Рис. 4, 5.
Каждый глаз движется с помощью шести мышц (рис. 4, 7).
Рис. 4, 7.
Своеобразное устройство верхней косой мышцы глаза можно видеть на иллюстрации; сухожилия проходят через «блок», располагаясь в черепе спереди от связки, поддерживающей глазное яблоко. Глаза находятся в непрерывном движении, причем существуют разные виды движений глаз. Когда глаза двигаются по кругу в поисках объекта, они двигаются совсем иначе, чем тогда, когда они следят за перемещающимся объектом. При поиске они совершают ряд мелких быстрых скачков; при слежении за движущимся объектом они двигаются плавно. Скачки известны под названием «
Движение глаз можно регистрировать разными способами: их можно заснять на киноленту, зарегистрировать, отмечая небольшие изменения биопотенциалов мышц, окружающих глаз, или — наиболее точно — с помощью зеркальца, прикрепленного к контактной линзе, помещенной на роговице глаза; в последнем случае пучок света, отраженный зеркальцем, фотографируется на непрерывно движущейся ленте.
Обнаружено, что саккадические движения глаз важны для зрения. Можно фиксировать изображение предмета на сетчатке таким образом, что в то время, когда глаз движется, изображения передвигаются вместе с ним и, следовательно, остаются фиксированными на сетчатке. Когда изображение оптически стабилизируется (рис. 4, 8), зрительное восприятие этого изображения исчезает через несколько секунд; по-видимому, функция движений глаза частично состоит в том, чтобы перемещать изображение по
Рис. 4, 8.
Часто думают, что мигание — это рефлекс, который возникает, когда роговая оболочка становится сухой. Но при нормальном мигании дело обстоит иначе, хотя мигание может наблюдаться как при раздражении роговицы, так и при внезапном изменении освещения. Нормальное мигание происходит и без внешнего стимула: оно опосредствуется сигналами, поступающими из мозга. Частота миганий увеличивается при напряжении, в предвидении трудных для разрешения задач. Она снижается в среднем в периоды концентрации умственной активности. Можно даже использовать частоту мигания как показатель внимания или сосредоточения на задании. В моменты мигания мы слепы, хотя и не замечаем этого.
Название сетчатки происходит от слова «сеть» или «паутина» и объясняется наличием густой сети кровеносных сосудов, которые ее покрывают.
Сетчатка — это тонкий слой взаимно связанных между собой нервных клеток, светочувствительных колбочек и палочек, которые превращают свет в электрические импульсы — язык нервной системы. Не всегда было очевидно, что сетчатка — это первая ступень зрительного пути. Греки думали, что сетчатка снабжает стекловидное тело питанием. Гален впервые предположил, что она участвует в зрительных процессах, но более поздние авторы приписывали эту функцию хрусталику. Арабские ученые средних веков, хранители классических знаний, рассматривали сетчатку в качестве проводника жизненных духов, или «пневмы».
В 1604 году астроном Кеплер впервые определил действительную функцию сетчатки, указав, что она является экраном, на котором создается изображение, преломляющееся в хрусталике. Эта гипотеза была экспериментально подтверждена Шейнером в 1625 году. Он удалял внешнюю оболочку (склеру и кровеносную оболочку глаза, расположенную между склерой и сетчаткой) глаза быка, оставляя сетчатку, которая представала перед ним в виде полупрозрачной пластинки. На ней Шейнер увидел маленькое перевернутое изображение.
Открытие фоторецепторов было, однако, сделано позднее, после изобретения микроскопа и систематической работы с ним. Только в 1835 году фоторецепторы были впервые описаны Тревиранусом, хотя и недостаточно точно. По-видимому, его наблюдения были основаны на собственных предположениях, так как он сообщил, что фоторецепторы обращены к свету. Как ни странно, это не так; у млекопитающих и почти у всех позвоночных, — но не у головоногих, — рецепторы находятся в заднем слое сетчатки, позади кровеносных сосудов. Это означает, что свет должен пройти через сеть кровеносных сосудов и тонкую сеть нервных волокон, включающих три слоя нервных клеток и множество соединительных клеток, прежде чем он достигнет фоторецепторов. Оптически сетчатка вывернута наизнанку подобно тому, как если бы в камере пленка была бы повернута светочувствительным слоем в другую сторону (рис. 4, 9).
Рис. 4, 9.
Однако при таком оригинальном, «ошибочном» расположении фоторецепторов в сетчатке (которое, видимо, является результатом закономерного эмбрионального развития сетчатки из внешнего мозгового листка) спасает дело то, что нервные волокна от периферии сетчатки располагаются на периферии и освобождают критическую, центральную часть сетчатки для лучшего видения.
Сетчатку часто рассматривают как «вынесенную наружу часть мозга». Она является специализированной частью мозговой коры, вынесенной вовне и ставшей чувствительной к свету; она содержит типичные мозговые клетки, расположенные между фоторецепторами и зрительным нервом (находящиеся, однако, в передних слоях сетчатки), которые в значительной степени модифицируют электрическую активность, идущую от самих фоторецепторов. Таким образом, процессы зрительного восприятия, протекающие в глазу, являются неотъемлемой частью деятельности мозга.
Существует два вида светочувствительных клеток — палочки и колбочки, которые названы так в соответствии с их видом под микроскопом. В периферических отделах сетчатки они четко различимы, однако в центральной области —
Колбочки функционируют в условиях дневного света и являются аппаратом цветного зрения. Палочки функционируют при слабом освещении и обеспечивают только восприятие оттенков серого. Дневное зрение, осуществляемое с помощью колбочкового аппарата сетчатки, обозначается как «
Можно было бы спросить, каким образом стало известно, что колбочки и только колбочки обеспечивают цветное зрение. Такой вывод был сделан отчасти на основании изучения глаз различных животных и сопоставления структуры сетчатки со способностью этих животных различать цвета, что устанавливается в результате изучения их поведения; этот вывод был сделан также из того факта, что на периферии сетчатки человеческого глаза очень мало колбочек, и именно эта область сетчатки не различает цветов. Интересно, что, хотя центральная фовеальная область сетчатки, где колбочки расположены особенно платно, дает наилучшее зрительное восприятие деталей и цветов, она оказывается менее чувствительной, чем периферическая часть, которая заполнена более примитивными палочками. Астрономы предпочитают пользоваться не центральной, а периферической частью сетчатки, когда они наблюдают самые отдаленные звезды, делая так, чтобы их изображение попадало на ту область сетчатки, которая богата палочками.
Можно было бы сказать, что, двигаясь от центра человеческой сетчатки к периферии, мы как бы оказываемся на более ранних этапах эволюции, переходя от наиболее высоко организованных структур к примитивному глазу, который различает лишь простое движение теней. Края человеческой сетчатки не дают даже зрительного ощущения; когда они стимулируются движущимся объектом, они вызывают только рефлекторный поворот глаз к этому объекту, после чего глаз воспринимает его наиболее высокоорганизованной частью сетчатки.
Размеры фоторецепторов и плотность их расположения являются важным фактором, определяющим способность глаза различать мелкие детали. Приведем выдержку из замечательной книги Поляка «Сетчатка».
«Центральная территория сетчатки, где колбочки приблизительно одинаковой ширины, равна примерно 100
Стоит попытаться представить себе размеры фоторецепторов. Самые маленькие из них величиной в 1
Число колбочек в сетчатке примерно равно числу жителей Нью-Йорка. Если бы все население Соединенных Штатов расположилось на площади величиной с почтовую марку, мы получили бы плотность палочек в сетчатке одного глаза. Что касается клеток мозга, то, если бы люди уменьшились до их размеров, мы могли бы все население земного шара поместить в пригоршне, однако и этого числа было бы недостаточно, чтобы составить количество мозговых клеток.
Светочувствительный пигмент сетчатки под влиянием яркого света обесцвечивается; и это обесцвечивание каким-то таинственным пока для нас образом стимулирует нервные волокна; требуется некоторое время, чтобы фотохимические процессы вернулись в исходное состояние. Химические процессы в сетчатке сейчас стали более понятными благодаря работе доктора Джорджа Уолда. Когда определенная область светочувствительного пигмента «обесцвечивается», она становится менее чувствительной, чем окружающие ее отделы, что и приводит к появлению
Многие органы тела парные, однако глаза, как и уши, отличаются тем, что работают в тесном взаимодействии: они вместе воспринимают и сличают информацию, так что совместно выполняют работу, которая недоступна для одного глаза или уха.
Воспринимаемые изображения размещаются в глазах на изогнутой поверхности сетчатки, однако, несмотря на это, их можно назвать двумерными. Удивительным в работе зрительной системы является ее способность синтезировать два различных изображения в единое восприятие целостных объектов, расположенных в трехмерном пространстве.
У человека глаза смотрят вперед и участвуют в восприятии одного и того же поля зрения, однако среди позвоночных это встречается редко, поскольку у большинства позвоночных глаза расположены по бокам головы и направлены в противоположные стороны. Постепенный переход расположения глаз от бокового к фронтальному, благодаря чему стала возможной точная оценка расстояния, сыграл важную роль в тот период, когда у млекопитающих развивались передние конечности, способные держать предметы, манипулировать ими и цепляться за ветки деревьев. Для животных, которые живут Bi лесах и прыгают с ветки на ветку, быстрая и точная оценка расстояния близких объектов очень важна, и использование двух глаз, которые совместно дают стереоскопическое зрение, в высшей степени развито. Такие животные, как кошка, имеют фронтальное расположение глаз, работающих совместно, однако у них плотность фоторецепторов приблизительно одинакова по всей сетчатке. Фовеа возникает только тогда, когда становится необходимой точная оценка глубины воспринимаемого изображения, как это имеет место у птиц или живущих на деревьях обезьян; у них развита фовеальная область сетчатки и существует точный контроль движений глаз. Стереоскопическое зрительное восприятие движений также обеспечивается парными фасеточными глазами насекомых и высоко развито у таких насекомых, как стрекоза, которая хватает свою добычу на лету на большой скорости. Фасеточные глаза неподвижно закреплены на голове, и механизм их стереоскопического зрения проще, чем у обезьян или человека, у которых отражение объектов на фовеа на различных расстояниях осуществляется с помощью конвергенции глаз.
Рис. 4, 10 показывает, как оси глаз сходятся внутрь при взгляде на близко расположенные объекты и сигналы расстояния в виде этого угла конвергенции передаются в мозг. Это, однако, далеко не все.
Рис. 4, 10.
Простой опыт показывает, что угол конвергенции используется непосредственно в качестве сигнала расстояния. Рис. 4, 11,
Рис. 4, 11.
Однако у дальномеров есть серьезные недостатки: они могут в данный момент указывать лишь на расстояние до одного определенного объекта, а именно того, чьи изображения сливаются при данном угле конвергенции. Для того чтобы в один и тот же момент найти расстояние до многих предметов, необходимо использовать совершенно другую систему. Наш зрительный аппарат развился в подобную систему, однако для ее работы нужна сложная вычислительная техника мозга.
Глаза разделены расстоянием примерно в 6,25 см и получают различные зрительные изображения. В этом легко можно убедиться, если закрыть сначала один, а потом другой глаз. Любой близко расположенный объект будет казаться смещенным в сторону по отношению к более отдаленным объектам и будет вращаться, если попеременно смотреть то левым, то правым глазом. Это небольшое различие между изображениями известно под названием диспаратности. Благодаря ему возникает восприятие глубины, или
Стереоскоп — простой аппарат для раздельного предъявления двух картин левому и правому глазу. B нормальных условиях эти картины образуют стереопару, которую можно получить при раздельной съемке двумя камерами, расположенными на расстоянии глаз; таким образом получаются диспаратные изображения, которые воспринимаются мозгом стереоскопически. Стереоскоп дает возможность изучить, каким образом глаза используют диспаратность для восприятия глубины. (Стереоскоп был популярной игрушкой в викторианскую эпоху, но, к сожалению, сюжеты фотографий были строго ограничены; другие сюжеты, которые были идеальны с технической точки зрения, отвергались высокопоставленным обществом этой эпохи, и стереоскоп был забыт.)
Стереоскопические картины могут предъявляться в другой комбинации — правому глазу можно показывать картину, видимую левым глазом, и наоборот, — тогда можно получить «обратное» восприятие глубины. «Обратное» восприятие глубины будет наблюдаться при псевдоскопическом зрении (как его называют), когда это искаженное восприятие глубины не слишком сильно нарушает обычное зрение. В этих случаях лица людей не будут восприниматься перевернутыми по глубине (мы не будем видеть нос вогнутым внутрь), однако, когда глаза переводятся на другие предметы, их положение может быть обратным по глубине.
Очень просто создать такие оптические условия для глаз, при которых реальный мир будет казаться искаженным по глубине. Это можно сделать с помощью особого аппарата — псевдоскопа (рис. 4, 12).
Рис. 4, 12.
Стереоскопическое зрение — это только один из многих способов восприятия глубины, и оно функционирует лишь при взгляде на сравнительно близкие объекты: на далеких расстояниях явление диспаратности уменьшается и изображения, воспринимаемые левым и правым глазом, становятся идентичными. Мы эффективно воспринимаем одним глазом расстояния большие, чем шесть метров.
Мозг должен «знать», какой глаз — левый, какой — правый, потому что иначе восприятие глубины будет неясным. В противном случае перевернутые изображения в стереоскопе или псевдоскопе не производили бы должного впечатления. Как ни странно, почти невозможно сказать, какой глаз играет ведущую роль в восприятии глубины, и хотя можно очень легко установить роль каждого глаза при восприятии глубины, эта информация не осознается.
Если каждому глазу предъявлять различную картину (или если различие между воспринимаемыми положениями объекта так велико, что слияние изображений невозможно), наблюдается своеобразный и весьма отчетливый эффект: каждый глаз по очереди перестает видеть изображение или части его, так что происходит непрерывная флуктуация. Части каждой картины последовательно сливаются и отвергаются глазом и всякий раз по-разному. Это явление известно как «соперничество сетчаток». Такое соперничество возникает также, если обоим глазам предъявляются разные цвета, Хотя в этом случае на короткие периоды возникает слияние, создающее смешение цветов.
Рис. 4, 13.
Рис. 4, 14 и 4,15.
Мы еще не знаем, как работают вычислительные механизмы мозга, превращающие различие в изображениях в восприятие глубины. Однако можно показать тип информации, который используется при этом мозгом. Это можно сделать с помощью одного фотографического трюка, который состоит в том, что негативное изображение одной стереопары помещают на прозрачный позитив, сделанный с негатива другой пары. Там, где два изображения идентичны, свет сквозь пластинки не пройдет, но свет пройдет в любой не совпадающей по изображениям точке; таким образом возникают картины одних только различий. Пример такого рода дан на рисунке 4,13. Следует отметить, что почти вся информация об исходной картине при такой обработке исчезает. Подобный отсев информации делает работу нашей внутренней «вычислительной машины» значительно экономней.
Теперь мы переходим к удивительной особенности стереоскопического восприятия глубины. Существует взаимосвязь между двумя механизмами, описанными выше: 1) конвергенцией глаз, которая служит своего рода
Если бы этого не было, отдаленные предметы казались бы ближе друг к другу по глубине, чем близкие предметы, расположенные на том же расстоянии друг ог друга, потому что диспаратность тем больше, чем ближе находятся предметы. Действие механизма координации, компенсирующего эти геометрические соотношения, довольно легко наблюдать, если нарушить конвергенцию, сохранив прежнюю диспаратность. Если заставить глаза конвергировать с помощью призмы, ориентировав их на бесконечность, и рассматривать в это время близлежащие предметы, то они воспринимаются как растянутые в глубину. Таким образом мы можем видеть нашу конвергентно-диспарационную систему компенсации в действии.
Очень остроумный эксперимент был недавно проведен Джулезом (Julesz) в лабораториях телефонной компании «Белл». Автор с помощью вычислительной машины создал пару специальных рисунков (рис. 4, 16), каждый из них представлял собой случайный набор линий и не содержал контуров знакомых предметов или структур, но, взятые вместе, они создавали структуру, обладающую глубиной.