Самарий – редкоземельный металл с характерным серебристым блеском. На воздухе он окисляется, а при температуре выше 150 °С воспламеняется. К редкоземельным металлам принято относить скандий, иттрий и пятнадцать лантаноидов (от лантана до лютеция). Термин «редкоземельные» является простым отражением того факта, что эти элементы были выделены из относительно редких оксидных минералов («земель»). В настоящее время редкоземельные элементы приобретают все большую значимость в производстве электроники – компьютеров, смартфонов, фитнес-трекеров и других устройств.
Самарий позволяет собрать важную информацию о геологической истории Земли. Известно одиннадцать изотопов самария, четыре из которых стабильны, а семь – радиоактивны, причем у трёх – 147Sm, 148Sm и 149Sm исключительно продолжительный период полураспада. Наибольший интерес для геологии представляет 147Sm, период полураспада которого составляет 106 миллиардов лет. Даже по геологическим меркам это огромный промежуток времени – возраст нашей Вселенной оценивается в 13,8 миллиарда лет, а геологический возраст Земли равен миллиардам. Чем так важен для геологии 147Sm? При его распаде образуется неодим, который практически полностью повторяет химические свойства самария. Это, в свою очередь, приводит к тому, что образующийся неодим остается на месте распавшегося самария в кристаллической решетке породы, будь то порода осадочная или магматическая. Более распространённые цепочки распада (наиболее известная из которых – превращение урана в свинец) приводят к образованию элементов, существенно отличающихся от элемента, давшего начало радиоактивным превращениям, в результате чего в местах распада может происходить локальное разрушение кристаллической решётки и потеря минералом части продуктов распада, приводящая к ошибкам в датировке. Слежение за превращением самария в неодим лишено подобного недостатка.
С 1950-х годов самарий применяется в атомной энергетике. Вскоре после Второй мировой войны в США был разработан способ дробной кристаллизации, позволяющий выделить из руд редкоземельных элементов чистый неодим, побочным продуктом которого была смесь самария и гадолиния. Нуклид 149Sm хорошо поглощает нейтроны, и отходы производства неодима стали использоваться как первые поглотители нейтронов в управляющих стержнях атомных реакторов. В наши дни самарий продолжает поглощать нейтроны в реакторных стержнях, но уже в виде так называемого самарий-европий-гадолиниевого концентрата.
Самарий работает и там, где нет радиации – из него делают электроды электродуговых ламп, освещающих съемочные павильоны кино– и телестудий, а также устойчивые к размагничиванию постоянные магниты (наиболее устойчив к размагничиванию полученный сравнительно недавно интерметаллид SmCo5). Такие магниты применяются в динамиках колонок и наушников, а также в производстве электрических гитар. Оксид самария применяют для изготовления стёкол, поглощающих инфракрасное излучение, и для легирования кристаллов фторида кальция, предназначенных для оптических лазеров. В последнее время высокотехнологичные сектора производства, требующие применять больше самария и других редкоземельных элементов, растут, что приводит к увеличению спроса на эти элементы и их цены. Заметим, что «китайское чудо» – значительное увеличение производства электронных устройств в Китайской Народной Республике связано в том числе и с тем, что на территории КНР расположены самые богатые запасы самария и других редкоземельных элементов на Земле.
63. Европий
Как это часто бывает для элементов, открытых в конце XIX – начале XX века, приписать пальму первенства открытия европия кому-то одному довольно сложно.
К обнаружению европия причастен британский химик и физик Уильям Крукс, который более известен своими работами, которые в конечном итоге привели к созданию кинескопов для телевизоров и компьютерных мониторов – он обнаружил, что, если приложить к электродам, расположенным внутри стеклянной вакуумированной трубки (трубки Крукса), высокое электрическое напряжение, то в трубке будет наблюдаться необычное свечение. Сам Крукс назвал эффект «катодными лучами», позже стало ясно, что причина свечения – поток электронов, движущихся от катода к аноду; физики также считают Крукса человеком, заложившим основы радиометрии. В 1886 году Крукс проводил спектральный анализ минерала, содержащего иттербий и самарий, и заметил, что набор линий, которые позволяет получить спектрометр, указывает на наличие в образце третьего элемента, однако развивать идею и выделять новый элемент из руды Крукс не стал.
Вслед за Круксом спектральные линии нового элемента в соединениях металлов, которые мы сейчас называем лантаноидами, в 1892 году наблюдал Поль Лекок де Буабодран. В конечном итоге чистая соль нового элемента была получена в 1901 году ещё одним французским физиком, Эженом-Анатолем Демарсе, который и дал ему название в честь континента Европы. Металлический европий был выделен из соли еще спустя десяток лет. Некоторые специалисты по истории науки сравнивают ситуацию с открытием европия с зеркальным вариантом открытия пенициллина – для нас открытие первого антибиотика связывается с именем Александра Флеминга, однако настоящую пользу пенициллин стал приносить через десять с лишним лет после публикации Флеминга, когда биохимикам Эрнсту Борису Чейну и Хоуарду Уолтеру Флори, о которых помнят только специалисты в области биохимии, удалось выделить пенициллин в чистом виде. С европием ситуация обратная – лавры первооткрывателя этого элемента официально принадлежат Демарсе, а о Круксе и Буабодране почти не вспоминают, хотя, конечно, сравнение было бы более ярким, если бы про европий знало бы примерно столько же людей, сколько знают про пенициллин.
Несмотря на то что европий не является самым известным химическим элементом, он значительно влияет на наше окружения, применяясь как легирующая добавка. Небольшое количество производных европия добавляют в люминофоры – материалы, которые начинают светиться при воздействии электронов или ультрафиолетового излучения. Люминофоры применялись при изготовлении кинескопов телевизоров и мониторов компьютеров с электронно-лучевыми трубками, в медицине люминофоры используют для рентгена и флюорографии. Способность люминофоров светиться без электрического источника энергии используется в системах эвакуации и пожарной безопасности. Европий позволяет обеспечить свечение двумя цветами – соли трехвалентного европия, добавленные к люминофорам, заставляют их излучать красный свет, а двухвалентного – голубой. Европий является одним из самых дорогих лантаноидов, килограмм металлического европия стоит около 2000 долларов.
Жителям Европы (и не только) довольно часто приходится держать в руках изделия, в которых содержится европий – содержащие этот металл люминофоры применяются для защиты от подделки евробанкнот, что, учитывая происхождение названия элемента, довольно символично.
Длительные трудности с выделением металлического европия, как, впрочем, и его высокая цена, связаны ещё и с тем, что этот металл проявляет относительно высокую химическую активность (скорость окисления европия кислородом воздуха или взаимодействия с водой сравнимы со скоростью реакции кальция), и при контакте с воздухом европий покрывается слоем жёлтого карбоната Eu2(CO3)3. Европий является хорошим поглотителем нейтронов, но редко применяется в атомной энергетике как из-за высокой стоимости, так и из-за того, что поглощающие нейтроны производные европия выдерживают в ядерном реакторе в полтора раза меньше, чем обычно использующийся для захвата нейтронов карбид бора.
64. Гадолиний
Гадолиний был назван в честь финского химика и геолога Юхана Гадолина, который одним из первых начал изучать образец минерала, найденный около шведского селения Иттербю. В 1792 году Гадолин выделил из минерала иттербита первый редкоземельный металл – иттрий, после чего оказалось, что обильный новыми минералами иттербит – два минерала, один из которых позднее в честь Гадолина был назван гадолитнитом.
Сходство свойств лантаноидов значительно затрудняло возможности их отделения друг от друга в индивидуальном виде, поэтому история гадолиния продолжилась только в 1880 году, когда швейцарский химик Жан де Мариньяк обнаружил в гадолините спектральные линии нового элемента. Шесть лет спустя Лекок де Буабодран выделил из гадолинита оксид нового элемента и назвал его гадолинием. Высокая активность гадолиния, как и других лантаноидов, затрудняла его получение в виде простого вещества, и первый образец металлического гадолиния был получен только в 1935 году.
Если посмотреть последнее издание Химической энциклопедии, том с информацией про гадолиний, который был издан в 1988 году, можно увидеть, что и свойствам металла, и его применению в ней уделено буквально несколько строчек. Действительно, информация о химических свойствах гадолиния небогата – так или иначе, она сводится к тому, что гадолиний образует трехзарядный ион Gd3+, который не может похвастаться какой-то интересной окраской солей в растворе – он бесцветный. Тем не менее именно этот ион и привлекает внимание теоретиков и практиков в последнее время. Уникальность иона Gd3+ в том, что на его 4
Одно из главных направлений применения гадолиния – устройства, которые могут использоваться в холодильных установках, для которых не нужны хладагенты. В настоящее время большая часть промышленных и бытовых холодильных установок поддерживают низкие температуры за счет процессов испарения хладагентов – хлорфтоуглеводородов (фреонов), применение которых может быть опасно для озонового слоя. Магнитные элементы, в которых уже работает гадолиний, создают низкую температуру в результате процесса, известного как адиабатическое размагничивание. Работает это следующим образом: под действием постоянного магнитного поля магнитные моменты, создаваемые неспаренными электронами, ориентируются по направлению поля, принимая минимальное значение потенциальной энергии; выделяющаяся при это теплота может отводиться с помощью системы воздушного или жидкостного охлаждения. При отключении магнитного поля магнитные моменты переходят из упорядоченного в хаотичное состояние, и происходит охлаждение материала. С помощью адиабатического размагничивания можно получать температуры вплоть до 0,001 K (
Магнитные свойства иона гадолиния также успешно применяются как контрасты для магнитно-резонансной томографии, метода медицинской диагностики, который позволяет получать изображения наших тканей и органов. Когда МРТ-исследования применяются для диагностики кровеносной системы или опухолей, гадолинийсодержащие контрастные агенты вводятся внутривенно для улучшения качества изображения.
Радиус иона Gd3+ аналогичен радиусу Ca2+, но заряд гадолиниевого иона больше. Это означает, что простые соли гадолиния нельзя вводить человеку в кровь – организм может «принять» их за кальций, из-за чего нарушится работа ряда биохимических реакций, управляемых ионами кальция. Чтобы обезопасить пациента от токсичного гадолиния, ион Gd3+ «вкладывают в конверт» – получают комплекс иона с лигандом – диэтилентриаминпентауксусной кислотой. С ионом гадолиния связывается одновременно восемь атомов из состава лиганда, что исключает попадание свободного иона в кровь человека (на магнитные свойства иона это связывание не влияет). Комплекс абсолютно безопасен, он циркулирует по кровеносной системе пациента, облегчая диагностику с помощью МРТ, и через некоторое время выводится почками в неизменном виде, не причиняя вреда организму. В целом, для гадолиния постоянно находятся все новые области применения, как, впрочем, и для других редкоземельных элементов, внезапно оказавшихся востребованными в начале XXI века.
65. Тербий
Тербий – ещё один элемент, обнаруженный в той самой руде из-под селения Иттербю, и один из четырёх, названных в честь этого населённого пункта (кроме тербия это иттрий, эрбий и иттербий). Соединения тербия впервые были выделены профессором химии и минералогии Каролинского института в Стокгольме Карлом Густавом Мосандером. Мосандер показал, что оксид иттрия загрязнён двумя другими оксидами – окрашенным в жёлтый цвет оксидом тербия и розоватым оксидом эрбия. Чистые соли тербия удалось получить только в начале XX века с помощью ионного обмена. Это удалось французскому химику Жоржу Урбэну.
Соединения тербия обычно содержат его ион со степенью окисления +3, который стабилен в водном растворе, однако существуют и соединения, в которых тербий приобретает необычную для лантаноидов степень окисления +4 (правда, соединения, содержащие ион Tb4+, сохраняют устойчивость только в кристаллическом состоянии) – в четырёхокисленном состоянии электронная оболочка тербия идентична по строению оболочке иона Gd3+. Те свойства соединений тербия, благодаря которым они находят применение, являются следствием их оптических и спектральных свойств, тербий вообще можно назвать одним из самых красочных и изученных лантаноидов.
Ион тербия +3 отличается радующим глаз зелёным флуоресцентным излучением (зелёное излучение появляется при облучении производных тербия ультрафиолетом с соответственно подобранной длиной волны). Человеческое зрение особенно чувствительно к зелёному цвету, и флуоресценцию тербия можно заметить даже при небольшом количестве его соединений. Эта особенность тербия делает его производные особенно полезными для производства цветных люминофоров.
Некоторые соединения тербия отличаются весьма экзотическим свойством – они способны к триболюминесценции – излучению света, возникающего при разрушении кристаллических тел, то есть трещину в кристалле триболюминесцирующего вещества можно обнаружить по характерному свечению. Триболюминесценция производных тербия применяется в волоконно-оптических сенсорах, измеряющих степень механического воздействия на материал – давления, напряжения и вибраций разной природы. Предполагается разработка тербийсодержащих сенсоров, которые будут искать дефекты в крыльях и корпусе летательных аппаратов.
Тербийсодержащие соединения молекулярного строения активно применяются в молекулярной биологии и медицинской диагностики – длительность флуоресценции производных тербия больше, чем у органических флуоресцирующих материалов, к тому же для взаимодействия с тербием можно подобрать такие лиганды, которые будут способствовать тому, что флуоресцентное излучение будет появляться только при контакте с определёнными веществами (например, люминесцентные сенсоры на основе тербия применяются для измерения концентрации кислорода в крови). Люминофоры с тербием также могут наноситься на банкноты и документы в качестве защитных меток (иногда совместно с европием), некоторые производные тербия вместе с гадолинием работают в магнитных холодильниках.
Находит применение и металлический тербий. Сплав тербия, железа и диспрозия, известный как терфенол-D, проявляет магнитострикционный эффект – меняет объём и линейные размеры при различной намагниченности. Терфенол используется и для изготовления сонаров подводных лодок, и в развлечениях – выполненная на основе этого сплава игрушка SoundBug может превратить в динамик практически любую поверхность – стол или стену, заставляя их вибрировать соответствующим образом.
66. Диспрозий
Третий компонент терфенола-D, лантаноид диспрозий, стал ещё одним химическим элементом, который удалось открыть с помощью метода спектроскопии. Так уж получается, что изобретение нового метода или лабораторного устройства позволяло раз за разом находить похожие друг на друга объекты. Так, обнаружение инертных газов было бы невозможно без сосуда Дьюара, трансурановые элементы стали появляться один за другим благодаря созданию атомных реакторов и радиохимии, ну а лантаноиды обязаны своим открытием спектроскопу Бунзена и Кирхгофа.
В 1886 году Эмиль Лекок де Буабодран, уже открывший к тому времени галлий и выделивший самарий из минерала самарскита, смог получить чистый оксид диспрозия, выделив его из оксида гольмия с помощью дробной кристаллизации, повторяя процедуры осаждения и растворения фракций около 50 раз, каждый раз проверяя осадок на чистоту с помощью спектроскопии. Когда, наконец, чистый оксид нового элемента был выделен, де Буабодран назвал элемент диспрозием – от греческого «диспрозитос» – трудно получить. Металлический диспрозий в 1906 году получил соотечественник Буабодрана Жорж Урбэн.
Близкие химические свойства лантаноидов затрудняли (как, впрочем, и затрудняют сейчас) их выделение и разделение, и можно было бы подумать, что и области применения этих металлов будут близки (хотя и такое есть – например, мишметалл). Однако практическое применение соединений того или иного элемента зависит от их свойств, зачастую магнитных или электронных, а эти свойства определяются числом электронов, которое для каждого лантаноида своё, а значит, каждый из этих внешне одинаковых элементов может решать «свою персональную» задачу.
Так происходит и с диспрозием – йодид диспрозия совместно с йодидом цезия и бромидом ртути применяется в осветительных металлогалогеновых лампах. Это газоразрядные лампы, в которых основным источником света является йодид диспрозия, излучающий в широком диапазоне частот, что приближает излучаемый свет по свойствам к дневному солнечному свету, йодид цезия «калибрует» излучение диспрозия, заставляя лампу светить более тёплым или более холодным светом, а бромид ртути замедляет коррозию металлических электродов лампы. Первоначально такие источники света применялись в киностудиях, где с их помощью можно было задать нужную «температуру цвета» при съёмках, но сейчас металлогалогеновые лампы светят в автомобильных фарах и обычных квартирных светильниках.
Диспрозий, как и другие лантаноиды, отличается большим количеством неспаренных электронов, что придаёт металлу и его ионам высокую магнитную восприимчивость, позволяющую применять их в устройствах для записи информации. Диспрозий используется в дозиметрах для измерения ионизирующего излучения. Для этого кристаллы сульфата кальция или фторида кальция легируются диспрозием. При воздействии излучения на легированные кристаллы атомы диспрозия возбуждаются и начинают люминесцировать, а интенсивность люминесценции указывает на интенсивность ионизирующего излучения.
67. Гольмий
Электрические и магнитные поля очень похожи. Уравнения электрического и магнитного поля, установленные Дж. Максвеллом для обоих полей, отличаются одинаковой формой. Однако между электричеством и магнетизмом имеется большое различие. Существуют частицы – носители положительных и отрицательных зарядов, они создают в окружающем пространстве электрическое поле.
А вот магнитные заряды, ни положительные, ни отрицательные, никогда не наблюдались по отдельности – магнит всегда имеет два равных по величине полюса на двух своих концах – положительный и отрицательный, и магнитное поле вокруг него есть результат действия обоих полюсов. Тем не менее законы физики допускают существование частиц с одним магнитным полюсом – магнитных монополей – и дают для них определённые уравнения поля и уравнения движения, и физики до сих пор продолжают поиск магнитного монополя. Подтверждение существования такой частицы, предсказанной лауреатом Нобелевской премии по физике 1933 года Полем Дираком, значительно укрепило бы позиции единой физической теории пространства – времени, материи и поля. Направлений поиска магнитных монополей много, и на одно из этих направлений указывает серебристо-серый металл – гольмий.
Гольмий был открыт в 1879 году швейцарским химиком Жаком-Луи Сорэ, который, исследуя образец оксида эрбия, обнаружил раздвоение спектральных линий и понял, что в пробе находится еще один элемент. В том же году швед Пер Теодор Клеве выделил из другого образца оксида эрбия, выделенного из минерала, обнаруженного под Стокгольмом, некоторое количество окрашенных в оранжевый цвет солей элемента, спектральные свойства которого совпадали со свойствами элемента, найденного Сорэ. Клеве предложил назвать новый элемент гольмием в честь древнего латинского названия столицы Швеции Стокгольма (Holmia). Соли гольмия, как и многих других лантаноидов, являются хорошими поглотителями нейтронов и могут использоваться в атомной энергетике, однако наиболее интересное свойство гольмия – его парамагнетизм, который объясняется наличием неспаренных электронов.
Возвращаясь к магнитным монополям: в 1982 году физик из Стэндфордского университета Блас Кабрера по показаниям сверхпроводимого детектора квантовой интерференции предположил, что поймал эту магнитную элементарную частицу. Для проверки предположения руководство Стэнфорда выделило группе Кабреры дополнительное финансирование для постройки более мощного детектора, но исследователь внезапно отказался от поиска магнитного монополя в пользу не менее таинственного и неуловимого объекта – тёмной материи.
Начиная с 1980-х годов об экспериментальном наблюдении монополей в различных проектах (в том числе и во время работ по поиску бозона Хиггса на Большом адронном коллайдере), но не все же лавры должны доставаться физикам. В 2009 году французские химики-материаловеды заявили, что в кристаллах титаната гольмия обнаружили магнитные компоненты, которые, как они предположили, являются магнитными монополями (
Что ещё можно сказать о гольмии? Это пятьдесят шестой по распространённости элемент в земной коре, его содержание раз в двадцать больше, чем содержание серебра, так что гольмий едва ли заслуживает того, чтобы о нём говорили как о редкоземельном элементе. Оксид гольмия применяется для подкрашивания оксида циркония – цирконитов или фианитов – и имитации драгоценных камней. В незначительных количествах гольмий присутствует в организме и влияет на обмен веществ некоторых бактерий, однако не относится к эссенциальным элементам. Гольмий применяется для легирования кристаллов смешанных оксидов иттрия-алюминия – рабочих тел некоторых медицинских лазеров. Такие лазеры могут выжигать опухолевые клетки, причиняя здоровой ткани минимальный ущерб. Так, благодаря алюминий-иттрий-гольмиевому лазеру человеку с раком прямой кишки, диагностированным на ранней стадии, можно удалить новообразования за пару часов, не прибегая к общей анестезии.
68. Эрбий
Как, наверное, уже можно было понять по празеодиму и неодиму, которые долгое время были просто «дидимом», лантаноиды – элементы, вокруг которых возникала путаница. Эрбий – не исключение. Впервые этот металл, названный в честь «города трёх элементов», был выделен в 1843 году шведским химиком Карлом Густавом Мосандером из минерала гадолинита.
Мосандер обнаружил примеси в концентрате оксида иттрия и выделил из него три фракции: иттриевую, розовую
Тем не менее главная ценность эрбия и его соединений не их розоватая окраска, а то, что они могут поглощать электромагнитное излучение в инфракрасном диапазоне. Наверное, многие знают о том, что наряду с электрическими кабелями, по которым идет электрический ток, существуют волоконно-оптические кабели, по которым передаются оптические сигналы. Эти тонкие нити из стекла можно было бы назвать оптическим совершенством, если бы не одна деталь – в волоконно-оптических кабелях свет рассеивается, а светорассеяние ограничивает длину оптического волокна, по которому можно передавать сигнал.
Происходящее в световоде рассеяние называется рэлеевским рассеянием – по этой же причине небо над нами синее, а закаты и восходы – красные. Суть явления заключается в том, что чем короче длина волны электромагнитного излучения (света), тем больше он рассеивается. Если кварцевое стекло, из которого обычно делают волокно для оптического кабеля, легировать оксидом эрбия, может пропускать электромагнитное излучение с длиной волны 1,55 микрона – при этом степень рассеяния света минимальна, а ближний инфракрасный свет практически не поглощается световодом, что делает эрбий идеальной добавкой для оптических волокон и усилителей оптических сигналов – технологий, лежащих в основе современных коммуникаций. Монокристаллы оксида эрбия также применяются как материалы для лазерной хирургии. Рабочая длина волны эрбиевого лазера совпадает с частотой колебаний атомов O–H в воде, благодаря чему луч такого лазера хорошо поглощается преимущественно состоящими из воды биологическими тканями.
69. Тулий
Во времена Античности и Средних веков, когда географические карты главным образом состояли из белых пятен, на которых ещё и писали «здесь могут водиться чудовища», земли, расположенные за пределами представления жителей Европы, называли
Это название пошло от имени таинственного острова «Тулас», который, по мнению греческого историка и географа Полибия, располагался в шести днях морского пути к северу от британских островов. Со временем слова
Таким образом, когда в 1879 году шведский химик Пер Теодор Клеве (позднее, в 1894 году, он был награждён Королевским химическим обществом медалью Дэви за открытие четырёх элементов) давал название тулию, он слегка ошибся, написав: «…
Первоначальное открытие тулия можно считать случайным. Клеве анализировал несколько образцов оксида эрбия, выделенных из минерала, содержащего преимущественно оксид иттрия, и понял, что разные образцы отличаются по чистоте, поскольку для каждого из них получалась индивидуально «своя» атомная масса эрбия, чего, конечно, не могло быть. Дальнейшая работа по разделению образцов позволила выделить оксиды ещё двух элементов – гольмия и тулия (открытие лантаноидов напоминает игру с матрёшками). Металлический тулий был выделен только в 1914 году.