и вывести его из строя. Посему GPS нуждается не только в регулярном обновлении (путем запуска новых спутников взамен сходящих с обиты), но и в ежедневном уточнении положения отдельных аппаратов, которое осуществляется при помощи наземных станций лазерной локации. К спутнику через специальный телескоп посылается лазерный сигнал, уголковый отражатель возвращает его, а по времени «путешествия» сигнала атомные часы с очень высокой точностью определяют расстояние от станции до спутника. Уточненные данные загружаются на спутник, и он тут же начинает транслировать на GPS-навигаторы информацию о своем новом положении. Координаты станций лазерной локации тоже постоянно уточняются по наблюдению за всеми проходящими над ними спутниками – погрешность при этом не превышает одного сантиметра! Это настолько высокая точность, что она позволяет следить за дрейфом материковых плит, которые движутся по Земле со скоростью всего несколько сантиметров в год.

* * *

В Советском Союзе не могли остаться равнодушными к «агрессивным» планам США по созданию спутниковых систем наведения высокоточных ракет. Как альтернатива и на тех же принципах была разработана ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система).

Первый спутник группировки, обеспечивающей работу ГЛОНАСС, был запущен на орбиту 12 октября 1982 года («Космос-1413»). Параметры советской системы несколько отличались от американской. В полном виде она включает 24 спутника, которые вращаются по трем орбитам высотой 19 100 километров от поверхности Земли.

Официально система была принята в эксплуатацию осенью 1993 года. При этом в приказе президента Бориса Ельцина перед исполнителями ставилась задача к 1995 году развернуть штатную группировку – то есть все 24 спутника, что и было проделано в срок.

К сожалению, 1995 год стал единственным годом, когда ГЛОНАСС обеспечивала потребителей надежными данными – ими, заметим, в то время могли пользоваться только российские военные. В дальнейшем финансирование системы было урезано до опасного предела, и спутники один за другим начали выходить из строя. Из-за этого вместо штатной точности определения местоположения в 50–70 метров потребители получали погрешность в пределах от 100 метров до 24 километров (!!!), причем имеющиеся спутники не покрывали даже территорию России.

Снижение численности спутниковой группировки поставило под угрозу национальную безопасность страны – ведь на случай обострения отношений с Западом необходимо иметь собственную национальную систему навигации, независимую от аппаратной базы противника. Президент Ельцин пытался спасти положение, стремясь по примеру американцев привлечь к поддержанию ГЛОНАСС частных инвесторов. С этой целью 18 февраля 1999 года российской системе спутниковой навигации был придан статус «системы двойного назначения» – ее данными получили возможность пользоваться гражданские организации и частные лица.

Однако реальное развитие ГЛОНАСС началось сравнительно недавно. В 2001 году была принята Федеральная целевая программа «Глобальная навигационная система», главной задачей которой является полное обновление спутниковой группировки к 2011 году. На смену спутникам «ГЛОНАСС» («Ураган») советской разработки с рабочим ресурсом в три года приходят спутники «ГЛОНАСС-М» («Ураган-М»), способные активно существовать на орбите в течение семи лет. Первые такой спутник был запущен в декабре 2003 года. Но и они будут заменены перспективными аппаратами «ГЛОНАСС-К» («Ураган-К»), которые разработаны в НПО прикладной механики (Железногорск) и смогут «жить» на орбите от 10 до 12 лет. Кстати, эти последние аппараты намного легче своих предшественников, их можно будет запускать в космос комплектом по шесть штук.

Соответственно, увеличивается и точность определения местоположения. К сожалению, ГЛОНАСС в этом пока еще отстает от GPS. При сравнении систем критерием является точность определения высоты объекта над уровнем моря: если GPS сегодня определяет высоту с погрешностью в 2,5 метра, то ГЛОНАСС даже при полном развертывании группировки сможет «выжать» погрешность в 20 метров. Что, конечно, говорит не в пользу последней.

В настоящее время в составе группировки ГЛОНАСС работают 19 спутников, до конца 2009 года планируется запустить еще шесть. 29 января 2009 года было объявлено, что первым городом страны, где общественный транспорт в массовом порядке будет оснащен системой ГЛОНАСС, станет Сочи. На тот момент соответствующее оборудование производства компании «M2M телематика» было установлено на 250 сочинских автобусах.

Еще будучи президентом, Владимир Путин призвал специалистов космической отрасли интенсифицировать процесс восстановления ГЛОНАСС, чтобы ее данными как можно быстрее начали пользоваться гражданские лица.

Активную поддержку системе спутниковой навигации обещал оказать экс-министр обороны и первый вице-премьер Сергей Иванов.

«Мы считаем, что запуск системы ГЛОНАСС позволит России совершить экономический рывок, сделать более прозрачной экономику, транспортную систему, но в то же время здесь очень большой коммерческий сегмент для использования плодов ГЛОНАСС индивидуального потребителя, – заявил Иванов во время своего визита в Индию в январе 2007 года. – Еще в Советском Союзе мы начинали эту программу исключительно в интересах Министерства обороны, сейчас мы кардинально пересмотрели свои подходы к системе ГЛОНАСС, она у нас является приоритетной в области технологий».

Чтобы проверить систему спутниковой навигации в деле и доказать ее работоспособность, Иванов даже совершил нечто вроде рекламной акции: в марте 2008 года он слетал в Антарктиду, на базу Новолазаревская, при этом пилоты самолета «Ил-76», на котором летел Иванов и другие члены правительства, использовали при навигации и посадке систему ГЛОНАСС.

В то же время на заседании коллегии Федерального космического агентства (Роскосмоса) вице-премьер выступил с резкой критикой в адрес руководства этого агентства, указав на отставание в графике восстановления группировки ГЛОНАСС и заявив, что обеспечиваемые ею параметры не соответствуют современным требованиям, то есть ГЛОНАСС «неконкурентоспособна». Иванов отметил, что до сих пор не создана необходимая инфраструктура для массового коммерческого использования услуг ГЛОНАСС. Больше того, отсутствует необходимая нормативно-правовая база в области создания и использования цифровых навигационных карт и навигационной деятельности в России – попросту говоря, никто до сих пор не знает, какие объекты на гражданских картах ГЛОНАСС указывать можно, а местоположение каких охраняется законом о государственной тайне.

«Не достигнут нужный уровень надежности элементов бортовой аппаратуры космических аппаратов. Печально, но на рынке России так по сей день в свободной продаже и не возникла конкурентоспособная отечественная навигационная аппаратура», – констатировал Иванов.

По его словам, стоило на прилавках появиться первым навигаторам ГЛОНАСС гражданского назначения, они тут же были раскуплены, «как во времена дефицита».

Вице-премьер обратил внимание и на то, что тактико-технические требования к системе в целом, а также к перспективному космическому аппарату «ГЛОНАСС-К» всё еще не прошли согласования в инстанциях.

Специалисты космической отрасли были вынуждены признать правоту Иванова и пообещали учесть его замечания.

* * *

Тем не менее критика ГЛОНАСС усиливается. Ее противники указывают, что появившиеся в продаже мобильные навигаторы стоят в два-три раза дороже аналогичных американских образцов, но при этом обеспечивают куда меньшую точность и дают большую задержку сигнала. Ко всему прочему, навигатор, работающий с ГЛОНАСС, не так-то легко купить – пока что объем производства не превышает двух тысяч штук в месяц, а GPS можно приобрести в любом компьютерном магазине. Имеет ли смысл тратить миллиарды рублей на развитие системы, которая заведомо неконкурентоспособна?

Специалисты уверенно говорят, что смысл в развитии ГЛОНАСС есть. Ведь никто не собирается замыкаться в рамках собственно национальной системы – например, мобильные навигаторы «Glospace SGK-70», созданные российскими разработчиками на аппаратной основе, производимой южнокорейской компанией «Samsung», работает сразу с двумя системами: GPS и ГЛОНАСС. И это позволяет заметно повысить надежность в определении местонахождения.

Генеральный конструктор и гендиректор НПО прикладной механики Николай Тестоедов уверен, что в 2009 году система ГЛОНАСС обеспечит ранее запланированные параметры.

«Таким образом, – говорит он, – система ГЛОНАСС работает, обеспечивая покрытие территории России с вероятностью 95 %, а глобальное покрытие – 83 %. И с каждым запуском эти показатели улучшаются. Для обладателей же совмещенных навигационных приемников ГЛОНАСС/GPS ситуация просто блестящая – 40 спутников в двух группировках, то есть полуторакратный запас по спутникам для местоопределения в любой точке Земли».

Пожалуй, за такой запас имеет смысл заплатить лишние десять тысяч рублей…

Пока в России спорят, стоит ли вкладывать деньги в развитие «неконкурентоспособной» системы глобального позиционирования, Евросоюз начал создавать свою систему, получившую название «Galileo». На развертывание спутниковой группировки европейцы предполагают потратить пять миллиардов евро. Первые два спутника системы «Galileo» уже выведены на орбиту. Есть возможность сравнивать: Россия потратит на обновление ГЛОНАСС тридцать один миллиард рублей, что по современному банковскому курсу гораздо меньше миллиарда евро.

Тесная орбита

В космосе становится тесно. Почти как в коммунальной квартире. Утром 12 февраля 2009 года информационные агентства сообщили, что над Красноярским краем столкнулись два искусственных спутника Земли: российский и американский. Специалисты из космической отрасли заявили, что произошло маловероятное, практически невозможное, событие. Практически невозможное? Но оно произошло. А значит, может произойти снова.

Факт столкновения спутников заметили не сразу, чуть ли не через двое суток. Первые данные о нем появились, когда к Объединенному стратегическому командованию Вооруженных сил США обратились представители телефонной компании «Iridium». Они сообщили, что 10 февраля в 16:55 по Гринвичу (19:55 по московскому времени) была потеряна связь с принадлежащим им коммерческим спутником «Iridium 33», работавшим на орбите с 14 сентября 1997 года.

Спустя некоторое время от Сети космического слежения поступила информация о том, что в районе, где располагался спутник, появилось облако, состоящее из небольших обломков. Было сделано заключение, что аппарат стал жертвой столкновения с космическим мусором.

«Виновника» отыскали достаточно быстро: орбитальный аппарат «Iridium 33» столкнулся с российским спутником «Космос-2251». Последний был запущен с космодрома Плесецк еще в 1993 году и прекратил работу через два года после этого. Российское Министерство обороны признало факт столкновения и заявило, что «Космос» имел военное назначение, которое, однако, не уточнялось. Независимые эксперты утверждают, что под обозначением «Космос-2251» на орбите находился военный спутник типа «Стрела-2М» № 51, разработанный в НПО прикладной механики (ныне ОАО ИСС) и входящий в состав системы низкоорбитальной связи.

Произошедшее событие стало первым зарегистрированным столкновением на орбите спутников, однако далеко не единственным столкновением рукотворных предметов в космосе. Самое первое происшествие такого рода случилось еще в 1996 году – тогда отработанная ступень ракеты «Arian» повредила французский спутник-шпион «Cerise».

Представители компании «Iridium» уже заявили, что винить в столкновении никого не собираются. По их словам, произошедшее событие является случайностью, ведь российский спутник не только давно находился в нерабочем состоянии, но и не был снабжен двигателями для маневрирования, поэтому в принципе не мог уклониться от столкновения. А вот «Iridium 33» такой возможностью обладал, но операторы на Земле сочли риск столкновения минимальным.

«Даже если бы у нас была информация о надвигающемся прямом столкновении, – говорит Джон Кэмпбелл, исполнительный вице-президент компании „Iridium“, – ошибки при маневрировании могут быть такие, что мы можем как уйти от столкновения, так и значительно увеличить его риск».

Кэмпбелл также сообщил, что его компания получает в среднем 400 докладов в неделю об объектах, которые приближаются к одному из их спутников на расстояние менее пяти километров – предпринимать какие-либо действия по каждому «тревожному звонку» было бы слишком накладно.

Представители компании также поспешили заверить своих пользователей, что потеря одного спутника из 72-х, принадлежащих «Iridium», не скажется на качестве услуг по передаче данных и голосовой связи.

Однако последствия столкновения могут быть серьезными. Российский «Космос-2251» весил 950 килограммов, а американский «Iridium 33» – 560 килограммов. В результате удара спутники оказались почти полностью разрушены, и на орбите высотой 800 километров появилось несколько тысяч обломков разной величины. В настоящее время сеть слежения, подчиненная Космическому командованию ВВС США, ведет наблюдение примерно за пятью сотнями самых крупных фрагментов. Все они распределились на высотах от 500 до 1300 километров. Специалисты полагают, что наибольшую опасность образовавшийся мусор может представлять для других аппаратов компании «Iridium», поскольку большая часть осколков, вероятно, останется на орбите американского спутника.

Также возникли опасения, что беспорядочно разлетевшиеся обломки могут угрожать Международной космической станции, на которой постоянно находятся космонавты. Впрочем, представители Федерального космического агентства (Роскосмоса) поспешили заверить, что обломки не могут «достать» МКС, поскольку станция располагается намного ниже (на высоте 350 километров) и на орбите с другим наклонением.

На самом же деле оценить масштабы угрозы для орбитальной навигации в настоящее время нельзя. Конкретнее об этом можно будет говорить только после того, как облака космического мусора рассеются, а отдельные крупные и, следовательно, наиболее опасные фрагменты станут хорошо различимы для наземных служб наблюдения, которые и рассчитают параметры их орбит.

* * *

Заявление представителей компании «Iridium» о том, что подобное столкновение представлялось им чрезвычайно маловероятным событием, немедленно вызвало кривотолки. И дело тут не только в том, что очень трудно представить себе столкновение космических аппаратов, движущихся по орбитам, пересекающимся под прямым углом (а так и было в данном случае), но в том, что Космическое командование ВВС США постоянно составляет прогнозы опасных сближений для всех эксплуатируемых спутников орбитальной группировки и уж во всяком случае – для спутников, используемых в интересах Пентагона. При любой разумной организации такое предупреждение должно быть выдано, и спутник должен был сманеврировать, уходя от удара. Почему же этого не случилось?

Этим вопросом задался известный журналист Леонардо Коэн и предположил, что кто-то прямо желал этого столкновения. В своей статье, опубликованной в итальянской газете «La Repubblica», он приводит высказывание представителя американского космического агентства НАСА Келли Хамфриз: «Столкновение между двумя телекоммуникационными спутниками произошло во вторник. Речь идет о русском спутнике, запущенном в 1993 году, который следовало считать нефункционирующим». Это «следовало считать» говорит о многом, полагает журналист, припоминая, как прошлым летом американцы обнаружили, что один из «списанных» российских спутников неожиданно «проснулся». С другой стороны, и у некоторых российских экспертов также возникли подозрения. Они указывают, что американский спутник находился на более высокой орбите и никак не мог самопроизвольно и незаметно для НАСА и Космического командования опуститься до орбиты российского.

«Русские и американцы умело отвлекли общественное мнение и СМИ от всех этих загадок, переведя их внимание на последствия столкновения», – подытоживает Коэн.

Версия итальянского журналиста заслуживала бы внимания, если бы не тот простой факт, что угроза столкновения космических объектов возникает ежедневно и к ней успели притерпеться, всё чаще надеясь на «авось». Так, при самом беглом поиске других опасных сближений выяснилось, что уже 11 февраля спутник «Iridium 15» прошел всего в трех километрах от спутника «Космос-2298» – еще одной «Стрелы-2М». Таким образом, угрозы для работающих аппаратов на сходных орбитах более чем реальны.

* * *

Столкновение российского и американского спутников стало вторым крупнейшим по количеству произведенного космического мусора. Первое место в списке самых «грязных» орбитальных событий занимает уничтожение Китаем собственного спутника в ходе эксперимента по реализации атаки на «вражеские» космическое объекты. Произошло это 11 января 2007 года – тогда был осуществлен перехват неисправного метеоспутника «Фэнъюнь-1С» на высоте 850 километров. Количество обломков, образовавшихся в результате эксперимента, превысило две с половиной тысячи, и они увеличили замусоренность близких орбит сразу на четверть. Обломки, получившие приращения скорости разных величин и направлений, разошлись по орбитам как выше, так и ниже исходной и со временем образовали почти идеальную сферу вокруг Земли.

Статистика по засорению ближнего космоса такова. Примерно 42 % космического мусора составляют детали различных аппаратов (например, панели солнечных батарей, антенны), 22 % – вышедшие из строя спутники, 19 % – мусор, который выбросили в космос астронавты, 17 % – обломки ракет.

Ежедневно на поверхность Земли падает один объект космического мусора. Причем, если верить ученым, вероятность того, что «небесный подарочек» попадет в человека – один к триллиону. Несмотря на эту кажущуюся ничтожной величину, подобная «невероятность» уже имела место быть. В 1997 году жительница США получила травму плеча от свалившегося на нее фрагмента топливного бака американской ракеты, запущенной за год до этого. К счастью, обошлось без серьезных последствий.

Проблема мусора на околоземных орбитам начинает всерьез беспокоить не только ученых, но и политиков. 13 февраля 2009 года, сразу после обнародования данных о недавнем столкновении, Управлением ООН по вопросам космического пространства в Вене было опубликовано заявление, в котором говорится, что космический мусор остается на орбите в течение длительного времени и создает серьезную угрозу для космических аппаратов. В этой связи ООН еще раз призывает всех членов организации добросовестно предпринимать меры для профилактики засорения космического пространства в интересах всего человечества. «Нужно спасать это пространство для будущих поколений», – говорится в коммюнике.

Следует отметить, что всё больше стран и организаций осознают необходимость борьбы с космическим мусором. Так, Европейское космическое агентство выделило из своего бюджета 64 миллиона долларов на программу «Космическая безопасность», задачей которой является учет и мониторинг космического мусора с целью предупреждения столкновения неуправляемых обломков с работающими космическими аппаратами.

Очевидно, орбитам нужен мусорщик – космический робот, который займется утилизацией старых спутников. Однако пока конструкторы больше думают о таком роботе, который мог бы продлевать жизнь аппаратам, выработавшим ресурс.

К примеру, британская корпорация «Orbital Recovery» проектирует орбитальный корабль «ConeXpress», призванный спасать телекоммуникационные спутники от бесславной кончины из-за выработки топлива. Как рассчитывают авторы проекта, с помощью этого корабля жизнь спутника можно будет продлеваться на десять лет и более. А Военно-воздушные силы США в рамках миссии «Orbital Express», реализованной в марте 2007 года, испытали в космосе первый прототип аппарата, способного дозаправлять старые спутники и ремонтировать их.

Остается надеяться, что это направление космонавтики будет развиваться и дальше. В противном случае через пару десятков лет околоземные орбиты заполнит бессмысленный мусор, что осложнит и без того опасные космические полеты.

Кто полетит на Марс?

Россияне, далекие от реальной космонавтики, черпают информацию о ней преимущественно из средств массовой информации – например, из программы телевизионных новостей. Журналисты же, которые в большинстве своем имеют весьма поверхностные знания в этой области, склонны к гиперболизации достижений и замалчиванию проблем. Их энтузиазм проистекает даже не из того, что в ракетно-космической отрасли не принято «выносить сор из избы», а из того, что величественность самого дела (освоение Вселенной – что может быть величественнее?) зачастую подавляет здоровую критичность мышления. В итоге любой успех преподносится как событие всемирного масштаба (и это действительно так!), а любой провал как незначительный частный случай, связанный с трудностями финансирования (а вот это требует осмысления).

Возьмем, к примеру, межпланетные полеты. В июле 2009 года, включив телевизор, гражданин России мог в очередной раз преисполниться гордостью за свою великую державу, некогда запустившую в космос Спутник и Гагарина: закончился 105-дневный полет международной экспедиции на Марс, проведенный под эгидой Роскосмоса и РАН; шесть космических путешественников вернулись на Землю и чувствуют себя хорошо. Фантастика? Нет, реальность! И телезритель ощущает себя удовлетворенным, ведь получается: мы опять впереди планеты всей, делаем что-то уникальное, ориентированное на будущее.

Но достаточно вслушаться в это сообщение, чтобы понять: здесь далеко не всё так чисто и красиво, как вещают нам с телеэкрана. На Марс, разумеется, никто не летал. Речь идет о почти четырехмесячном заключении в изолированном макете межпланетного корабля, которому подвергли группу добровольцев специалисты Института медико-биологических проблем (ИМБП РАН). Ученые провели на испытуемых массу экспериментов с целью приобретения практического опыта для подготовки к реальному полету на Марс. На следующем этапе программы исследований, получившей название «Марс-500», добровольцев предполагается посадить в макет на более длительный срок – на 520 суток, что точно соответствует продолжительности реальной экспедиции на красную планету, разработанной Российской академией космонавтики имени Циолковского под патронажем Федерального космического агентства (Роскосмоса). При этом сами представители космической отрасли довольно высоко оценивают результаты даже завершившегося сокращенного эксперимента. Так, начальник Управления пилотируемых программ «Роскосмос» Алексей Краснов прямо заявил журналистам: «Эта программа позволяет приподнять промышленные мощности российской космонавтики, перевооружиться и начать заниматься перспективами». Но так ли это? Неужели для того чтобы начать межпланетную навигацию, России достаточно посадить шестерых человек в герметичный контейнер? Действительно ли программа «Марс-500» способна «перевооружить» отечественную космонавтику?

* * *

Начнем издалека.

Столь ресурсоемкая область человеческой деятельности, как космонавтика, не может развиваться наобум. Она всегда ставит перед собой конкретные задачи, детали которых определяют наши знания о Вселенной. А эти взгляды имеют свойство меняться с течением времени.

Например, в начале XX века большинство астрономов сходились во мнении, что Венера и Марс во многом подобны Земле и отличаются от нее лишь климатическими условиями: Венера – молодой горячий мир, Марс – старый холодный мир. На Венере предполагалось найти динозавров и редкие элементы. На Марсе собирались встретить «братьев по разуму» – более мудрых и культурно развитых строителей сети «каналов». Астероиды и спутники планет-гигантов мало интересовали теоретиков космонавтики, а Луна рассматривалась только в качестве промежуточной цели. Кроме того, считалось, что в космосе всего две опасности: метеорные тела и холод. Невесомость же представлялась даже полезной для организма: Константин Циолковский уверял, что она приятная и способствует укреплению здоровья, а более поздние авторы предлагали отправлять на орбиту стариков, чтобы продлить им жизнь.

Под данную картину мира «затачивалась» вся космонавтика докосмической эры. Варианты космической экспансии того периода мало отличаются друг от друга – споры в основном сводились к тому, откуда лучше стартовать к чужим планетам: с околоземной орбиты или с Луны.

С первых же реальных шагов в космос картина начала плавно меняться. Сначала выяснили, что вокруг Земли имеется радиационный пояс – область магнитосферы, в которой накапливаются заряженные частицы высоких энергий, прилетающих к нам в потоке солнечного света. Находиться в этом поясе человек способен очень короткое время – если он не защищен мощным экраном, то очень быстро получит «лучевую» болезнь. Подавляющее большинство орбит выше 500 километров и ниже 20 000 километров закрыты для космонавтов и обитаемых станций. При этом забросить выше тяжело и дорого, а ниже космические аппараты тормозятся в слоях атмосферы (которая, кстати, имеет дурную привычку разбухать под воздействием солнечных вспышек), сходят с орбиты и падают.

Метеорная угроза сразу поблекла на фоне возможности подвергнуться ионизирующему облучению – ведь заряженные частицы встречаются не только в радиационных поясах. Кроме того, оказалось, что в космосе, на солнечной «стороне», куда больше шансов перегреться, чем замерзнуть, ведь в пустоте нет конвективного теплообмена, и нагреваемый объект сбрасывает избыточное тепло тоже через излучение, а организовать соответствующую систему на маленьком корабле не так-то просто. Поскольку проблема сброса избыточного тепла далека от разрешения, конструкторы космической техники были вынуждены отказаться от атомных двигателей, на которые некогда возлагались большие надежды.

Главные же сюрпризы преподнесла невесомость. Если первые кратковременные полеты космонавтов, несмотря на единичные случаи индивидуальной «непереносимости», внушали оптимизм, то после полета «Союза-9», состоявшегося в июне 1970 года и продолжавшегося 18 суток, выяснилось, что она способна убить.

Из космоса тогда вернулись Андриян Николаев и Виталий Севастьянов. Вот что об этом рассказывает сам Севастьянов: «Когда приземлились, нам было очень тяжело. Встретила нас поисковая группа быстро. Андрияна вытащили на руках, а я вылез сам и сел на обрез люка, но спуститься не могу. Еле дотерпел, пока и меня сняли. Андриян сидит и утирает лицо землей, а по пыльным щекам стекают слезы. Встать мы не могли. На носилках нас занесли в вертолет. Андрияна положили на лавку, а меня на пол около керосинового бака. Летим. И вдруг врачи к Андрияну кинулись и что-то суетятся. Я на четвереньках подполз, посмотрел – а он без сознания. Еле откачали… Так нас на носилках из вертолета и вынесли…»

Обследование показало, что космонавты находились в тяжелейшем состоянии: сердце по площади уменьшилось на 12 %, а по объему – на 20 %, периметр бедра уменьшился на 7,5 сантиметров, периметр голени – на 3,5 сантиметра. Космонавты испытывали мышечные боли, к вечеру у них поднялась высокая температура и участился пульс.

На следующий день экипаж «Союза-9» самолетом был доставлен из Караганды на аэродром Чкаловский, а оттуда в профилакторий Звездного городка под неусыпное наблюдение лучших врачей страны. Период острой реадаптации у космонавтов продолжался более двух суток. Более шести суток они не могли встать и самостоятельно ходить, но благодаря усилиям врачей постепенно восстановили свое здоровье.

Дальнейшие исследования влияния невесомости на человеческий организм выявили ее коварство. Длительное нахождение в ней вызывает серьезные изменения в организме, приводящие к снижению двигательной активности, потере мышечной массы, вымыванию кальция из костей, уменьшению объема крови, снижению работоспособности и иммунитета к инфекционным заболеваниям. Тело человека вытягивается, увеличивается его рост (в среднем на три сантиметра), но при этом становится дряблым и чрезвычайно уязвимым при травмах. Сами травмы заживают медленнее. В невесомости развиваются анемия (малокровие), учащенное сердцебиение, сопровождающееся аритмией. Из-за перетока крови от ног к голове ухудшается работа мозга, что может спровоцировать психические расстройства.

В ходе многолетних наблюдений и экспериментов был разработан целый комплекс профилактических средств (бегущая дорожка, велоэргометр, эспандеры, нагрузочный костюм «Пингвин», пневмовакуумный костюм «Чибис», минеральные пищевые добавки и другие средства), которыми стали оснащать все орбитальные станции. Предложенные мероприятия оказались эффективными: хотя длительность полетов экипажей впоследствии регулярно увеличивалась, космонавты по возвращении на Землю чувствовали себя вполне нормально. Ярким примером тому служит рекордный полет врача-космонавта Валерия Полякова – без ощутимых последствий для здоровья он прожил в космосе 437 суток, на практике доказав, что полет человека к другим планетам возможен и не причинит ему существенного ущерба.

На основе исследований, проведенных Поляковым в условиях, приближенных к «боевым», определили тренировочный цикл, позволяющий космонавтам оставаться в хорошей физической форме. Цикл состоит из четырех дней: первые три дня космонавты тренируются с возрастающей нагрузкой, на четвертый отдыхают. При этом ежедневно космонавты «пробегают» до пяти километров на дорожке и «проезжают» до десяти километров на велоэргометре. Необходимо также постоянно носить костюмы «Пингвин» (от 8 до 12 часов в сутки), которые за счет натянутых эластичных амортизаторов создают нагрузку на мышцы, достигающую 30 % земного веса космонавта. Вакуумный костюм «Чибис» предполагается применять сразу после старта, перед высадкой на другую планету и перед возвращением на Землю – своим воздействием он перераспределяет движение крови в сосудах, обеспечивая ее приток к ногам.

Казалось бы, проблема невесомости решена, однако та подбросила новые сюрпризы.

* * *

Основоположник теоретической космонавтики Константин Циолковский полагал, что межпланетные корабли будущего снабдят оранжереями, которые обеспечат экипажи всем необходимым. То есть в космосе будет воссоздан «кусочек Земли» – замкнутая биосфера, в миниатюре повторяющая жизненный цикл и подпитываемая энергией Солнца и естественными выделениями человека.

Вот что Циолковский писал по этому поводу в своей научно-фантастической повести «Вне Земли» (1918): «Выделения легких, кожи, почек и т. д. поглощались особыми сосудами и составляли прекрасную пищу для растений. Семена их были посажены в ящики с почвой, удобренной этими выделениями. Когда семена пустили ростки, сосуды с ними были выставлены на свет <…>. Необыкновенная сила солнечного света, не ослабленного толстым слоем земной атмосферы, непрерывное его действие, вертикальные лучи, отсутствие вредителей, наиболее благоприятные условия влажности и атмосферы сделали чудеса: не прошло и месяца, как маленькие растения были сплошь увешаны сочными, питательными и ароматическими плодами. Цветение было роскошно, оплодотворение – искусственно. Тяжести не было, веточки свободно распространялись, и плоды их не отягчали и не гнули. <… > Клубника, земляника, разнообразные овощи и фрукты росли не по дням, а по часам. Множество плодов давало урожай через каждые десять, пятнадцать дней. Сажали карликовые яблони, груши и другие небольшие плодовые кусты и деревья. Эти без перерыва цвели и давали изумительно большие и вкусные плоды. Одни деревья зацветали, другие имели уже спелые ягоды. Особенно удавались арбузы, дыни, ананасы, вишни, сливы. Но приходилось постоянно подрезывать подрастающие кусты и деревца. Плоды всякого сорта собирались непрерывно во всякое время, так как времен года не было: был один непрерывный, неизменный климат. <…> Вот почему можно было разводить растения всех стран…»

Первые исследования, проведенные на «Союзе-9», «Зонде-8», «Союзе-12» со всходами пшеницы, картофеля, гороха, подтверждали предвидения ученого. Освободившись от тяжести, растения и вправду росли подчас быстрее, чем на Земле.

Весьма обнадеживающими выглядели и результаты, полученные на орбитальной станции «Салют-4» в миниатюрной оранжерее «Оазис-1». Горох и лук, посаженные в ней, проросли до нормальных размеров.

Неприятности начинались позже. У опытных растений, по сравнению с контрольными, замедлялся рост стеблей и образование первых настоящих листочков, затем многие из них хирели и вяли, так и не дав плодов и семян. Космонавт Валерий Рюмин, который провел 175 дней на орбитальной станции «Салют-6», показывая Земле увядшие ростки огуречной рассады, комментировал: «Второй раз сажаем семена, и опять та же история: как только кончается то, что заложено природой в семени, рост прекращается и растение погибает». Позднее на «Салюте-6» побывала установка «Лютик» с тюльпанами – они были выращены на Земле, и им оставалось только распуститься в космосе, но делать этого они категорически не захотели. Тогда ученые предприняли попытку обмануть невесомость, послав на орбиту блок «Малахит-2» с уже распустившимися орхидеями. Цветы опали почти сразу же, но сами растения дали прирост, у них образовались не только новые листья, но и воздушные корни. Что примечательно, вернувшись на Землю, орхидеи обильно зацвели.

Отчаянные попытки добиться цветения в условиях невесомости обернулись курьезом. 30 июля 1980 года Рюмин в телерепортаже сказал: «У нас есть система с растениями „Малахит“. Так вот к прилету нашего друга Фам Туана из Вьетнама в ней даже цветок вырос». И он показал этот цветок. Сообщение вызвало настоящую сенсацию, ученые потребовали немедленно доставить образец на Землю. И получили. В спускаемом аппарате в одном из пеналов среди листьев обнаружился красивый бледно-розовый цветок. Он был… сделан космонавтами из бумаги.

Эксперименты с растениями продолжили в оранжерее «Фитон-3» на станции «Салют-7». 2 августа 1982 года космонавт Валентин Лебедев сообщил, что невзрачный сорняк арабидопсис (родственник горчицы и капусты) наконец-то зацвел. Прибывшей на станцию Светлане Савицкой экипаж вручил небольшой букетик из цветов арабидопсиса. Она тщательно зарисовала его. На историческом рисунке запечатлены семь цветущих растений высотой до 10 сантиметров, на них 27 стручков. При подсчете на Земле в стручках обнаружили 200 семян.

Этот опыт опроверг крепнущее в научном мире мнение о невозможности прохождения растениями в невесомости всех стадий развития – от семени до семени. Правда, арабидопсис – самоопылитель, оплодотворение у него происходит еще до раскрытия бутона.

Так или иначе, но стало очевидным, что растения нуждаются в особом внимании и уходе – недостаточно их высадить и обеспечить светом, как это делали персонажи фантастической повести Циолковского.

Для орбитальной станции «Мир» была создана оранжерея нового поколения – «Свет». Она проработала в составе модуля «Кристалл» с 1990 по 2000 годы. Эксперименты доказали возможность образования корнеплодов у редиса, а также прохождения полного цикла роста и получения в нормальные сроки жизнеспособных семян у сурепки, арабидопсиса и пшеницы.

К примеру, в ноябре 1998 года на «Мире» проводился эксперимент «Оранжерея-4». Космонавты пытались прорастить пшеницу сорта «Апогей». К 15 января 1999 года началось колошение пшеницы, 27 января – в колосьях появились семена. У всех растений были зерна. 22 февраля за день до спуска на Землю срезали 29 колосьев и уложили их в специальную тару. На орбите оставили 12 зерен, которые были посеяны 9 марта 1999 года и дали всходы. В ходе эксперимента было получено в общей сложности 508 зерен.

Полный успехом завершился и эксперимент «Оранжерея-6», в рамках которого экипаж «Мира» выращивал листовые культуры: мизуну, пекинскую капусту, брокколи рааб и красную гигантскую горчицу. 21 мая 2000 года состоялся посев, уже через неделю все растения взошли, а еще через несколько дней космонавты смогли оценить вкус нежных листочков.

Свои космические огороды были заведены и на Международной космической станции. В период с марта 2003 года по апрель 2005 года в оранжерее «Лада» было проведено пять экспериментов по культивированию генетически маркированных растений карликового гороха. Результаты проведенной работы показали, что космический горох в течение полного цикла выращивания практически не отличается от контрольных образцов на Земле.

Понятно, что эксперименты будут продолжены в дальнейшем. Однако и тех данных, которые удалось накопить ученым, достаточно, чтобы прийти к малоутешительным выводам. Хотя высшие растения могут жить и размножаться в условиях космического полета, они не дают каких-то особенных всходов и урожаев, на которые рассчитывал Циолковский. Исследования также показали, что в третьем поколении снижается продуктивность орбитальных оранжерей – это обусловлено истощением питательных веществ и накоплением продуктов метаболизма растений в корневом модуле оранжереи. Следовательно, модули придется регулярно менять на новые – а как это сделать в условиях продолжительного космического полета? Брать с собой запас? Такой вариант возможен, однако он натыкается на серьезное препятствие: согласно расчетам, космическая оранжерея способна регенерировать до 5 % кислорода, до 3,6 % воды и около 1 % основных элементов питания в общем балансе экспедиции. При этом она очень зависима от условий окружающей среды, нуждается в непрерывном контроле и особом уходе. При любом раскладе получается, что выгоднее захватить провиант с собой в виде консервов, а с оранжереей лучше не связываться. Впрочем, позитивный психологический эффект от присутствия растений на борту межпланетного корабля трудно переоценить – космонавтам очень нравится работать с ней и пользоваться результатами своего труда.

В любом случае необходимы еще многолетние и кропотливые исследования, которые позволят окончательно ответить на вопрос, какие из земных растений имеет смысл брать в длительный космический полет, а какие нет. Пока же ботанические опыты проводят от случая к случаю – нет даже серьезной генетической экспертизы, которая позволила бы выявить изменения, вносимые в генетику тех или иных растений факторами космического полета.

* * *

Еще больше проблем выявили первые опыты с птицами, которых предполагалось взять в полет для пополнения рациона космонавтов.



Поделиться книгой:

На главную
Назад