Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Вопрос жизни [Энергия, эволюция и происхождение сложности] - Ник Лэйн на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Рис. 4. Архезои – знаменитое якобы недостающее звено.

А. Устаревшая, вводящая в заблуждение филогенетическая схема, построенная на основе сравнения рибосомальной РНК. Она включает три домена: бактерии, археи и эукариоты. Перемычка № 1 обозначает предполагаемое раннее возникновение ядра, а № 2 – предполагаемое приобретение митохондрий, произошедшее позднее. Три группы, ответвившиеся в промежутке между полосками – это архезои, считавшиеся примитивными эукариотами, которые еще не приобрели митохондрии (к ним относится, например, лямблия).

Б. Теперь мы знаем, что архезои вовсе не примитивны: они произошли от организмов, у которых уже имелись митохондрии. В действительности ответвление архезоев произошло от главной части эукариотического дерева. (Я – ядро, ЭР – эндоплазматический ретикулум; В – вакуоль; Ж – жгутик.)

Известно, что все эукариоты восходят к общему предку, который лишь однажды возник в ходе эволюции. Абсолютно все эукариоты (растения, животные, водоросли, грибы, протисты) восходят к общему предку. Иными словами, это монофилетическая группа. Растения, животные и грибы произошли не от разных групп бактерий, а от одной популяции эукариотических клеток со сложной морфологией, единожды появившихся в истории Земли. Общий предок по определению может быть лишь один. В нашем случае под общим предком подразумевается не одна клетка, а одна популяция идентичных клеток. Само по себе это не означает, что появление сложных клеток – очень редкое событие. Вполне возможно, они возникали несколько раз, но выжили потомки лишь одной группы, а все остальные по каким-либо причинам вымерли. Я докажу, что к эукариотам это не относится, но сначала мы должны рассмотреть строение эукариотических клеток.

От общего предка эукариот довольно скоро отделилось пять “супергрупп” организмов с разной клеточной морфологией. Большинство этих групп неизвестны даже людям с классическим биологическим образованием. Примеры таких групп – Unikonta (к ним относятся животные и грибы), Excavata, Chromalveolata и Plantae (последние включают наземные растения и водоросли). Важны два момента. Во-первых, генетическое разнообразие внутри каждой группы гораздо выше, чем между предками этих групп (рис. 5). Это наводит на мысль, что в момент формирования эукариотических супергрупп происходила “взрывная” эволюция, точнее – монофилетическая радиация, которая могла быть связана с преодолением структурных ограничений. Во-вторых, общий предок эукариот уже был чрезвычайно сложной клеткой. Сравнивая признаки каждой супергруппы эукариот, можно попытаться восстановить облик общего предка. Признаки, присутствующие почти у всех видов внутри всех супергрупп, вероятнее всего, унаследованы от него. Признаки, которые встречаются лишь в одной-двух группах, скорее всего, приобретены ими независимо и позднее. Хорошая иллюстрация последнего варианта – хлоропласты, которые встречаются только у растений и хромальвеолят. Они возникли в результате эндосимбиоза, но у общего предка эукариот их не было.

Филогенетика говорит нечто поразительное о том, что было внутри клетки общего предка: было все, кроме хлоропластов. С вашего позволения, я кратко освещу несколько моментов. Мы знаем, что общий предок имел ядро, где хранилась ДНК. Ядро обладало сложной структурой, которая затем стала общей для всех эукариот. Оно окружено двойной мембраной, даже целым рядом уплощенных полостей, которые переходят в другие клеточные мембраны. Ядерная мембрана пронизана замысловатыми белковыми порами и покрыта эластичной сетью, которая поддерживает форму ядра. Внутри ядра присутствуют структуры, универсальные для эукариот, например ядрышко. Стоит подчеркнуть, что множество ключевых белков этих комплексов консервативны – они почти не отличаются у разных супергрупп организмов. Таковы, например, гистоновые белки, на которые накручиваются молекулы ДНК. Все эукариоты имеют линейные хромосомы с колпачками теломеров на концах, которые не дают хромосомам “растрепаться”, как случается с кончиками шнурков. Гены эукариот имеют фрагментарное строение: короткие участки кодирующей ДНК перемежаются длинными некодирующими последовательностями – интронами. Интроны вырезаются перед тем, как с РНК считывается белок. Удаление этих фрагментов осуществляется с помощью механизма, общего для эукариот. Даже расположение интронов нередко консервативно: вставки обнаруживаются на одном и том же месте внутри последовательности общего для разных групп эукариот гена.


Рис. 5. “Супергруппы” эукариот.

Дерево эукариот, построенное на основе сравнения тысяч общих генов, включает пять “супергрупп”, которые были описаны Евгением Куниным в 2010 году. Цифры означают число генов, общих для данной группы и для Последнего общего предка эукариот. Каждая группа независимо потеряла или приобрела множество других генов. Сильнее всего здесь различаются одноклеточные протисты. Все животные попадают в группу метазои. Заметьте, что различия между представителями одной супергруппы гораздо заметнее, чем между предками эти групп, что позволяет предположить их интенсивное эволюционирование на ранних этапах. Мне нравится символическая черная дыра в центре: Последний общий предок эукариот уже обладал всеми характерными для эукариот свойствами, но филогенетика мало что может сказать о том, как бактерии или археи передали ему эти свойства.

За пределами ядра ситуация сходная. Эукариотам свойственна, по сути, одинаковая клеточная машинерия – за исключением архезоев (разбросанных по всем пяти супергруппам, что свидетельствует о независимой утрате присущей им прежде сложности). У всех эукариот имеются сложные внутренние мембранные структуры, например эндоплазматический ретикулум и аппарат Гольджи, приспособленные для упаковки и выведения наружу белков. У всех эукариот есть динамический внутренний цитоскелет, способный принимать любую форму в соответствии с потребностями клетки. У всех эукариот есть моторные белки. Все эукариоты обладают митохондриями, лизосомами, пероксисомами, транспортными системами для перемещения веществ внутрь и наружу, а также общими сигнальными системами. И список на этом не заканчивается! Все эукариоты делятся митозом, в ходе которого хромосомы расходятся к полюсам клетки, увлекаемые микротрубочками веретена. Набор участвующих в митозе ферментов один и тот же. Эукариоты размножаются половым путем, а их жизненный цикл включает мейоз (редукционное деление), в результате которого формируются гаметы – сперматозоиды и яйцеклетки, которые впоследствии сливаются друг с другом. Те редкие эукариоты, которые отказываются от полового размножения, как правило, быстро вымирают (“быстро” в данном случае – за несколько миллионов лет).

Почти все это давно известно из исследований микроскопической структуры клеток, но наступление новой эры филогеномики прояснило два момента. Во-первых, стало понятно, что перечисленные структурные гомологии обусловлены не поверхностным сомнительным сходством. Все эти признаки закодированы в последовательностях генов миллиардами нуклеотидов, и по этим последовательностям можно выстраивать очень точные филогенетические деревья. Во-вторых, с развитием методов высокопроизводительного секвенирования значительно упростился процесс обнаружения и исследования новых организмов. Отпала необходимость в таких долгих и трудоемких процедурах, как культивация клеток и приготовление микропрепаратов. Новый метод надежен и скор. Так было открыто несколько необычных групп эукариот, например экстремофилы, способные переносить высокие концентрации ядовитых металлов, и пикоэукариоты – крошечные, размером с бактерии, клетки, обладающие полным эукариотическим набором: ядром и митохондриями. Так расширилось наше представление о разнообразии эукариот. Все недавно обнаруженные эукариоты относятся к пяти супергруппам, существование которых четко установлено: на филогенетическом дереве эукариот уже не вырастает крупных ветвей. Поразительно, что при всем разнообразии эукариоты похожи друг на друга. Нам не удается обнаружить ни переходных форм в эволюции эукариот, ни боковых ветвей. То, о чем говорила теория серийных эндосимбиозов, не сбывается.

Это порождает другую проблему. Успехи филогенетики и биоинформатики столь ошеломительны, что мы легко забываем: эти методы имеют свои ограничения. Проблему являет собой филогенетический горизонт событий, скрывающий момент появления эукариот. Ведь все их геномы восходят к Последнему общему предку эукариот (LECA), строение которого уже было очень сложным. Но откуда произошли все его структуры? Есть ощущение, будто предок эукариот родился уже зрелым, как Афина в полном вооружении из головы Зевса. О происхождении почти всех компонентов эукариотических клеток не известно почти ничего. Как и почему появилось ядро? Как возникло половое размножение? Почему у эукариот два пола? Как появилась изумительная система внутренних мембран? Как цитоскелет приобрел пластичность и динамику? Почему при мейозе число хромосом удваивается перед тем, как уменьшиться вдвое? Почему мы стареем, болеем раковыми заболеваниями и умираем? Увы, молекулярная филогенетика, несмотря на свою изощренность, почти ничего не может рассказать об этих биологических процессах. Подавляющее большинство генов, управляющих этими процессами, присуще лишь эукариотам и у прокариот не встречается. У бактерий, в свою очередь, почти не наблюдается тенденции к приобретению сложных эукариотических черт (рис. 6). История появления этих признаков – тайна.


Рис. 6. Грандиозный пробел в знаниях.

Нижний рисунок – электронная микрофотография клетки амебы Naegleria (организма, напоминающего сложностью и размерами Последнего общего предка эукариот). У этой клетки есть ядро (Я), эндоплазматический ретикулум (ЭР), комплекс Гольджи (КГ), митохондрии (М), пищеварительная вакуоль (ПВ), фагосомы (Ф) и пероксисомы (П). Вверху, для сравнения, – электронная микрофотография сравнительно сложной бактерии планктомицета. Разумеется, эукариоты происходят не от планктомицетов, но на этом примере видно, как велика пропасть между самыми сложными из прокариот и примитивнейшими эукариотами. И нам не известны выжившие промежуточные формы, которые могли бы перебросить мост через эту пропасть (возможные переходные звенья обозначены черепом с костями).

Недостающие шаги на пути к сложности

Эволюционная теория предполагает: сложные свойства приобретаются в результате ряда маленьких шагов, и каждый шаг позволяет получить небольшое преимущество. Отбор адаптивных свойств предполагает потерю менее адаптивных, поэтому промежуточные формы непрерывно отсеиваются. С течением времени высота пиков адаптивного ландшафта меняется, и пики, соответствующие самым полезным приобретениям, заслоняют соседние. Так, мы знаем глаз во всем его совершенстве, а менее совершенные промежуточные этапы его развития нам неизвестны. Дарвин в “Происхождении видов” высказал мысль: естественный отбор действительно предполагает утрату промежуточных форм. Поэтому неудивительно, что не сохранилось живых переходных форм между бактериями и эукариотами. Куда удивительнее то, что удачные приспособления не продолжают улучшаться – как в случае глаза.

Мы не можем непосредственно наблюдать этапы эволюции глаза, зато можем видеть экологический спектр его форм у разных организмов. Из зачаточного светочувствительного пятна древнего червеобразного существа глаза независимо появлялись внутри разных групп. Как раз это предсказывает теория естественного отбора. Всякое небольшое изменение обеспечивает небольшое преимущество, которое зависит от среды. В различных условиях появлялись различные по морфологии типы глаз. Некоторые различаются очень сильно (например сложные глаза мухи и зеркальные глаза гребешка), а некоторые схожи – как глаза осьминога и человека, которые в результате конвергенции приобрели почти одинаковое строение. У животных можно найти все мыслимые промежуточные стадии, от зрительных ямок до аккомодационных линз. Даже у протистов иногда встречаются миниатюрные глаза с “хрусталиком” и “сетчаткой”. Эволюционная теория предсказывает, что свойства у разных групп организмов должны были развиваться независимо (полифилетически), и каждый следующий шаг предоставлял новое преимущество. Теоретически этот принцип применим ко всем свойствам – и обычно так и происходит. Так, способность летать при помощи крыльев независимо появлялась минимум 6 раз: у летучих мышей, птиц, птерозавров и разнообразных насекомых. Многоклеточность возникала около 30 раз. Различные формы эндотермности (теплокровности) появились у нескольких групп, включая млекопитающих и птиц, а также некоторых рыб, насекомых и даже, в некотором смысле, у растений[12]. “Сознательную осведомленность” приобрели в большей или меньшей степени независимо птицы и млекопитающие. На примере глаз мы наблюдаем мириады форм, соответствующих условиям, в которых они развивались. Разумеется, существуют физические ограничения, но они недостаточно жестки для того, чтобы исключить многократное возникновение признаков.

А что можно сказать о половом размножении, ядре и фагоцитозе? В этих случаях следует рассуждать таким же образом. Если каждое из этих приобретений появилось в результате действия естественного отбора (несомненно, так оно и было), то мы должны наблюдать многократное возникновение эукариотических признаков у бактерий. Но это не так. Недалеко и до эволюционного “скандала”! У бактерий есть лишь зачатки эукариотических черт. Например, секс. Можно возразить, что бактерии практикуют конъюгацию, а это, по сути, то же самое: передача собственной ДНК партнеру. Правда, в этом случае передача происходит путем горизонтального переноса. У бактерий есть все необходимые механизмы для рекомбинации ДНК, что позволяет им формировать разнообразные новые хромосомы, а это считается главным преимуществом полового размножения. Но все же у этих процессов множество существенных различий. Секс предполагает слияние двух гамет, каждая из которых содержит половину набора генов. Затем происходит их взаимная рекомбинация и объединение в новый целый геном. Горизонтальный перенос происходит редко, случайным образом, задействуя лишь небольшую часть генома и далеко не всегда предполагая взаимный обмен. Если коротко, то эукариоты занимаются сексом по-настоящему, а у бактерий смутное его подобие. Понятно, что при этом у бактерий должно иметься преимущество перед сластолюбивыми эукариотами. Однако тогда можно ожидать, что бактерии по крайней мере некоторых типов делают такое, пусть и отличающееся в деталях. Но нет: насколько известно, они никогда этим не занимались. Так же дело обстоит с ядром, фагоцитозом и почти всеми эукариотическими признаками. Первые шаги на пути к сложности сделаны. Есть бактерии со складчатыми внутренними мембранами. Есть бактерии без клеточной стенки и с более или менее подвижным цитоскелетом. Есть бактерии с линейными хромосомами, с множеством копий генома, с клетками гигантского размера. Все это намеки на эукариотическую сложность. Но бактерии всегда останавливаются, не достигнув уровня эукариот, и очень редко (если такое вообще бывает) одна бактериальная клетка сочетает одновременно несколько эукариотических черт. Самое простое объяснение глубоких различий между бактериями и эукариотами – конкуренция. Утверждается, что, когда появились первые эукариоты, они были настолько конкурентоспособными, что заняли нишу морфологически сложных организмов и никто не мог с ними соревноваться. Если какие-нибудь бактерии и предпринимали робкие попытки посягнуть на указанную нишу, прочно обосновавшимся там эукариотам это было безразлично. То есть бактерии не представляли для них серьезной угрозы. Все мы знаем о массовом вымирании динозавров и других крупных животных и растений, и в этом свете объяснение выглядит вполне правдоподобным. Миллионы лет динозавры притесняли предков современных млекопитающих – мелких пушистых зверьков. Лишь после вымирания динозавров эти зверьки дали начало современным группам млекопитающих. Тем не менее есть веские причины подвергнуть сомнению эту удобную, но обманчивую в своей привлекательности идею. Микроорганизмы – далеко не то же самое, что крупные животные: численность их популяций несравнимо больше, и они способны путем горизонтального переноса передавать друг другу полезные гены (например гены устойчивости к антибиотикам), что сильно снижает угрозу вымирания. Не известно ни одного массового вымирания микробов. Этого не произошло даже после Великого кислородного события. Нет доказательств того, что “кислородный холокост”, в ходе которого, как предполагают, погибло большинство анаэробных клеток, действительно случился: это не подтверждается ни филогенетическими, ни геохимическими данными. Напротив, анаэробы процветали.

Еще важнее вот что. Существует убедительное свидетельство в пользу того, что промежуточные формы на самом деле не были обречены на вытеснение более сложными эукариотами. Доказательство простое: они до сих пор существуют. Мы уже встречались с ними. Это архезои – большая группа примитивных эукариот, которая когда-то ошибочно считалась “недостающим звеном”. Они не являются истинной промежуточной формой в эволюционном смысле, но в экологическом отношении они действительно в промежуточном положении – занимают ту самую нишу[13]. Эволюционная промежуточная форма – это, например, тиктаалик, рыба с ногами, или покрытый перьями крылатый динозавр археоптерикс. Экологическая промежуточная форма – это не настоящее звено, однако ее возникновение позволяет убедиться в том, что определенная экологическая ниша пригодна для жизни. Белка-летяга не является близким родственником других летающих позвоночных, например летучих мышей, тем более птиц, однако она демонстрирует, что планировать с дерева на дерево можно и без покрытых перьями крыльев. Значит, предположение, что механический полет мог начаться подобным образом, не будет пустой выдумкой. И в этом настоящая ценность архезоев: они – экологическая промежуточная форма, своим существованием подтверждающая, что такой образ жизни возможен.

К архезоям относят более тысячи видов. Эти организмы – эукариоты, которые приспособились к “промежуточной” нише путем упрощения, – а вовсе не бактерии, строение которых немного усложнилось. Позвольте это подчеркнуть. Данная ниша пригодна для жизни, и она многократно заселялась морфологически простыми клетками. Простые клетки не были вытеснены эукариотами. Напротив, они процветали, и именно потому, что пошли по пути упрощения. Статистически (при прочих равных условиях) вероятность захвата этой ниши только простыми эукариотами (а не сложными бактериями) в 1 тыс. случаях составляет 1 на 10300: соотношение, которое могло бы получиться в результате работы генератора бесконечной невероятности Зафода Билброкса. Даже если архезои 20 раз (возьмем самую скромную оценку) возникали независимо и всякий раз возникшая форма порождала множество дочерних видов, вероятность все же остается очень небольшой: один из миллиона. Или выпал тот самый единственный шанс, или же вмешалось что-то кроме статистической вероятности. Наиболее правдоподобное объяснение состоит в том, что в строении эукариот было нечто, способствующее освоению ими “промежуточной” ниши, – а строение бактерий, напротив, отличалось чем-либо таким, что мешало приобрести морфологическую сложность.

Эта идея не выглядит чересчур смелой. Она не противоречит ничему из того, что мы знаем. В этой главе я говорил лишь о бактериях, но существует два домена одноклеточных организмов без ядра, которые поэтому называют прокариотами (“доядерными”). Эти группы – бактерии и археи (не путать с архезоями). Я могу лишь извиниться за путаницу. Научная терминология иногда выглядит так, будто придумана специально для того, чтобы никто ничего не понял. Запомните: археи и бактерии – это прокариоты и не имеют ядра, а архезои – примитивные эукариоты, у которых имеется ядро. На самом деле архей до сих пор иногда называют архебактериями – “древними бактериями”, в противоположность эубактериям, “настоящим бактериям”, так что представителей обеих групп можно вполне законно называть бактериями. Для простоты я продолжу использовать термин “бактерии” для обозначения обеих этих групп, за исключением случаев, когда придется подчеркнуть важные различия двух доменов[14].

Указанные два домена – бактерии и археи – в высшей степени различны в отношении генетики и биохимии, однако морфологически почти не отличаются друг от друга. Организмы, принадлежащие к обеим группам – это маленькие простые клетки, не имеющие ядра и многих других эукариотических черт, характеризующих “сложную” жизнь. Ни одной из этих групп, несмотря на поразительное генетическое разнообразие и биохимическую пластичность, не удалось выработать сложную морфологию. Это обстоятельство можно расценивать так, будто существует некий внутренний физический запрет, не позволяющий прокариотам достичь сложности, а эукариоты его каким-либо образом обошли. В гл. 5 я покажу, что эта преграда была устранена в результате редчайшего события: единичного эндосимбиоза двух прокариот. А пока отметим, что некий запрет вынуждал оба домена прокариот (и бактерий, и архей) оставаться простыми в морфологическом отношении непостижимо долгие 4 млрд лет. Только эукариотам удалось открыть мир сложности, а вступили они в него в результате стремительного лавинообразного развития – монофилетической радиации. Она подразумевает, что эукариоты освободились от всех структурных ограничений, которые только могли им мешать. Судя по всему, это случилось лишь однажды: все эукариоты родственны друг другу[15].

Неверный вопрос

Это и есть новый взгляд на историю развития жизни. Здесь она изложена очень кратко. Древняя Земля не слишком отличалась от нашей: она была покрыта водой, обладала умеренным климатом и атмосферой, состоящей главным образом из азота и углекислого газа. В то время в составе атмосферы было мало подходящих для органической химии газов, например водорода, метана и аммиака. Это исключает идею “первичного бульона”. Так или иначе, жизнь возникла настолько рано, насколько это вообще возможно. Бактерии на протяжении 2 млрд лет изменяли облик земного шара, преобразуя океаны, атмосферу и континенты. Они становились причиной климатических катастроф – Земля раз за разом покрывалась льдами, а затем оттаивала вновь. Они отравили мир, наполнив химически активным кислородом атмосферу и океаны. И все же за все это время ни бактерии, ни археи не превратились во что-либо иное – они упрямо сохраняли простоту своего строения и образа жизни. В эти бесконечные 4 млрд лет, полные перемен, происходивших и с условиями, и со средой, бактерии изменяли свои гены и биохимию, но никогда – свою форму. Они так и не дали начало более сложным формам жизни – кроме одного-единственного раза, – таким, которые мы надеемся найти на других планетах.

Единственный раз, здесь, на Земле, бактерии дали начало эукариотам. Нет ни палеонтологических, ни филогенетических данных, указывающих на то, что сложная жизнь возникала неоднократно и выжила лишь одна группа: эукариоты. Напротив, то, что эукариоты – монофилетическая группа, наводит на мысль, что их появление было продиктовано необходимостью избавиться от внутренних физических ограничений, которые никак не помогали в периоды экологических потрясений, например во время Великого кислородного события. В части III этой книги мы увидим, какими могли быть ограничения. А сейчас заметим, что любой заслуживающий внимания рассказ на эту тему должен содержать объяснение, почему сложная жизнь возникла лишь однажды. Наше объяснение достаточно убедительно для того, чтобы в него можно было поверить – но недостаточно убедительно для того, чтобы перестать задаваться вопросом, почему это не происходило многократно. Любая попытка объяснить причину уникального события упирается в счастливую случайность. Как мы можем подтвердить то или иное предположение? Само событие мы, конечно, не можем наблюдать непосредственно, но оно могло оставить следы. Как только оковы “бактериальности” были сброшены, эукариоты приобрели удивительную сложность и морфологическое многообразие. Путь наращивания сложности вовсе не был прямым и простым: эукариоты приобрели целый ряд черт (от полового размножения и старения до видообразования), ни одна из которых не встречалась у бактерий или архей. Все эти древнейшие эукариотические черты объединились в единственном и неповторимом общем предке. Мы не знаем переходных форм между морфологической простотой бактерий и чрезвычайной сложностью общего предка, никаких существ, которые могли бы заполнить эту пропасть. Это открывает перед нами захватывающие перспективы: главные вопросы биологии еще предстоит решить! Содержат ли эти черты нечто, что позволило бы понять, как они эволюционировали? Я думаю, да.

Эта загадка возвращает нас к вопросу, поставленному в начале главы. В какой степени, исходя из базовых принципов, можно предсказать свойства жизни и ход ее истории? Я предположил, что жизнь подчиняется таким ограничивающим факторам, которые непросто объяснить с точки зрения генетики, истории и экологии. Идею рассматривать жизнь исключительно в информационном ключе я не поддерживаю, так как этот взгляд не позволяет предсказать ни единого эпизода этой непостижимой истории. Почему жизнь зародилась так рано? Почему она на миллиарды лет застыла на одном уровне морфологической сложности? Почему изменения условий и среды столь мало повлияли на бактерий и архей? Почему сложная жизнь за 4 млрд лет появилась лишь однажды? Почему прокариоты вновь и вновь не порождают новые, более сложные клетки и организмы? Почему этого даже иногда не происходит? Почему свойственные эукариотам специфические черты, например половое размножение, наличие ядра и способность к фагоцитозу, не возникают у бактерий или архей? Почему эукариоты обладают всеми этими чертами?

Если жизнь сводится к информации, то эти вопросы – глубочайшие тайны. Я не верю, что на них можно найти ответ, опираясь исключительно на информацию. Возникновение причудливых особенностей жизни пришлось бы списать на случайность, дело рук беспечной и безжалостной Фортуны. Мы бы не имели возможности предсказывать свойства живого на других планетах. Все же вышло так, что ДНК, будто бы обещающая дать ответ на любой вопрос, заставила нас забыть о втором центральном принципе, который выдвинул Шредингер: жизнь сопротивляется энтропии. В своей книге “Что такое жизнь?” Шредингер заметил, что, если бы сочинял книгу для физиков, то должен был бы вместо термина “энтропия” использовать другой термин: “свободная энергия”.

Слово “свободная” здесь имеет специфическое значение, которое мы обсудим в следующей главе. Сейчас скажу лишь, что энергия – это как раз то, чего не хватает в этой главе и, как верно заметил Шредингер, в его книге. Ее знаменитое заглавие представляет собой неправильно поставленный вопрос. Если учесть, что жизнь – это процесс, требующий активного участия, то есть энергии, вопрос станет гораздо содержательнее: “Что значит жить?” Но оставим Шредингера в покое. Когда он писал свою книгу, о биологическом потоке энергии было известно очень мало. Сейчас мы знаем, как это устроено, вплоть до атомного уровня. Оказывается, сложные механизмы получения энергии являются общими для всех организмов – так же, как является общим для всех генетический код. Этими механизмами определяются действующие на клетки фундаментальные структурные ограничения. Но мы не знаем ни того, как они возникли, ни того, как именно биологическая энергия ограничивала и направляла развитие жизни. Это и есть вопрос, которому посвящена книга.

Глава 2

Что значит жить?

Они хладнокровные и расчетливые убийцы. Они совершенствовали свои навыки много миллионов поколений. Они перемещаются по организму, с легкостью обманывая иммунную систему. Распознавая и связывая белки на поверхности клеток, они силой или обманом получают доступ к сокровенному содержимому. Они могут безнаказанно угнездиться в ядре клетки, даже в клеточном геноме, и таиться там долгие годы. В других случаях они приступают сразу к делу: подчиняют себе биохимические процессы клетки, заставляя ее производить тысячи таких же убийц, облаченных в маскировочные костюмы из белков и липидов. Когда множество убийц-клонов выходит наружу, каждый из них готов внедриться в новую клетку и запустить цикл разрушения. Они способны убить человека, разрушая одну клетку тела за другой; могут вызывать эпидемии; способны в одночасье сделать безжизненными сотни миль океанских вод. При этом большинство биологов даже не считает их живыми. Впрочем, вирусам нет дела до того, как именно их классифицируют.

Почему вирусы можно считать неживыми? Потому что у них нет собственного метаболизма, их единственный источник энергии – ресурсы клетки-хозяина. Является ли метаболическая активность неотъемлемым признаком жизни?[16] Принято считать, что да. Но почему? Среда обитания вируса – это внутреннее содержимое клетки, он пользуется ее ресурсами для самовоспроизведения. Но ведь мы и сами, по сути, делаем то же самое – поедаем других животных и растения, дышим кислородом. Если человек отгородится от окружающей среды – например надев на голову полиэтиленовый пакет, – то через несколько минут погибнет. Так что мы паразитируем, как и вирусы. То же самое относится к растениям. Растения необходимы нам так же, как и мы – им. Чтобы фотосинтезировать и расти, им нужны солнечный свет, вода и углекислый газ (CO2). Растения не способны расти в отсутствие CO2, в темных пещерах и безводных пустынях. Они не испытывают недостатка в CO2 благодаря животным, грибам и бактериям, которые непрерывно разлагают органику, в конечном счете превращая ее в атмосферный CO2. Кроме того, мы обогащаем атмосферу углекислым газом, сжигая ископаемое топливо. Хотя это может привести к ужасным последствиям для планеты, для растений это благо: чем больше СО2, тем быстрее они растут. Так что растения паразитируют, как и мы, на окружающей среде.

Увиденные с этой точки зрения растения и животные отличаются от вирусов лишь тем, что живут в несколько менее питательной среде. Вирусы кормятся внутренностями клеток, а в клетке сытнее и уютнее, чем в утробе матери: там есть почти все, что только можно пожелать. Поэтому вирусы могут позволить себе вступить на путь радикального упрощения и стать тем, что Питер Медавар назвал “дурной вестью в белковом конверте” (именно из-за того, что среда обитания вирусов настолько удобна). Другая крайность – это растения, способные жить почти везде, где есть вода, свет и воздух. Им пришлось приобрести чрезвычайно сложное внутреннее строение для того, чтобы выживать в столь суровых условиях. С точки зрения биохимии, растения в прямом смысле способны добыть из воздуха все, что им нужно[17]. Мы с вами где-то посередине. Кроме питательных веществ, в нашей пище должны присутствовать некоторые витамины, без которых у нас развиваются опасные болезни, например цинга. Мы не способны самостоятельно производить витамины из их простых предшественников, поскольку утратили соответствующие предковые биохимические процессы. Без внешнего источника витаминов мы оказались бы в положении вируса, который не нашел клетку-хозяина.

Так что все организмы зависимы от среды обитания. Вопрос лишь в том, насколько сильна эта зависимость. Даже самые простые вирусы превосходят по сложности мобильные генетические элементы, например ретротранспозоны – “прыгающие гены”. Мобильные генетические элементы лишь распространяют свои копии по всему геному, никогда не покидая клетки-хозяина. Некоторые плазмиды – небольшие кольцевые молекулы ДНК, кодирующие небольшое число генов, независимые от остального генома, – способны непосредственно передаваться от одной бактерии к другой через специальные межклеточные контакты, не соприкасаясь с внешней средой. Вирусы, ретротранспозоны и плазмиды объединяет способность направлять ресурсы среды обитания на создание собственных копий. Так являются ли они живыми? Правильнее всего ответить так: пытаться провести границу между живым и неживым – бессмысленно. Они плавно переходят друг в друга. Большинство определений жизни относится к живым организмам и не учитывает их паразитов. Вот определение, которое дает НАСА: жизнь – это “самоподдерживающаяся химическая система, способная к дарвиновской эволюции”. Соответствуют ли вирусы этому определению? Скорее нет – хотя это зависит от того, что мы понимаем под “самоподдерживающаяся”. В любом случае это определение не подчеркивает неразрывность жизни и среды обитания. Среда воспринимается априори как нечто отдельное от жизни, но мы увидим, что это не так: жизненные формы и среда их обитания всегда связаны.

Что происходит с живыми организмами, отрезанными от среды обитания? Например, мы умираем, поскольку другого выбора у нас нет. Но это не единственно возможное развитие событий. Вирусы не разрушаются и не “умирают”, будучи отрезанными от ресурсов клетки-хозяина – для них это естественное положение вещей. В миллилитре морской воды на каждую бактерию приходится по десятку вирусов, готовых в любой момент “ожить”. По своей устойчивости вирусы напоминают бактериальные споры, которые способны на долгие годы впадать в анабиоз. Споры сохраняют жизнеспособность, пролежав тысячи лет в вечной мерзлоте, они выживают даже в открытом космосе. При этом у них останавливается метаболизм. Семена растений и некоторые животные, например тихоходки, также способны (без пищи и воды) выдерживать экстремальные условия – и полное высушивание, и радиацию, в тысячи раз превышающую летальную дозу для человека, и давление в океанских глубинах, и космический вакуум.

Почему споры бактерий, тела вирусов и тихоходок не рассыпаются в прах, как предписывает им второе начало термодинамики? Конечно, если прицельно выжечь их космическими лучами или переехать автобусом, им придет конец – но в целом они очень устойчивы, когда впадают в анабиоз. Это может прояснить для нас разницу между “жизнью” и тем, что значит “жить”. Хотя споры фактически не проявляют признаков жизни, большинство ученых все же относит их к живым организмам, поскольку они способны оживать. Буквально так: они могут ожить, следовательно, они не мертвы. Тогда я не вижу причин, почему мы не можем сказать то же самое о вирусах: попадая в подходящую среду, они также оживают. То же самое относится к тихоходкам. Термин “жизнь” относится к структуре организма (которая в основном определяется генами и эволюционным процессом), а “жить” – к взаимодействию организма со средой обитания. Мы знаем чрезвычайно много о том, как гены кодируют клеточные компоненты, но почти ничего – о том, как физические ограничения определяют структуру и ход эволюции клеток.

О структуре, энергии и энтропии

Второе начало термодинамики гласит, что энтропия – мера хаоса – всегда возрастает. Поэтому, на первый взгляд, странно, что вирусы и бактериальные споры так устойчивы. У энтропии, в отличие от жизни, есть строгое определение, и ее даже можно измерить – в Дж/(моль·К). Проведем мысленный эксперимент: возьмем спору, раздробим ее на молекулы и посмотрим, как изменится энтропия. Мы, конечно, ожидаем, что она должна возрасти. То, что было прекрасной упорядоченной системой, способной вернуться к жизни, попав в подходящие условия, превратилось в случайный нефункциональный набор обломков, энтропия которого по определению высока. Но все не так! Согласно измерениям биофизика Теда Бэттли, энтропия почти не изменится. Это объясняется тем, что мы должны учитывать не только изменение энтропии самой споры, но и изменение энтропии окружающей среды.

Спора состоит из взаимодействующих частиц, плотно прилегающих друг к другу. Энергия межмолекулярных взаимодействий отделяет липидные (то есть жировые) мембраны от воды. Если приготовить смесь липидов с водой, хорошенько ее потрясти и дать отстояться, липиды начнут самопроизвольно собираться в тонкие двухслойные мембраны, а те, в свою очередь, будут формировать пузырьки: наиболее стабильное состояние системы (рис. 7). По той же причине нефть в океане образует тонкую пленку, способную затянуть сотни квадратных километров водной поверхности и вызвать экологическую катастрофу. Нефть не смешивается с водой: из-за сил притяжения и отталкивания молекулы нефти и воды предпочитают взаимодействовать с себе подобными, а не друг с другом. Белки ведут себя похоже. Белки с большим количеством электрических зарядов хорошо растворяются в воде, а незаряженные белки гораздо легче взаимодействуют с жирами: такие белки называют гидрофобными, “боящимися воды”. При слипании молекул масла и при растворении заряженных белков в воде выделяется энергия: так система приходит в наиболее стабильное низкоэнергетическое состояние. Энергия выделяется в форме тепла, а оно не что иное, как беспорядочное движение молекул. Чем больше выделяется тепла, тем быстрее движутся молекулы, тем менее они упорядочены и тем выше энтропия. Следовательно, при разделении смеси воды и масла энтропия увеличивается – за счет выделяющегося тепла. Поэтому, если рассматривать общую энтропию системы, энтропия упорядоченной липидной мембраны, покрывающей клетку, выше энтропии случайной смеси молекул, хоть первая и выглядит более упорядоченной[18].


Рис. 7. Строение липидной мембраны.

Оригинальная жидкостно-мозаичная модель липидного бислоя, предложенная Сингером и Николсоном в 1972. Белки плавают в липидном море. Некоторые погружены частично, другие пронизывают мембрану насквозь. Липиды состоят из гидрофильных головок (обычно это фосфоглицерат) и гидрофобных хвостов. У бактерий и эукариот хвосты образованы жирными кислотами. Мембрана организована в виде бислоя: гидрофильные головки взаимодействуют с водным содержимым цитоплазмы и с внешней средой, а гидрофобные хвосты находятся внутри мембраны и соприкасаются лишь друг с другом. Это низкоэнергетическое, “комфортное” состояние: несмотря на то, что эта структура выглядит упорядоченной, формирование липидного бислоя повышает общую энтропию за счет выделения в окружающую среду энергии в виде тепла.

Если раздробить спору, общая энтропия мало изменится: хотя сама спора после дробления становится менее упорядоченной, энергия ее частей повышается. Жиры смешиваются с водой, в тесном соседстве оказываются не смешиваемые друг с другом белки. Поддержание этого физически “некомфортного” состояния энергозатратно. Физически комфортное состояние предполагает выделение энергии в виде тепла в окружающую среду, с системами в физически “некомфортном” состоянии дело обстоит наоборот. Такая система должна поглощать энергию из среды, охлаждая ее и понижая ее энтропию. Писатели в жанре хоррор точно выразили суть этого процесса в леденящих душу сюжетах. Призраки, полтергейсты и дементоры замораживают все вокруг, высасывая энергию для поддержания своего противоестественного существования.

Если при рассмотрении случая со спорой учесть все это, получается, что общая энтропия едва изменится. На молекулярном уровне структура полимеров соответствует локальному минимуму энергии. Избыток энергии выделяется в окружающую среду в виде тепла, повышая ее энтропию. В естественных условиях белки сворачиваются, принимая форму с максимально низким возможным уровнем энергии. Их гидрофобные части спрятаны глубоко внутри, как можно дальше от воды. Электрические заряды притягиваются или отталкиваются друг от друга: положительные заряды удерживаются на месте благодаря тому, что они уравновешены отрицательными, это стабилизирует трехмерную структуру белка. Таким образом, белки самопроизвольно сворачиваются, принимая определенную форму, пусть не всегда оптимальную. Прионы – это совершенно нормальные белки, способные спонтанно перестраиваться в квазикристаллические структуры, которые затем инициируют образование новых прионов. Общая энтропия при этом меняется незначительно. У белка может быть несколько стабильных форм, из которых лишь одна полезна для клетки, но в отношении энтропии эти формы мало различаются. Наверное, самое удивительное то, что общая энтропия беспорядочной смеси аминокислот (“строительных блоков” белков) очень незначительно отличается от общей энтропии аккуратно уложенного белка. Когда белок разворачивается, это возвращает его к состоянию, больше похожему на смесь аминокислот, и повышает его энтропию. Но при этом гидрофобные аминокислоты оказываются в воде, и белок, находясь в таком физически некомфортном состоянии, начинает высасывать энергию из внешней среды, охлаждая ее (можно назвать это “эффектом полтергейста”). Казалось бы, живые системы должны обладать низкой энтропией – ведь они более упорядочены, чем смесь аминокислот. Но эта идея не совсем верна.

Об этом и говорил Эрвин Шредингер, когда утверждал, что живое высасывает отрицательную энтропию из окружающей среды. Он имел в виду, что живое каким-то образом заимствует “упорядоченность” извне. Что ж, даже несмотря на то, что “бульон” из аминокислот может иметь такую же энтропию, как и белок с правильной укладкой, – из этих двух вариантов образование белка менее вероятно и потому требует затрат энергии.

Во-первых, аминокислоты в “бульоне” не будут самопроизвольно соединяться друг с другом. Белки – это цепочки соединенных аминокислот, однако сами по себе аминокислоты не реакционноспособны. Клеткам сначала нужно их активировать. Лишь после этого аминокислоты станут реагировать друг с другом, формируя цепь. При этом выделяется примерно столько же энергии, сколько было затрачено на активацию, и общая энтропия не изменяется. В процессе укладки белка энергия теряется в виде тепла, увеличивая энтропию окружающей среды. Таким образом, между стабильными в равной степени состояниями существует энергетический барьер. Он препятствует и формированию белков, и их распаду. Чтобы разложить белок на составляющие, понадобится энергия (и пищеварительные ферменты). Следует понимать, что склонность органических молекул к взаимодействию с образованием более крупных структур (белков, ДНК или мембран) не загадочней тенденции к формированию крупных кристаллов в остывающей лаве. При наличии достаточного количества реакционноспособных “строительных блоков” образование крупных структур приводит к наиболее стабильному состоянию. Вопрос в том, где взять такие “строительные блоки”.

Это подводит нас ко второй проблеме. Существование “бульона” из аминокислот, пусть активированных, в современных условиях вряд ли возможно: в конце концов он прореагирует с кислородом и превратится в смесь углекислого газа, азота, оксидов серы и паров воды. Иными словами, при образовании аминокислот затрачивается энергия, и эта же энергия выделяется при их разложении. Поэтому-то мы способны некоторое время жить без пищи, расщепляя белки наших мышц и используя их в качестве топлива. Эта энергия не извлекается из самого белка, а выделяется при “сжигании” аминокислот, входящих в его состав. Таким образом, семена, споры и вирусы не очень стабильны в современном мире, наполненном кислородом. Их компоненты будут медленно, но непрерывно окисляться. В итоге их структуры и функции окажутся нарушенными, и они не смогут вернуться к жизни, попав в подходящие условия. Так умирают семена. Но измените состав атмосферы, уберите из нее кислород – и они останутся нетленными[19]. Из-за того, что живые организмы не находятся в равновесии с насыщенной кислородом средой, они склонны окисляться, если не защищать их специально. (Впрочем, в следующей главе мы увидим, что это не всегда так.)

В обычных условиях (в присутствии кислорода) образование аминокислот и других “строительных блоков”, например нуклеотидов, требует энергии. Чтобы объединять их в ДНК, белки и другие полимеры, также нужна энергия, несмотря на то, что разница в энтропии невелика. В этом и состоит жизнь: создание новых компонентов и их объединение, рост и размножение. Рост означает еще и активный транспорт материалов вовнутрь и наружу клетки. Все эти процессы нуждаются в непрерывном потоке энергии: Шредингер называл это “свободной энергией”. Вот уравнение, на которое он опирался. Это достаточно простое уравнение связывает энтропию и тепло со свободной энергией:

G = ∆H – TS.

В чем здесь смысл? Греческая буква дельта (∆) означает изменение. ∆G – это изменение свободной энергии Гиббса (названной так в честь великого американского физика-затворника XIX века Дж. Уилларда Гиббса), которая может “свободно” обеспечивать в клетке механическую работу – например мышечное сокращение. ∆H – это тепло, которое выделяется в окружающую среду и повышает ее энтропию. Реакция, в ходе которой во внешнюю среду выделяется тепло, должна вызывать охлаждение самой системы, потому что после реакции в ней становится меньше энергии. Таким образом, если из системы уходит тепло, то ∆H системы приобретает отрицательный знак. T – это температура. Вклад теплового эффекта в разных температурных условиях отличается. Высвобождение фиксированного количества тепла в холодную среду имеет больший эффект, чем выделение такого же количества тепла в теплую среду. Наконец, ∆S – это изменение энтропии системы. Оно имеет отрицательный знак, если энтропия системы снижается – и положительный, если энтропия повышается и система становится более хаотичной.

Свободная энергия ∆G любой самопроизвольной реакции отрицательна. Это верно для всех реакций, обеспечивающих жизнь. То есть реакция будет самопроизвольно идти, только если ∆G отрицательна. Из уравнения следует, что ∆G принимает отрицательные значения (реакция протекает самопроизвольно) либо когда в системе увеличивается энтропия, либо когда система теряет тепло, либо то и другое вместе. Это значит, что локальная энтропия может снижаться до тех пор, пока ∆H это компенсирует (это означает выделение большого количества тепла в окружающее пространство). А главное вот что: чтобы обеспечивать рост и размножение, некоторые реакции должны непрерывно выделять тепло в окружающую среду, разупорядочивая ее. Вспомните о звездах. Они платят за свое упорядоченное существование, отдавая Вселенной огромную энергию. Мы и сами платим за свое непрерывное существование теплом, которое высвобождается в результате непрерывно протекающей реакции дыхания. Мы постоянно окисляем пищу кислородом, нагревая окружающее пространство. Потеря тепла – не побочный эффект, а совершенно необходимый для поддержания жизни процесс. Чем больше потеря тепла, тем выше доступный уровень сложности[20].

Все процессы в живой клетке самопроизвольны. Они запустятся, если дать им правильную стартовую точку. Их ∆G всегда отрицательна. В отношении энергии это похоже на катание с горы. Но это означает, что стартовая точка должна находиться очень высоко. Чтобы получился белок, должно произойти событие с низкой вероятностью: в одном месте должно скопиться достаточное количество активированных аминокислот. Тогда они начнут объединяться в цепи, формируя белок с определенной укладкой. Выделение энергии при этом процессе будет повышать энтропию окружающей среды. Даже активированные аминокислоты будут образовываться самопроизвольно, если есть достаточное количество подходящих реакционноспособных предшественников. И эти предшественники также образуются самопроизвольно, если находятся в среде с высокой реакционной способностью. Таким образом, энергия для роста появляется из высокоэнергетичных компонентов среды, которые непрерывно поступают в живые клетки (в нашем случае в форме пищи и кислорода, в случае растений – в виде света). Живые клетки используют этот непрерывный поток энергии, чтобы, сопротивляясь распаду, расти. Они делают это при помощи хитроумных структур, частично программируемых генами. Но какими бы ни были эти структуры, они сами – результат роста и размножения, естественного отбора и эволюции, и ни один из этих процессов невозможен в отсутствие непрерывного притока энергии извне.

Удивительно узкий спектр форм биологической энергии

Организмам требуется неимоверно много энергии, чтобы жить. Энергетическая “валюта”, которая в ходу у клеток, называется аденозинтрифосфат (АТФ). АТФ работает как монета, которую кидают в игровой автомат. Она заставляет автомат сработать один раз, после чего он выключается. В случае АТФ роль такой машины, как правило, играет белок. АТФ обеспечивает переход из одной стабильной конформации в другую – как бы щелкает переключателем. Чтобы вернуть белок в исходное состояние, требуется снова затратить АТФ – как и в ситуации с автоматом: чтобы его запустить, придется скормить еще одну монетку. Представьте живую клетку в виде огромной галереи игровых автоматов, где работают белковые машины, приводимые в действие монетками-АТФ. Одна клетка ежесекундно расходует около 10 млн молекул АТФ! В человеческом теле около 40 триллионов клеток, а ежедневный суммарный оборот АТФ составляет 60–100 килограммов (это примерно соответствует массе целого организма). В действительности в нашем теле содержится около 60 граммов АТФ, из чего следует, что каждая молекула АТФ перезаряжается один или два раза в минуту.

Что это значит – перезаряжается? При расщеплении АТФ выделяется свободная энергия, которая делает ∆G конформационного перехода отрицательной. АТФ, как правило, распадается на два неравных фрагмента: АДФ (аденозиндифосфат) и неорганический фосфат (PO43-) – тот самый фосфат, который входит в состав удобрений и обозначается Фн. Чтобы вновь получить АТФ из АДФ и фосфата, нужно затратить энергию. Для этого используется энергия, которая высвобождается в ходе окисления питательных веществ кислородом. Так это и происходит. Этот бесконечный цикл можно записать в виде простой формулы:

АДФ + Фн + энергия ↔ АТФ

Так устроены не только мы, люди. Бактерии, например Escherichia coli, способны делиться каждые 20 минут. Чтобы расти, E. coli тратит на каждое деление около 50 млрд АТФ. По массе это в 50–100 раз больше массы отдельной клетки и четырехкратно превосходит наш собственный темп синтеза АТФ. Переведите эти цифры в единицы мощности – ватты – и увидите, что это просто невероятные величины. Мы используем примерно 2 милливатта энергии на 1 г тела – 130 Вт на одного среднего человека весом 65 кг (это чуть больше, чем стандартная лампочка в 100 Вт). В пересчете на 1 г это в 10 тыс. раз больше, чем у Солнца (небольшая часть которого в настоящий момент подвергается ядерному распаду). Жизнь больше похожа на ракету, чем на свечу.

Теоретически жизнь не представляет собой ничего мистического: она не противоречит ни одному закону природы. Ежесекундно клетки пропускают сквозь себя астрономическое количество энергии, но на Землю ее поступает во много раз больше – в виде солнечного света (потому что Солнце не в пример крупнее, хотя его мощность в пересчете на грамм вещества меньше). Поскольку доля этой энергии доступна для обеспечения биохимических процессов, можно подумать, что жизнь может быть реализована почти любым возможным образом. Как и в случае с генетической информацией, по-видимому, нет никаких фундаментальных ограничений касательно того, как можно использовать энергию – лишь бы она имелась в достаточном количестве. Тем удивительнее, что жизнь на Земле оказывается очень стесненной.

Есть два неожиданных аспекта использования энергии живыми организмами. Во-первых, клетки получают энергию за счет химических реакций лишь одного типа: окислительно-восстановительных. (Или – редокс-реакций: от англ. reduction – восстановление и oxidation – окисление.) Это просто перенос электронов от донора к акцептору. Когда донор отдает электроны, говорят, что он окисляется. Именно это происходит с такими веществами, как железо, когда они реагируют с кислородом: железо отдает электроны кислороду, окисляясь и превращаясь в ржавчину. Про вещество, которое принимает электроны (в этом случае кислород), говорят, что оно восстанавливается. В ходе дыхания или горения кислород (O2) восстанавливается до воды (H2O), так как каждый атом кислорода принимает два электрона (становится O2-) и два протона, которые компенсируют заряд. Реакция идет, потому что в процессе высвобождается энергия в виде тепла и повышается энтропия. Все химические реакции в конечном счете повышают температуру среды и уменьшают энергию самой системы. Реакция железа или питательных веществ с кислородом служит отличным примером этого правила. В ходе них выделяется большое количество энергии (как если бы они горели в огне). При дыхании часть энергии, выделяющейся в реакции, запасается в форме АТФ, пусть и ненадолго: до тех пор, пока АТФ не распадется снова. Расщепляясь, АТФ отдает в форме тепла оставшуюся энергию, которая заключена в связи АДФ – Фн. По сути, дыхание и горение – это одно и то же, но в пламени все сгорает моментально, а в ходе дыхания – несколько медленней. Эту небольшую задержку мы и называем жизнью.

Из-за того, что электроны и протоны обычно (но не всегда) объединяются друг с другом, восстановление иногда определяют как перенос атома водорода. Но чтобы разобраться в окислительно-восстановительных процессах, для начала следует сосредоточиться на электронах. Последовательность окислительно-восстановительных реакций сводится к путешествию электрона по цепи связанных друг с другом переносчиков. (Не слишком отличается от течения тока по проводам.) Именно это происходит при дыхании. Электроны от питательных веществ переходят на кислород не сразу (как при горении, когда энергия выделяется вся и сразу), а в несколько стадий, прыгая с одного переносчика на другой, будто с кочки на кочку. Обычно “кочками” служат ионы железа (Fe3+), встроенные в белки дыхательной цепи. Как правило, ион железа входит в состав неорганической кристаллической структуры, которая называется железосерным кластером (рис. 8). С одного кластера электрон перепрыгивает на другой, очень похожий, но с чуть более высоким сродством к электрону (более “жадного”). Когда электрон передается от одного кластера к другому, каждый раз сначала происходит восстановление (принимая электрон, Fe3+ восстанавливается до Fe2+), а затем окисление (потеря электрона и обратный переход в Fe3+). Наконец, совершив пятнадцать или больше прыжков, электрон достигает кислорода. На первый взгляд, у фотосинтеза у растений и дыхания у животных мало общего, однако в главном они совпадают. В основе обоих процессов лежит перенос электрона по “дыхательным цепям”. Почему? Жизнь могла бы существовать за счет тепловой или механической энергии, радиоактивного или ультрафиолетового излучения, или электрических разрядов. Число вариантов ограничено лишь вашим воображением. Но нет: все живое существует благодаря окислительно-восстановительным реакциям, которые происходят на удивительно сходных дыхательных цепях.

Второй неожиданный аспект использования энергии живыми организмами – это хитроумный механизм хранения энергии в химических связях АТФ. Живые организмы синтезируют АТФ не непосредственно, а путем создания протонных градиентов на тонких мембранах[21]. Вскоре мы дойдем до объяснения, что это означает и как работает. А пока вспомним, что о существовании такого странного механизма никто долго и помыслить не мог (по словам молекулярного биолога Лесли Оргела, это “самая парадоксальная идея со времен Дарвина”). На сегодняшний день до мельчайших деталей изучены молекулярные механизмы создания и поддержания протонных градиентов. Мы знаем, что все живое на Земле использует протонные градиенты – это такая же неотъемлемая часть жизни, как ДНК. Но и теперь мы почти ничего не знаем о том, как возник биологический механизм генерации энергии. Какими бы ни были причины – жизнь, похоже, использует поразительно ограниченный и довольно странный набор из всех возможных энергетических механизмов. Каприз истории? Или эти способы настолько лучше прочих, что в конце концов лишь они остались в употреблении? Или же (а вот это интересней) мы имеем дело с единственным возможным вариантом?




Рис. 8. Дыхательный комплекс I.

А. Железосерные кластеры расположены на более или менее одинаковом расстоянии друг от друга (14 ангстрем или меньше). Электроны перескакивают между кластерами путем квантового туннелирования в указанном стрелками направлении. Цифрами обозначено расстояние (в ангстремах) между окислительно-восстановительными центрами (кластерами). Цифры в скобках указывают расстояние от одного края до другого.

Б. Общий вид структуры бактериального комплекса I. Это изображение получено Лео Сазановым при помощи рентгеноструктурного анализа. Вертикальная “рука” переносит электроны от ФМН – места вхождения электронов в дыхательную цепь – на коэнзим Q (убихинон), который перемещает электрон на следующий белковый комплекс. Расположение железосерных кластеров в белке можно увидеть на рисунке А.

В. Комплекс I у млекопитающих, состоящий из тех же субъединиц, что и бактериальный, но частично скрытый под 30 дополнительными субъединицами. (Здесь они показаны как темные тени.) Это изображение получено Джуди Херст при помощи электронной криомикроскопии.

Это прямо сейчас происходит у вас внутри. Представьте, что вы тайно проникли внутрь собственной клетки: скажем, в клетку сердечной мышечной ткани. Она ритмично сокращается благодаря молекулам АТФ, выходящим из множества крупных митохондрий – энергетических станций клетки. А теперь вообразите, что вы уменьшились до размера молекулы АТФ и просочились в белковую пору во внешней мембране митохондрии. Вы в тесном пространстве, похожем на машинное отделение корабля, полном, насколько хватает взгляда, белковых механизмов. Внизу мельтешат сотни маленьких шариков. Они вылетают из белковых машин и через несколько миллисекунд исчезают, а потом появляются новые. Это протоны: положительно заряженные ядра атомов водорода. Все так и пляшет перед глазами. Теперь проберемся сквозь одну из белковых машин в матрикс митохондрии. Там взору открывается потрясающий вид. Вокруг – пещеристое пространство, мягкие стены так и ходят ходуном, а из них торчат гигантские клацающие машины, из которых тянутся нити, как от веретен. Осторожно, берегите голову! Огромные белковые комплексы, глубоко утопленные в стены, лениво переплывают с места на место, как по волнам, но их части движутся с невероятной скоростью. Некоторые ходят ходуном вверх-вниз так быстро, что глаз не может уследить за ними: как поршень парового двигателя. Другие вертятся вокруг своей оси, как пропеллеры, грозя в любой момент оторваться и улететь. Десятки тысяч двигателей неистово жужжат со всех сторон.

Мы глубоко внутри митохондрии, в термодинамическом эпицентре клетки, где осуществляется клеточное дыхание. Водород отрывается от продуктов молекулярного переваривания поглощенной нами пищи и попадает внутрь первого и крупнейшего дыхательного комплекса – комплекса I. Он состоит из 45 белков, и каждый – это цепь из нескольких сотен аминокислот. Вы помните, что вы размером с АТФ? Так вот, комплекс I выглядит как подвижная машина размером с небоскреб, живущая по собственным законам, приводящая в трепет своей сложностью. Электроны отделяются от протонов, попадают в пасть этого огромного комплекса и засасываются внутрь. Далее их путь пролегает глубоко в мембране, и, наконец, они извергаются наружу. Но на этом путь не заканчивается – им приходится еще пройти два огромных белковых комплекса. Все комплексы составляют дыхательную цепь. Каждый имеет несколько окислительно-восстановительных центров (в комплексе I их около 9), в которых электроны на короткое время задерживаются, прыгая с одного центра на другой (рис. 8). На самом деле “прыжки” – скорее туннелирование, некая разновидность “квантовой магии”, благодаря которой электронам удается телепортироваться между центрами: они стремительно пропадают и возникают в другом месте в соответствии с законами квантовой неопределенности. А возникают они, как правило, на следующем по ходу окислительно-восстановительном центре, если только он не слишком далеко. Здесь расстояния измеряются в ангстремах (Å). Один ангстрем примерно соответствует размеру атома[22]. Если расстояние между окислительно-восстановительными центрами – около 14 Å и каждый следующий центр имеет несколько более высокое сродство к электрону, чем предыдущий, то электроны будут прыгать по цепочке, как по кочкам на болоте. Электроны проходят через три гигантских дыхательных комплекса, не замечая их – как и вы не обращали бы особого внимания на болото, прыгая с кочки на кочку. Они стремятся вперед, к кислороду, который притягивает электроны с огромной силой. Это не воздействие на расстоянии – они оказываются на кислороде просто потому, что вероятность нахождения там для них выше, чем в любом другом месте. Это похоже на провод с изоляцией из белков и липидов, по которому идет ток электронов от питательного вещества к кислороду. Добро пожаловать в дыхательную цепь!

Все, что здесь есть, приводится в движение электрическим током. Электроны прыгают вперед, стремясь к кислороду, безразличные к лязгу машин, возвышающихся тут и там, как станки-качалки над нефтяными скважинами. Однако огромные белковые комплексы полны развилок – стрелок, которые могут быть переведены. Когда в окислительно-восстановительном центре белка находится электрон, белок имеет определенную структуру, а когда электрон уходит, структура меняется. Часть белка меняет свое положение, отрицательный заряд уходит, возникает положительный, перестраиваются целые сети слабых связей, и белковая махина за доли секунды меняет свою конформацию. Небольшие изменения в одном месте белка могут повлечь открытие канала в другом месте. Но прибывает другой электрон, и белковая машина возвращается к предыдущему состоянию. Этот процесс повторяется десятки раз в секунду. Структура дыхательных комплексов уже изучена очень подробно, с точностью до нескольких ангстрем, почти в атомном разрешении. Мы знаем, как протоны связываются с иммобилизованными молекулами воды, которые, в свою очередь, удерживаются на месте благодаря зарядам белка. Мы знаем, как молекулы воды смещаются, когда изменяется состояние каналов, и как протоны переходят с одной молекулы воды на другую через динамические мостики, быстро возникающие и исчезающие. Нам известны все превратности их тернистого пути через белок, который сразу после прохождения протона закрывается, предотвращая его обратное движение. Прямо как в приключениях Индианы Джонса, только вместо Храма Судьбы – Белок Судьбы. Эта огромная, очень сложная и подвижная машинерия служит единственной цели: она обеспечивает перемещение протонов с одной стороны мембраны на другую.

На каждую пару электронов, проходящую через первый комплекс дыхательной цепи, приходится четыре протона, которые перебрасываются через мембрану. Затем пара электронов переходит на второй комплекс (вообще-то он называется комплексом III, а комплекс II – это альтернативная точка входа электронов), который переправляет сквозь мембрану еще четыре протона. В недрах последнего грандиозного дыхательного комплекса электроны, сливаясь с кислородом, уходят в нирвану (но не раньше, чем еще два протона переместятся через мембрану). На каждую пару электронов, оторванных от пищи, приходится десять протонов, переправленных на другую сторону мембраны – вот так (рис. 9). Чуть менее половины энергии, выделяющейся в процессе движения электрона к кислороду, сохраняется в форме протонного градиента. Все эти ухищрения, все эти огромные белковые структуры нужны лишь для того, чтобы перекачивать протоны через внутреннюю митохондриальную мембрану. В одной митохондрии десятки тысяч дыхательных комплексов каждого вида. Одна клетка содержит сотни, даже тысячи митохондрий. Ваши 40 млрд клеток несут по меньшей мере квадриллион митохондрий, а общая площадь поверхности их складчатых мембран составляет около 14 тыс. м2 (примерно четыре футбольных поля). Предназначение этих мембран – транспорт протонов. За секунду в нашем теле перекачивается более 1021 протонов: во Вселенной примерно столько же звезд.


Рис. 9. Принцип работы митохондрий.

А. Электронная микрофотография митохондрий. Заметны складки внутренней мембраны (кристы), где осуществляется клеточное дыхание.

Б. Схема дыхательной цепи, на которой показаны три встроенных во внутреннюю мембрану главных белковых комплекса. Электроны (e–) входят в цепь слева и передаются на кислород через цепочку из трех больших белковых комплексов. Сначала электроны передаются на комплекс I (рис. 8), затем на комплекс III, а следом – на комплекс IV. Комплекс II (не показан) – это отдельная точка входа электронов в дыхательную цепь. Он передает электроны сразу на комплекс III. Маленькие кружки в толще мембраны – убихиноны, переносящие электроны от комплексов I и II к комплексу III. Белок, заякоренный на поверхности мембраны – цитохром c, переносящий электроны от комплекса III к комплексу IV. Направление потока электронов на кислород показано стрелкой. В ходе транспорта электронов выделяется энергия, за счет которой дыхательные комплексы I, III и IV перебрасывают протоны через мембрану (комплекс II передает электроны, но протоны не перекачивает). На каждую пару электронов, прошедших через ЭТЦ к кислороду, комплексы I и III перекачивают по четыре протона, комплекс IV – два протона. Протоны возвращаются в матрикс через АТФ-синтазу, и за счет выделяющейся энергии происходит синтез АТФ из АДФ и Фн(вправойчастирисунка).

Но это лишь половина их работы. Вторая половина – синтезировать АТФ, используя накопленную энергию[23]. Внутренняя мембрана митохондрий почти непроницаема для протонов – они могут проходить только через особые динамические каналы, которые, пропустив протон, захлопываются. Протоны крошечные (по сути, это ядра атомов водорода, самого малого из атомов), поэтому удержать их – нелегкая задача. Протоны невероятно быстро перемещаются в водной среде, перепрыгивая с молекулы на молекулу, поэтому митохондриальная мембрана должна быть совершенно непроницаема для воды. Кроме того, протоны заряжены – они несут единичный положительный заряд. Поэтому перекачка протонов через непроницаемую для них мембрану приводит, во-первых, к тому, что возникает разность концентраций протонов между двумя сторонами мембраны. Во-вторых, на мембране появляется разность зарядов, потому что снаружи положительных зарядов становится больше, чем внутри. Иными словами, на мембране возникает разность электрохимических потенциалов в 150–200 милливольт. Из-за того, что мембрана очень тонкая (около 6 нанометров), внутри нее появляется чрезвычайно высокая напряженность электрического поля. Если вы снова уменьшитесь до размера молекулы АТФ и попробуете приблизиться к мембране, то сможете в этом убедиться: напряженность там достигает 30 мегавольт на метр – в тысячу раз выше, чем в бытовой электросети. (Почти как у разряда молнии.)

Этот огромный электрический потенциал – протон-движущая сила – приводит в движение АТФ-синтазу: поражающую воображение белковую наномашину (рис. 10). АТФ-синтаза – самый настоящий роторный двигатель, в котором поток протонов вращает коленчатый вал, взаимодействующий с каталитической головкой. За счет энергии этого взаимодействия происходит синтез АТФ. АТФ-синтаза похожа на турбину гидроэлектростанции: мембрана, как плотина, сдерживает напор протонов, которым ничего не остается, как хлынуть через турбину, вращая ротор. Это не поэтическое видение, а точное описание. Впрочем, даже оно не передает удивительной сложности белкового двигателя. Например, до сих пор не вполне ясно, как протоны связываются с погруженным в мембрану участком C-кольца; какие электростатические взаимодействия вращают это кольцо (строго в одном направлении); как кольцо сообщает вращение ротору, вызывая конформационные изменения в каталитической головке, а также как двигаются субъединицы этой головки, захватывая молекулы АДФ, Фн и спрессовывая их в молекулу АТФ. Эта наномашина с высочайшим уровнем точности столь совершенна, что ее работа сродни магии. Чем больше мы узнаем о ней, тем больше она удивляет. Некоторые даже видят в ее совершенстве доказательство существования Бога. Я считаю “чудо” результатом естественного отбора. В любом случае это, несомненно, одна из самых удивительных природных машин.

На каждые десять протонов, прошедших через АТФ-синтазу, ротор делает один полный оборот, и в матрикс высвобождается три новообразованных молекулы АТФ. Ротор может совершать более сотни оборотов в секунду. АТФ называют энергетической “валютой” жизни. АТФ-синтаза и протон-движущая сила – это также универсальные и консервативные признаки жизни. АТФ-синтаза имеется у всех бактерий, архей и эукариот (то есть во всех трех доменах жизни), за исключением небольшого числа организмов, полностью перешедших на брожение. Протонный градиент и АТФ-синтаза универсальны, как и генетический код. В моей книге АТФ-синтаза – это такой же символ жизни, как двойная спираль ДНК. Я надеюсь, что она станет таким символом и для вас.


Рис. 10. Структура АТФ-синтазы.

АТФ-синтаза – удивительный роторный двигатель, погруженный своим основанием в мембрану (внизу). Этот прекрасный рисунок Дэвида Гудселла выполнен с соблюдением пропорций, и мы можем оценить относительные размеры молекул АТФ и протонов в сравнении с белком и толщиной мембраны. Поток протонов, проходя через мембранную субъединицу (показана стрелкой), вращает встроенный в мембрану FО – ротор и прикрепленный к нему вал (стебелек). (Вращение показано стрелкой.) Вращение вала вызывает конформационные изменения в каталитической головке (субъединице F1), за счет которых осуществляется синтез АТФ из АДФ и фосфат-ионов. Сама головка не вращается, поскольку зафиксирована статором: торчащим слева жестким стержнем. Протоны изображены снизу от мембраны в форме ионов гидроксония (H3O+), то есть связанными с водой.

Главная загадка биологии


Поделиться книгой:

На главную
Назад