Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - Gustavo Ernesto Pineiro на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В этой ситуации логично задаться вопросом: возможно ли множество с еще большей мощностью, чем мощность вещественных чисел? Именно об этом и думал Кантор, когда писал Дедекинду. Проследим, как вопрос о возможности множества с мощностью, большей, чем мощность вещественных чисел, приводит нас к вопросу в письме Кантора.

В предыдущей главе мы убедились, что каждой точке на числовой оси соответствует вещественное число, и наоборот: каждому вещественному числу соответствует точка на оси. Другими словами, между вещественными числами и точками на оси наблюдается взаимно однозначное соответствие (то есть два множества эквивалентны или равномощны). Когда мы говорим о мощности — это то же самое, что говорить о вещественных числах и точках на оси. Какое множество можно выдвинуть в качестве кандидата на большую мощность по сравнению со множеством точек на оси? Поскольку ось — одномерный объект, логично было бы предположить, что нам подошел бы объект с двумерной поверхностью.

Если мы думаем о множестве всех вещественных чисел, а им соответствует числовая ось, почему Кантор говорит об отрезке, то есть только о части прямой, ограниченной двумя точками? Дело в том, что можно доказать: все отрезки, вне зависимости от их длины, эквивалентны друг другу, у них одинаковая мощность и, в свою очередь, любой отрезок эквивалентен полной оси. Таким образом, при изучении мощности не имеет значения, о чем идет речь, — об отрезке или об оси.

Теперь вернемся к вопросу, сформулированному Кантором в письме от 5 января 1874 года: может ли одномерный объект (отрезок, взятый как бесконечная совокупность точек) иметь такую же мощность, что и двумерный объект (квадрат, также взятый как бесконечное множество точек), или, наоборот, мощность квадрата будет больше?

Решение задач, связанных с математической бесконечностью, является, пожалуй, одним из главных успехов нашей эпохи, которым мы можем гордиться.

Лорд Бертран Рассел, 1910 год.

В этом же письме Кантор утверждал, что, разумеется, кардинальное число точек квадрата должно превосходить кардинальное число точек отрезка. Дедекинд согласился, но Кантор также добавлял, что задача тем не менее «очень сложна».

И действительно, на пути к ее решению было много препятствий, и чтобы найти его, Кантору потребовалось три года. Он изложил его Дедекинду в письме от 20 июня 1877 года, и уже 22 июня Дедекинд отправил свое послание, в котором оспаривал аргументацию Кантора. Тот ответил двумя письмами от 25 и 29 июня. В последнем, очень характерном для Кантора, говорилось: 

«Прошу Вас извинить мое рвение, если я слишком часто злоупотребляю Вашей добротой и снисходительностью. То, что Вы сообщили, для меня настолько неожиданно и ново, что я не мог бы, так сказать, достичь некоего спокойствия духа, прежде чем получу, мой многоуважаемый друг, Ваше мнение по поводу верности [моего предположения]. Пока Вы не одобрите мои выводы, я могу лишь сказать je le vois, mais je ne le crois pas [«я это вижу, но этому не верю», франц.]. 

Мы можем предположить, что Дедекинд помог Кантору достичь «некоего спокойствия духа», потому что его ответ, отправленный из Брунсвика 2 июля, начинался так: 

«Я еще раз рассмотрел Ваше доказательство и не нашел в нем никаких пробелов; я убежден, что Ваша интереснейшая теорема верна и поздравляю Вас».

ОТВЕТ

Ответ, к удивлению самого Кантора, заключался в том, что между точками отрезка и точками квадрата существует взаимно однозначное соответствие. Другими словами, несмотря на то что у квадрата есть еще одно измерение, его кардинальное число (мощность) не больше, чем у отрезка.

Как это доказать? Отрезок — это часть прямой между двумя фиксированными точками. Следовательно, можно приравнять его к совокупности всех вещественных чисел, заключающихся между этими точками. Поскольку 0 и 1 отмечены в произвольных точках числовой оси, мы можем приравнять любой отрезок к множеству вещественных чисел, расположенных именно между 0 и 1. Так, на рисунке 1 изображена точка, соответствующая числу 0,75.


РИС.1


РИС. 2

Как представить точки квадрата в числовом виде? Как известно, координаты на земном шаре определяются по двум осям — ширине и долготе. Аналогично и у точек квадрата имеются две координаты — абсцисса и ордината (рисунок 2).

Как определить положение точки Р квадрата на осях абсциссы и ординаты? Для этого, как показано на рисунке 2, выберем две непараллельные стороны квадрата и, как в случае с отрезком, отметим на них 0 и 1. Нулю будет соответствовать их общая вершина.

Чтобы узнать координаты точки Р, спроецируем ее перпендикуляр на каждую из выбранных сторон (как точка на земном шаре проецируется на экватор и на Гринвичский меридиан). Одним из чисел будет абсцисса Ру вторым — его ордината.

ОТРЕЗКИ БЕЗ КОНЦОВ

Теперь докажем, что вещественные числа между 0 и 1, включая обе эти точки, эквивалентны множеству, которое получается, если мы уберем 1. Графически первая группа выглядит как отрезок, ограниченный с двух сторон, а вторая — как отрезок без одного конца (см. рисунок 1). Чтобы установить соответствие (см. рисунок 2), сопоставим 1 из первой группы с 1/2 второй, 1/2 первой группы — с 1/3 второй, 1/3 первой — с 1/4 второй и так далее. Остальные числа первой группы, то есть все, отличные от 1/2,1/3,1/4 (как 3/4, например), будут соотнесены с самими собой. Таким же образом мы можем доказать, что отрезок без одного конца соотносится с отрезком, не имеющим ограничений. Следовательно, все три отрезка — отрезок с двумя концами, отрезок без одного конца и отрезок без ограничений — эквивалентны друг другу.


РИС. 1

Изобразим отсутствие точки как пустую окружность.



РИС. 2

Таким образом, каждая точка квадрата определена двумя координатами. Сначала ставят абсциссу, а потом ординату: мы будем говорить о точках координат 0,2 и 0,7, подразумевая, что 0,2 — значение по абсциссе, а 0,7 — по ординате.

Задача заключается в том, чтобы установить взаимно однозначное соответствие между вещественными числами, находящимися между точками 0 и 1, и парами чисел между 0 и 1 так, чтобы каждому числу соответствовала единственная пара, а каждой паре — только одно число.

Предположим, есть число 0,213421342134... Какой паре координат оно соответствует? Возьмем цифры, стоящие в нечетных позициях после запятой (первую, третью, пятую и так далее). Это числа 232323... Затем рассмотрим четные позиции. Это числа 141414... Число 0,213421342134... соответствует, таким образом, паре координат 0,232323... и 0,141414...

Аналогично, если у нас есть точка с координатами 0,232323... и 0,141414..., чтобы получить соответствующую точку на отрезке, возьмем первое число абсциссы, первое число ординаты, потом второе число абсциссы, второе число ординаты и так далее. Мы получим число 0,21342134... (см. рисунок 3).

ОТРЕЗКИ РАЗНОЙ ДЛИНЫ

Теперь докажем, что два отрезка разной длины эквивалентны. Сначала проведем две прямые через концы отрезков и обозначим точку их пересечения буквой О. Затем проведем еще прямые через точку О. На рисунке показано, как с их помощью соотнести с каждой точкой Р на одном отрезке точку F на другом.


Еще один пример. Если у нас есть точка с координатами 0,2 и 0,7, запишем эти числа как 0,20000... и 0,70000... (количество нулей не имеет значения). Этой паре будет соответствовать число 0,270000..., то есть 0,27. На рисунке 4 показаны и другие примеры этого соответствия. То есть мы видим, что каждому числу в промежутке от 0 до 1 соответствует конкретная пара координат и каждой паре координат соответствует конкретное число. Другими словами, мы установили взаимно однозначное соответствие между любым отрезком и любым квадратом: следовательно, мы можем утверждать, что у этих множеств одинаковая мощность. Выше мы сказали, что любой отрезок равномощен полной оси. Аналогично, мы можем доказать, что мощность квадрата такая же, как мощность всей плоскости.

Таким образом, мы приходим к выводу, что любая прямая, любой отрезок, любой квадрат и плоскость имеют одинаковую мощность. Это верно и для трехмерных объектов, так как можно доказать, что мощность отрезка равна мощности куба, которая, в свою очередь, равна мощности всего трехмерного пространства.


РИС. 3: Взаимно однозначное соответствие между отдельными числами и парами чисел.


РИС. 4: Некоторые примеры соответствия между числом, находящимся между О и 1, и парой чисел.

Вернемся к основному вопросу задачи: существует ли множество с большей мощностью, чем мощность вещественных чисел? Мы все еще не нашли решение: ни квадрат, ни плоскость, ни трехмерное пространство (все это бесконечные множества точек) не годятся в качестве ответа. Однако нет у нас и аргументов, доказывающих, что такое множество существовать не может.

ОТРЕЗОК, ОКРУЖНОСТЬ, ПРЯМАЯ

На рисунке 1 показано, как можно доказать равномощность окружности с выколотой точкой (ее отсутствие обозначено пустым кружком) отрезку без концов, искривляя его. Оба эти множества точек — в сущности одно и то же, их единственное различие заключается в графическом изображении на плоскости. В одном случае они располагаются на прямой, в другом — по окружности. На рисунке 2 показано, как установить взаимно однозначное соответствие между окружностью без точки и прямой. Каждой точке Р окружности соответствует точка F на прямой (Р и Р' должны всегда находиться на одной линии с недостающей окружности точкой). Исходя из транзитивного свойства мы заключаем, что отрезок без концов эквивалентен замкнутой оси.


РИС.1


РИС. 2

В 1877 году сам Кантор не знал, существует ли множество с мощностью большей, чем у вещественных чисел, и смог дать ответ на этот вопрос только в 1883 году.

КОНТИНУУМ-ГИПОТЕЗА

Множество вещественных чисел обладает большей мощностью, чем множество натуральных чисел. Возникает вопрос: есть ли множество с еще большей мощностью? Но логичным образом рождается еще один вопрос: существует ли множество со средней мощностью? То есть множество с мощностью большей, чем у натуральных чисел, но меньшей, чем у вещественных.

Все множества, эквивалентные множеству натуральных чисел, Кантор называл счетными: например, множества целых и рациональных чисел счетные, а множество вещественных — нет. Поэтому вопрос можно переформулировать и так: существует ли бесконечное несчетное множество с мощностью, меньшей, чем у вещественных чисел?

Кантор несколько лет безуспешно пытался найти пример такого множества. Множества натуральных, целых, рациональных и алгебраических чисел являются счетными. Иррациональные и трансцендентные числа — несчетны, но эквивалентны вещественным числам, и, следовательно, их мощность не меньше.

В конце концов, после того как все попытки Кантора найти среднее множество провалились, в 1877 году он пришел к выводу, что его не существует, и сформулировал так называемую «континуум-гипотезу»: не существует никакого бесконечного множества, мощность которого была бы промежуточной между мощностью натуральных и вещественных чисел (см. рисунок).

Гипотеза — это утверждение, которое пока не было ни доказано, ни опровергнуто. В данном случае для подтверждения гипотезы нужно было бы доказать, что не существует множества с промежуточной мощностью между множеством натуральных и вещественных чисел, а для опровержения — найти такое множество.

В 1877 году Кантор был убежден в правильности своей гипотезы, хотя и не сумел доказать ее. Этот вопрос занимал его долгие годы, и в 1833 году его желание получить подтверждение своим идеям стало для него делом огромной важности. Ответ был довольно неожиданным.

ОТРЕЗОК И ПРОСТРАНСТВО

Как мы уже говорили, любой отрезок, любой квадрат и плоскость имеют одинаковую мощность. То же самое относится и к кубу, и ко всему трехмерному пространству.

Один из выводов из этого положения: если мы обратимся к отрезку, который начертили раньше, фрагмент между точками 0 и 0,0000000000001 (минимальной длины, его невозможно увидеть невооруженным глазом) имеет точно такую же степень бесконечности, как и все трехмерное пространство, хотя оно занимает актуально бесконечный объем, гораздо больший, чем объем Вселенной (если считать, что у Вселенной конечный объем).

Это заключение, хотя и математически верное, настолько противоречит здравому смыслу, что с ним было очень сложно согласиться, тем более в 1870 году, когда большинство математиков сомневались в самом факте существования актуальной бесконечности.


Континуум- гипотеза утверждает, что «промежуточного» множества не существует, но в 1877 году еще было неизвестно наверняка, так ли это.

Кантор изложил эти выводы в статье 1877 года Ein Beitrag zur Mannigfaltigkeitslehre («К учению о многообразиях»). Для Кантора «многообразие» было синонимом «множества».

В июле он отправил текст в авторитетный берлинский «Журнал Крелле», который уже опубликовал его работу в 1874 году.

Но на сей раз ситуация была иной.

Тогда Кантор доказывал, что вещественные числа нельзя записать в виде последовательности, и заключал, что на любом отрезке числовой оси есть бесконечное количество трансцендентных чисел (бесконечность в контексте той статьи можно было интерпретировать как мощность). По совету Вейерштрасса Кантор сделал едва заметный намек на возможность сравнения двух бесконечных множеств и не стал развивать эту тему. К тому же он даже не поднял вопрос самого понятия мощности.

Сравнение бесконечных множеств стало лейтмотивом статьи 1877 года, причем трактовалось оно не просто как способ доказательства числового результата. В ней Кантор начал с определения того, что два множества эквивалентны, если между ними можно установить взаимно однозначное соответствие. Он также проиллюстрировал понятие мощности и вернулся к теореме 1874 года о трансцендентных числах, но в контексте сравнения бесконечных множеств. Затем ученый доказывал, что отрезок без одного конца эквивалентен отрезку с двумя концами и что отрезок эквивалентен квадрату. В конце Кантор впервые открыто изложил континуум-гипотезу.

Будущие поколения будут считать эту теорию [теорию множеств] болезнью, от которой мы излечились.

Французский математик Анри Пуанкаре, 1908 год

Содержание этой статьи было очень спорным для того времени, так что Кантор столкнулся с серьезной критикой. Он писал Дедекинду 10 ноября 1877 года: 

«Публикация моей работы, с которой вы уже ознакомились, в журнале Борхардта [Карл Вильгельм Борхардт был издателем «Журнала Крелле» с 1856 по 1880 год] удивительным и необъяснимым образом все откладывается, хотя я отправил ее 11 июля, а вскоре получил заверение, что она будет напечатана в кратчайшие сроки.

Сегодня через моего старого друга Лампа, корректора журнала, я узнал, что Б. [Борхардт] опять отложил выход моей статьи, изменив таким образом намеченный порядок. Судьба публикации еще не решена. Он написал мне, что пытается ускорить ее одним ловким маневром. Я хочу думать, что ему это удастся, но надо также быть готовым и к тому, что он потерпит неудачу. В этом случае я намереваюсь полностью изъять мою работу из рук господина Б. [Борхардта] и напечатать ее в другом месте». 

Видимо, «ловкий маневр» Лампа удался, поскольку «Журнал Крелле» опубликовал статью Кантора в 84-м выпуске 1878 года, на страницах 242-258. Однако Кантор был настолько обижен неуважительным поведением Борхардта, что больше не отправил в этот журнал ни одной статьи.

ПРОТИВНИК

Хотя Кантор в своем письме жаловался на Борхардта, главным противником публикации его статьи был Леопольд Кронекер, и Кантор прекрасно это знал.

Немецкий математик Кронекер, родившийся в 1823 году, был очень уважаем и обладал большим влиянием. Он занимался алгеброй, исчислением, арифметикой — особенно интересовали его точки их соприкосновения, — а также метеорологией, астрономией, химией и философией. В частности, он интересовался учениями Декарта, Лейбница, Канта, Спинозы и Гегеля.

В 1861 году по рекомендации Куммера и благодаря своим многочисленным наградам он был избран членом Берлинской академии наук, а в 1868 году — Парижской. Но несмотря на разносторонние математические интересы, научные методы Кронекера были весьма ограничены ввиду его философской позиции, которую можно описать знаменитой максимой: 

Die Ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk («Бог создал натуральные числа, все остальное — дело рук человека»).

ВЕЩЕСТВЕННЫЕ ЧИСЛА БЕЗ НАЗВАНИЯ


Поделиться книгой:

На главную
Назад