Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Теория относительности и сверхсветовая скорость (издание второе) - Владимир Иванович Моренко на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:





Использование данных зависимостей при описании взаимодействия движущегося заряда и прямолинейного проводника с током приводит к тому, что сила Лоренца , действующая на данный заряд, в движущейся вместе с зарядом системе координат и та же самая сила, определяемая в лабораторной системе (проводник неподвижен), связаны соотношением (см., с.311 [6]).

При скоростях смещения центров инерциальных систем значительно меньших скорости света выражение для силы Лоренца, определенное в соответствии со специальной теорией относительности, должно совпадать с ее выражением в классической электродинамике. Однако этого не происходит, поскольку при таком условии релятивистское выражение для сил Лоренца стремится к виду:


И какой бы малой не была инерциальная скорость согласовать классическое равенство указанных сил и лоренц-инвариантное выражение силы Лоренца не удается. И причина такого противоречия заключается в том, что релятивистское выражение для силы Лоренца основано именно на лоренц-инвариантном определении электрической напряженности и магнитной индукции в соответствии с зависимостью .

В то же самое время, при решении данной задачи об определении силы Лоренца нет необходимости во введении двух инерциальных систем координат. Достаточно использовать одну и ту же систему, связанную с электрическим зарядом, в которой взаимодействие магнитного поля и электрического заряда рассматривается с точки зрения мнения наблюдателя о своем движении. В одном случае наблюдатель может считать себя и заряд неподвижными, а проводник движущимся, а в другом – движущимся вместе с зарядом, в то время как проводник с током, создающим магнитное поле, остается неподвижным. Обратим внимание, что в обоих случаях проводник с током создает магнитное поле, совершенно однозначно регистрируемое наблюдателем. А так как совершенно безразлично, что именно движется – магнитное поле вместе с проводником или заряд, то сила Лоренца, замеряемая наблюдателем, будет в обоих случаях той же самой и . В точности тот же самый результат будет получен и наблюдателем, связанным с проводником с током. И показания регистрирующего силу Лоренца прибора, находящегося в одной и той же точке пространства, должны удивительным образом меняться только по желанию наблюдателя признать себя неподвижным или движущимся.

И поскольку только лишь мнение наблюдателя не может быть причиной изменения реальной физической силы, а ранее отмеченное различие сил Лоренца в разных системах координат базируется на предположении о необходимости введения именно разных систем координат, то возникает неразрешимое противоречие в описании одного и того же процесса. Напомним, что введение понятия о разных инерциальных системах координат связано с необходимостью учета конечности скорости света при наблюдении за изменением положений в четырехмерном пространстве движущегося объекта. В данном случае такая задача не стоит, так как сила Лоренца рассматривается как величина постоянная, действующая на заряд в один единственный момент и в одной и той же точке трехмерного пространства. Это принципиальное несоответствие в результатах определения одной и той же силы вызвано тем, что использование лоренц-инвариантных соотношений для параметров электромагнитного поля основано на искусственном приеме введения необусловленных практической и теоретической необходимостью правил и является ошибочным.

Обратим особое внимание на то, что нами рассмотрено только электромагнитное взаимодействие электрического заряда с магнитным полем тока, то есть отдельный частный случай этого взаимодействия. Общий случай взаимодействия зарядов и создаваемых ими или внешних магнитных полей, также как и рассмотренный нами частный случай, характеризуется тем, что при его рассмотрении вообще не требуется определение траектории движения заряда при его наблюдении сторонним или связанным наблюдателем. А это значит, что нет никаких оснований для выражения электромагнитного взаимодействия на основании принципа Гамильтона и привлечения функции Лагранжа к определению сочетания электромагнитных вектор-потенциалов в разных точках. И уж тем более нет никакой необходимости в поиске некоего лоренц-инвариантного выражения для вектор-потенциалов в различных инерциальных системах координат. Для наблюдателя важно знать не скорости смещения заряда и магнитного пол относительно него, а скорость относительного движения между ними и только. Фактически в этом случае мы имеем дело с взаимодействием двух токов, в одном из которых выделяется только один заряд, изменение же законов взаимодействия токов на основе искусственно вводимого релятивистского принципа не вызвано ни экспериментальными данными, ни теоретическими предпосылками.

Что же касается света, как электромагнитной волны, имеющей электрические и магнитные свойства, но не имеющей электрического заряда, то и рассматривать ее надо как волновой процесс, а не как движение дискретных заряженных частиц. Однако волна не является безразмерным объектом, в то время как в рамках специальной теории относительности движение тела, имеющего конкретные размеры, заменяется движением его безразмерного центра масс. А поскольку для волны не существует такое понятие как центр масс, возникающее противоречие приходится нивелировать введением понятия о лишенном пространственных размеров импульса света. Данное понятие предполагает, что для соблюдения одномоментности событий в одной и той же точке пространства сравнение разных волн осуществляется по месту и моменту нахождения одной и той же фазы волны. В квантовой механике, в отличие от специальной теории относительности, принцип одномоментности события в одной и той же точке пространства не используется – волна не локализуется в точке. Правда, при этом в квантовой механике по-прежнему используются понятия, применимые к точечному объекту – импульс и местоположение, но введение волновой функции позволяет совместить в принципе несовместимые понятия о точечном объекте и волне. Для этого волновая функция наделяется свойством вероятностного описания рассматриваемого события. Возникновение свойства вероятностного описания параметров движущегося тела связана с тем, что при наличии внешнего воздействия на него центр масс тела и его центр инерции могут не совпадать в пространстве. В этом случае понятие импульса тела, по определению приписываемого движению его центра масс, и понятие о его скорости, определяемой по движению центра инерции тела, вступают в противоречие друг с другом.

В нашем случае при переходе от одной системы координат к другой системе мы имеем дело с особенностями влияния движения источника излучения на испускаемый им импульс света при сохранении таких свойств волны как ее длина и частота. Данное явление известно в физике как электромагнитный эффект Доплера, характеризующийся изменением частоты электромагнитного излучения движущегося источника по сравнению с частотой излучения неподвижного источника.

Объяснение электромагнитного эффекта Доплера [5] основано на учете как акустического эффекта, так и влияния различного течения времени в движущейся и неподвижной системах координат на частоту излучения одного и того же источника. Измерение частоты излучения в лабораторной системе осуществляется путем подсчета числа периодов колебаний эталонного излучения за одну секунду. А так как на движущемся идентичном эталонному источнике длительность одной секунды по часам лабораторного наблюдателя будет больше, чем у него, то число периодов колебаний излучения от движущегося источника, подсчитанных за одну секунду этим наблюдателем, будет меньше, чем он регистрирует в отношении своего эталонного излучателя. Тогда частота излучения электромагнитной волны, наблюдаемой в лабораторной системе, но испущенной движущимся источником, по сравнению с частотой того же самого излучения в лабораторной системе определяется как:


Здесь , где – угол между направлением на источник излучения и вектором скорости в системе отсчета наблюдателя.

В данной формуле учтены как влияние направления и величины скорости движения источника излучения по отношению к наблюдателю («обычный акустический» эффект), так и релятивистский эффект изменения единиц измерения времени в различных системах отсчета (у стороннего наблюдателя и движущегося источника излучения). Однако данная формула полностью справедлива только в отношении красного смещения, а для фиолетового смещения ей можно пользоваться, если радиальная скорость не превышает величину скорости света. Для сверхсветовых скоростей процесс пролета тела мимо стороннего наблюдателя воспринимается им как разлет в разные стороны двух тел из точки максимального сближения тела с наблюдателем. Но визуальное восприятие приближения тела как его удаления будет сопровождаться переходом красного смещения в фиолетовое, максимум которого приходится на , с последующим его переходом вновь в красное смещение по мере роста (по модулю) величины радиальной скорости. Сама же формула для эффекта Доплера в этом случае уточняется заменой выражения величиной .

Широко известное [4] выражение дает на практике (досветовые скорости) те же самые результаты, но это совпадение случайное и определено достаточной малостью доступных для сравнения скоростей движущихся источников излучения.

Весьма примечательно, что для эффекта Доплера должен быть справедлив эффект «изменения длины волны», определяемый тем, что скорость света является величиной постоянной вне зависимости от скорости источника его излучения. Однако принципиальное отличие данного эффекта от ничем не обоснованного лоренцева эффекта сокращения длины стержня заключается в том, что изменение первоначальной длины волны движущегося источника излучения зависит не только от модуля абсолютной скорости движения источника по отношению к стороннему наблюдателю, но и от радиальной компоненты этой скорости:

Необходимо также отметить, что сторонники релятивизма пытаются придать релятивистский характер электромагнитной волне, но эти попытки являются глубоко ошибочными, так как они основаны на ложном представлении, что специальная теория относительности позволяет осуществить преобразование координат одной инерциальной системы в координаты другой инерциальной системы отсчета. В действительности же специальная теория относительности позволяет осуществить только сравнение хода часов у движущегося и неподвижного наблюдателей. И эта теория является решением задачи об особенностях наблюдения неподвижным наблюдателем за движущимся объектом в условиях конечности скорости света, а никак не задачу сравнения координат различных инерциальных систем отсчета. И само по себе уравнение волны в виде не является уравнением волны для четырехмерного пространства, так как параметр t не является независимым временем указанного пространства. Это всего лишь время, причем независимое, для трехмерного пространства. И преобразовать это уравнение к виду, приемлемому для четырехмерного пространства, путем добавления нулевой (временной) координаты с переходом ко времени собственному невозможно, так как время собственное не является независимым временем четырехмерного пространства. Оно всего лишь условие одинаковости некоторого элементарного вектора при его рассмотрении под разными углами в различных четырехмерных системах координат. Кроме того, при наличии выражения для инвариантного интервала время собственное не является независимой величиной – это всего лишь функция от четырех независимых координат четырехмерного пространства. И его использование в качестве независимого времени четырехмерного пространства ограничено, как это отмечалось выше, целым рядом условий. А раз нет в общем случае возможности определения уравнения волны в четырехмерном пространстве, то нет и возможности судить о его релятивистском характере. При этом знание о релятивистском характере длины и частоты волны не позволяет с его помощью перейти к сравнению координат даже двумерных систем отсчета, поскольку для любой волны в самом упрощенном представлении мы можем иметь только один независимый параметр (частоту либо длину волны), на основании которого нам необходимо произвести сравнение пары как минимум двух независимых пространственных координат. А для одномерного пространства нет никакой необходимости искать сравнение координат разных инерционных систем отсчета через частоту колебаний, так как это сравнение уже обеспечено заданием скорости относительного смещения центров разных инерциальных систем координат. И вообще, уравнения Максвелла строятся на основании непреложного представления о возможности существования неизменного набора координат для произвольно выбранной точки хотя бы в одной инерциальной системе координат в течение любого промежутка времени. Это означает, что для любого физического процесса можно найти такую систему координат, что это процесс будет происходить без перемещения в пространстве. Однако, в сконструированном Альбертом Эйнштейном четырехмерном пространстве таких полностью неподвижных точек нет и быть не может, так как движение по временной (нулевой) координате, то есть непрерывное изменение ее измеряемой величины, осуществляется непрерывно. В этом смысле существование неподвижного четырехмерного наблюдателя не может быть обеспечено в пространстве Эйнштейна – Минковского и в общем случае в римановом пространстве с размерностью больше трех. И в специальной теории относительности используется некое условное представление о едином для разных инерциальных систем координат «неподвижном» четырехмерном наблюдателе. Отсюда следует, что уравнения Максвелла несовместимы с аксиоматическим предположением Эйнштейна об инвариантном четырехмерном интервале. И эти уравнения принципиально нельзя подвергать «релятивистскому усовершенствованию». Известные же в литературе «релятивистские» выражения для параметров электромагнитного поля являются таким же заблуждением, что и лоренц-инвариантные выражения для импульса-энергии.

Еще одним аргументом в пользу классических преобразований Лоренца является эффект аномальной длины треков короткоживущих частиц, регистрируемой в процессах распада этих частиц. Совершенно ясно, что отрицательный инвариант времени собственного приводит не к увеличению, а к сокращению времени жизни распадающихся частиц, то есть к совершенно противоположному ожидаемому результату. Но в современной физике используется иное выражение для описания эффекта замедления течения процессов на движущемся теле по сравнению с течением этих же процессов на неподвижном теле: . И хотя данное выражение является ошибочным, его применение позволяет качественно оценить зависимость длины трека частицы от изменения ее энергии. Но вот в количественном отношении длина трека возрастает быстрее, чем ее импульс, что и послужило основанием для введения понятия об аномальности длин треков. Это особенно заметно в физике высоких энергий. И в этом случае единственно верным объяснением длин треков частиц является отсутствие ограничения их скорости скоростью света при соблюдении условия об увеличении периода «рождение-распад» (периода жизни) частицы в зависимости от ее импульса, определенного через функцию Лагранжа. Действительно, длина трека является пропорциональной произведению скорости частицы на время ее жизни. Тогда и при . И если скорость частицы не ограничена скоростью света, то при одних и тех же значениях времени жизни длина ее трека будет больше, чем в случае наличия такого ограничения.

В заключение по данному вопросу необходимо еще раз обратить внимание на принципиально важную особенность инвариантного интервала Эйнштейна и эквивалентного ему понятия о времени собственном. Эти параметры введены для учета независимости течения времени на часах неподвижного наблюдателя от перемещений (или их отсутствия) тела. В этом случае само течение времени отождествляется с движением по временной координате четырехмерного пространства. Для такого математического приема чрезвычайно важно, что инвариантный интервал (время собственное) не является величиной постоянной, так как время течет непрерывно. Еще одной особенностью этих величин является то, что из-за исключения из рассмотрения смещения центров сравниваемых систем координат выражение для времени собственного (интервала) как инвариантной величины может быть определено только через дифференциалы независимых переменных, а не через их конечные величины. Это связано с тем, что в специальной теории относительности мы имеем дело не с преобразованиями координат, как это имеет место в случае классических трехмерных преобразований Лоренца, а со сравнением различных описаний одного и того же элементарного отрезка в рамках разных четырехмерных системах координат. Для этих систем можно предложить множество метрических определений величины расстояния между двумя произвольно выбранными точками. Но лишь два из них являются отвечающими требованиям однородности пространства и времени. При этом использование понятия трехмерной скорости движения тела в выражении для времени собственного не требует невозможного – определения этой скорости в процессе прямого визуального наблюдения. Она может быть вычислена косвенным путем на основании данных об изменении частоты излучения движущегося объекта и данных о течении времени на часах неподвижного наблюдателя, что снимает проблему внутренней противоречивости определения времени собственного.

В то же самое время, величины, используемые в лоренц-инвариантных преобразованиях энергии и импульса в механике и преобразованиях параметров электромагнитного поля, в принципе должны быть постоянными, конечными и определенными через зависимые переменные. В связи с этим указанные инвариантные величины не могут быть отождествлены по своей математической и физической сущности с инвариантным временем собственным, призванным обеспечить независимость используемого для трехмерного пространства времени как самостоятельной переменной. А если нет задачи по сохранению независимости используемых переменных, то нет и необходимости в специальном инвариантном выражении. И вызывает сожаление тот факт, что Альберт Эйнштейн, отказавшись от использования классических преобразований Лоренца и заменив их инвариантным интервалом, тем не менее, по непонятным причинам, предложил инвариантное выражение для энергии-импульса, по своей математической сущности совпадающее с отвергнутым им же самим инвариантом классических преобразований Лоренца. Но именно на этих, принципиально противоречащих теоретической механике, определениях энергии и импульса построена не только релятивистская динамика, но и релятивистская квантовая теория поля.

В квантовой физике основным является классическое уравнение Шредингера , сформулированное таким образом, чтобы через функцию определять состояние частицы независимо от ее движения, то есть перейти от динамического процесса, рассматриваемого с помощью функции Лагранжа, к статике, когда движение заменяется мысленным переносом частицы в иную точку пространства. При этом первый член из правой части указанного уравнения сформулирован так, чтобы исключить влияние на состояние частицы свойства инерциальности материальных объектов, которое определяет наличие в функции Лагранжа для трехмерного пространства компоненты, фактически отвечающей за движение тела только по временной координате – , то есть этот член построен по аналогии с определением кинетической энергии, принятом в классической механике. А в классической механике отсутствуют какие-либо запреты на величину скорости материальных объектов. В этом смысле уравнение Шредингера является справедливым для досветовых, околосветовых и сверхсветовых скоростей движения тел. Примечательно, что в уравнении Шредингера мнимая единица применяется только для удобства использования формулы Эйлера, а не исходя из физической необходимости. И уравнение Шредингера, используется в нем мнимая единица или нет, также как и уравнения Максвелла, не подлежит «релятивистскому» пересмотру прежде всего по тому, что использование для этого пересмотра преобразование координат в соответствии со специальной теорией относительности может быть реализовано только для временных координат, а для релятивистского пересмотра этих уравнений требуется осуществить преобразование пространственных координат , что принципиально невозможно. Кроме того, первый член в правой части уравнения Шредингера содержит в знаменателе величину 2m, которая присутствует в нерелятивистском определении кинетической энергии через импульс тела. Казалось бы, что для уравнения Шредингера данное обстоятельство является серьезным ограничением, препятствующим его применению в релятивистском случае. Однако такое ограничение возникает только из-за желания обязательно использовать при волновом описании состояния материальных тел принятые в корпускулярной физике лоренц-инвариантные понятия полной энергии и импульса. Но если ограничиться в волновой механике только определенным с помощью функции Лагранжа понятием энергии, то данная проблема снимается. При этом надо иметь ввиду, что в релятивистском случае необходимое для решения уравнения Шредингера выражение для кинетической энергии может быть определено как только, если импульс будет тела определен не с помощью преобразований вида , а именно с помощью данного выражения. Равно как и волна де Бройля должна быть выражена не через механический релятивистский импульс тела, а через его кинетическую энергию, то есть в виде: . В этом случае модуль квантового импульса равен . А сам квантовый импульс как векторную величину можно определить через выражение . Если действовать формально, поскольку для волны невозможно определить место приложения квантового импульса, то силу, как физическую величину, в зависимости от квантового импульса следует выразить в виде:




При скоростях, значительно меньше скорости света получается совпадающее с классическим выражение для силы .

Обратим внимание на очень важное обстоятельство, являющееся следствием явной независимости функции Лагранжа свободно движущегося тела (его кинетической энергии) от времени и координат. Как раз для того, чтобы связать энергетические характеристики тела с его местоположением в пространстве и времени, и вводится понятие об импульсе тела. Это необходимо для того, чтобы анализ результатов наблюдения за телом можно было описать с помощью математических методов и терминов в привязке к конкретному наблюдаемому или предполагаемому местоположению тела. Но квантовый и релятивистский механический импульсы являются принципиально различными (в математическом и физическом смыслах) решениями указанной задачи. Первое из них является представлением кинетической энергии тела через дополнительную векторную функцию, определяемую через ее проекции на координатные оси и направление движения тела. В то время как второе – частной производной первого порядка от кинетической энергии. Совпадение данных решений конечно возможно, но это равенство должно быть не самоцелью, а автоматическим следствием действий с функцией Лагранжа по заданным правилам и соблюдением заранее принятых аксиом. Но для релятивистских скоростей данное условие не может быть выполнено. Это связано с тем, что аксиомами для специальной теории относительности являются принципы однородности как времени, так и пространства. В общей теории относительности было предложено отказаться от принципа однородности пространства, а закон сохранения механического импульса считать имеющим локальный, а не глобальный характер. Однако на глобальность характера закона сохранения квантового импульса отказ от принципа однородности пространства не может влиять никаким образом, так как квантовый импульс является особым представлением кинетической энергии, закон сохранения которой основан на принципе однородности времени, а не пространства. А принцип однородности времени не находится в противоречии с принципом эквивалентности инерциальных систем. Сам же отказ от принципа однородности пространства является следствием логического предположения о глобальности, то есть независимости от координат, принципа сохранения скорости света при гравитационном взаимодействии. Но мысленное, абстрагированное от материальной сущности представление человека о свойствах и особенностях природы с помощью их выражения в виде логических символов в качестве законов и закономерностей природы невозможно без использования таких понятий как геометрический континуум и время. А если мы имеем дело с континуумом, то должна быть и непрерывная сущность, которая в идеальном случае должна быть однородной. И это приводит нас к заключению, что принципы однородности пространства и времени могут быть применимы совместно с принципом конечности скорости света, который можно трактовать как ее постоянство, но только в идеальном случае, то есть при существовании корпускулярных частиц материи в пустом пространстве.

Как механический, так и релятивистский квантовый импульс при скоростях много меньше скорости света определяются выражением, принятым в классической механике: . Существенные количественные различия между механическим и квантовым импульсами возникают только при превышении скорости частицы величины в половину скорости света.

Но и в первом, и во втором случаях для релятивистского определения импульса нет необходимости в специальном введении принципа о лоренц-инвариантности импульса-энергии.

В тоже время для релятивистских и сверхсветовых скоростей гамильтоново представление динамики является проблематичным, так как релятивистская функция Лагранжа не является математически однородной, что приводит к неприменимости выражения в отношении релятивистских функций Лагранжа и Гамильтона для трехмерного пространства в случае свободного движения тела, При определении функции Гамильтона в трехмерном пространстве необходимо учитывать изменение единиц измерения времени для общего выражения функции , а не только импульса. В связи с этим функция Гамильтона для трехмерного пространства приобретает вид: , то есть вид, отличный от применяемого в классической механике. Но в этом случае использование функции Гамильтона, как замены выражения при релятивистском определении функции Лагранжа в трехмерном пространстве, невозможно, если одновременно мы хотим обеспечить соблюдение закона сохранения релятивистской кинетической энергии при инерциальном движении тела: .

В этом смысле уравнение Шредингера, сформулированное таким образом, чтобы определять состояние частицы на основе учета скрытой в трехмерном пространстве «инерциальной» силы и сил, действующих на нее внешним потенциальным полем, не может быть определено с помощью функций Гамильтона и Лагранжа, применяемых для описания движения тела, то есть в динамике, поскольку уравнение Шредингера предназначено для определения состояния в произвольно выбираемой точке, то есть в статике. В связи с этим необходимо констатировать, что уравнение Дирака не является обобщением уравнения Шредингера для релятивистских скоростей по нескольким причинам.

Во-первых, мало того, что описание частицы в нем производится в состоянии динамики, так оно еще и основано на обязательном соблюдении противоречащего основаниям теоретической механики принципа лоренц-инвариантности энергии-импульса. Во-вторых, в данном уравнении используется оператор импульса, по своей сущности аналогичный лоренц-инвариантному механическому, а не квантовому импульсу, которые, как уже указывалось, принципиально отличаются друг от друга. Ну и, наконец, в-третьих, операторы импульса в этом уравнении определены в четырехмерном пространстве, в то время как волновая функция определена в трехмерном пространстве. Данное обстоятельство является удивительным математическим открытием, так как в трехмерном пространстве можно построить трехмерную проекцию четырехмерного вектора, но никак не сам вектор. Справедливости ради необходимо отметить, что в первоначальном уравнении Дирака, считающегося эквивалентной формой записи уравнения Шредингера, вместо оператора Лапласа при замене потенциальной энергии на энергию покоя использован оператор импульса: . Причем оператор импульса задан для трехмерного пространства. Но в современной трактовке энергия покоя тела рассматривается как произведение скорости света на проекцию импульса движения тела по временной координате четырехмерного пространства. При этом ни определения независимого времени для этого пространства, ни преобразования волновой функции к виду, действительному для четырехмерного пространства, не производится. С учетом данных обстоятельств, для релятивистских скоростей использование в квантовой механике уравнения Шредингера в обобщенной форме (через гамильтониан) не представляется возможным. Сама же идея о формулировке выражения для волновой функции через дифференциальное уравнение первого, а не второго порядка, является очень заманчивой. Однако использовать для этого гипотезу Дирака о «линейных операторах над пространством биспиноров (матрицы Паули)», казалось бы, невозможно в принципе, поскольку они определены исходя из условия правомерности лоренц-инвариантной зависимости полной энергии и импульса. Хотя положительным моментом данной гипотезы и является то, что она ориентирована на определение импульса, принятое для корпускулярной, а не волновой механики. Повторим, что и для корпускулярной механики указанная лоренц-инвариантная зависимость, равно как и введенное через специальную теорию относительности понятие о полной энергии, являются ошибочными. В то же время, если мы определим для четырехмерного пространства специальной теории относительности четырехмерный импульс, компонентами которого для пространственных координат трехмерного пространства будут компоненты классического импульса и выражение , как компоненту импульса при движении по временной координате, то мы можем счигать правомерными как классическое определение уравнения Дирака, так и его указанное выше выражение в современном виде: . Следует особо отметить, что компоненты данного импульса будут принципиально отличаться от известного из современной физической теории четырехмерного импульса, ошибочность определения которого нет даже необходимости обсуждать, имея ввиду ошибочность признания времени собственного независимым временем четырехмерного пространства и определения зависимости между полной энергией, импульсом и энергией покоя в форме, предложенной в специальной теории относительности. При этом необходимо иметь ввиду, что уравнения Шредингера и Дирака построены на принципиально разных понятиях о релятивистских энергии и импульсе. Уравнение Шредингера базируется на релятивистском выражении для кинетической энергии тела в трехмерном пространстве и выведенном на основе классических представлений выражении для квантового импульса. А уравнение Дирака базируется на особом релятивистском выражении для импульса в четырехмерном пространстве и подобного определению Альбертом Эйнштейном зависимости между полной энергией и импульсом выражения для энергии тела в четырехмерном пространстве . Такой особый вид импульса, сконструированный не на основе соблюдения принципа однородности пространства, может быть использован и в случае описания движения тела в трехмерном пространстве. В этом случае проекция четырехкомпонентного (не путать с четырехмерным) вектора на трехмерное пространство будет иметь вид: .

И смешивать, а тем более обобщать, уравнения Шредингера и Дирака никак нельзя. Как нельзя также признать неправильным любое их них, просто при решении задач физики следует определиться, какое из релятивистских определений для кинетической энергии тела в трехмерном пространстве или импульса тела в четырехмерном пространстве (его проекции на трехмерное пространство) должно обязательно соблюдаться. Обратим внимание, что при всем различии трех указанных определений импульса их применение осуществляется совместно с фактически одним и тем же определением релятивистской кинетической энергии. Но только одно из этих трех определений импульса тела выводится с учетом соблюдения принципа однородности пространства. В то же время, вроде бы предопределенный однородностью пространства релятивистский механический импульс является самостоятельной сохраняющейся величиной, но только для «точечного» представления корпускулярного тела при обязательном условии описания физических процессов в четырехмерном пространстве с принятым в качестве независимого времени для этого пространства времени собственного. Причем последнее условие является необходимым для совместного соблюдения принципа однородности пространства и времени и принципа эквивалентности инерциальных систем координат, обязательным для которого является постоянство скорости света в этих системах.

Кроме указанных определений импульса и энергии тела в физике существуют еще и их определения через параметры волны – частоту и волновое число: и . Определение квантового импульса через волновое число позволяет соблюсти требование о представлении пространства в виде непрерывного континуума с условием о конечности размеров элементарных частиц, так как исчезает необходимость определения точного месторасположения центра масс частицы при ее описании в виде волны. Привязка же местоположения волны к координатной сетке в этом случае может определяться по реперной фазе (фронту волны) ее частоты. И в этом случае также соблюдается вышеуказанное требование об определении импульса через его проекции на координатные оси и направление движения тела. В этом смысле определение волны де Бройля через механический импульс тела позволяет однозначно судить о конкретном положении в пространстве данной волны, ориентируясь только на вектор импульса тела и реперную фазу волны.

Понятие о функции Лагранжа в рамках специальной теории относительности ограничено требованием о свободном инерциальном движении тела (материальной точки). В этом случае функция Лагранжа принципиально не может определяться с привлечением понятия о потенциальной энергии внешнего поля при условии ее зависимости от координат и/или времени. Но это ограничение никак не влияет на тот факт, что именно функцию Лагранжа возможно и следует использовать при описании поведения движущегося тела при условии конечности скорости света. Но в электродинамике использовать данную функцию для описания электромагнитного взаимодействия, а это не то же самое что и механическое движение электрически заряженных тел, невозможно – оно подчиняется системе уравнений Максвелла и определению обобщенной силы Лоренца, а также остальных законов для электрического и магнитного взаимодействия и законов для электрических токов. Аналогичные требования распространяются и на гравитационное взаимодействие, включая определение потенциалов этого поля для описания сил, хотя движение тел в гравитационном поле, описываемое с привлечением понятий энергии и импульса, должно быть основано на использовании функции Лагранжа. В точности такая же ситуация и в квантовой механике, где уравнения Шредингера и Дирака построены и существуют вне зависимости от понятия о функции Лагранжа, но вот при их решении могут и должны использоваться определения кинетической энергии тела в трехмерном пространстве и импульса тела в четырехмерном пространстве, полученные при использовании представления о функции Лагранжа для указанных видов пространства. Но в любом случае ни в одной из указанных областей, включая и квантовую механику, не может существовать ограничение скорости материальных объектов скоростью света.

В соответствии с изложенным, утверждение о том, что любая физическая теория и любые физические явления и процессы должны соответствовать принципу классической лоренц-ковариантности, является необоснованным и противоречащим реальным опытным данным. В то же время постулаты специальной теории относительности и вывод о замедлении времени процессов на движущемся объекте, точнее зависимости частоты излучения движущегося источника с точки зрения стороннего неподвижного наблюдателя, нет особой необходимости пересматривать. Но эти постулаты и выводы требуют только изменения математического аппарата специальной теории относительности, хотя она и основана на предположении о возможности не мысленного, а вполне реального существования «пустого» пространства и инерциальных систем координат. Само же существование сверхсветовой скорости для материальных объектов не является недопустимым с точки зрения теории, базирующейся на уточненном математическом аппарате.

Общая теория относительности определяет особую форму законов механики не только при условии конечности скорости света, но и при условии влияния на поведение и характеристики тел гравитационного взаимодействия. Для этого вводится понятие об искривленности пространства, причем сами законы механики описываются с привлечением постулатов специальной теории относительности.

В настоящее время наиболее признанным определением сущности искривленного пространства является выражение инвариантного времени собственного в виде:

Но если внимательно рассмотреть данное уравнение инвариантного интервала, можно найти два способа его объяснения – математический и физический. Первый основан на принципе искривления пространства и геометрических методах решения физических задач и полностью реализован в аппарате общей теории относительности и полевых теориях. А вот второй способ (физический), основанный на возможности изменения скорости света в присутствии гравитационных масс, по непонятным причинам полностью исключен из рассмотрения. Однако, именно второй способ имеет четкое физическое обоснование, поскольку в оптике широко известно явление преломления света, вызванное уменьшением скорости распространения электромагнитных волн в физической среде. А присутствие в выражении интервала масштабного фактора a2(t) может трактоваться и как реальное искривление пространства (вакуума) гравитационным полем, и как наличие у вакуума показателя преломления, величина которого в присутствии гравитационных масс отлична от величины этого параметра при отсутствии указанных масс. В принципе, в обоих случаях речь идет об одном и том же: «искривлении» пути движения фотона в пространстве. Но если в первом случае предполагается существование мировых (геодезических) линий в искривленном пространстве, то во втором случае предполагается наличие у вакуума свойств оптической среды.

Для того, чтобы сделать правильный выбор, какая из трактовок является удовлетворительной, необходимо разобраться, что является причиной искривления траектории движения фотона в пространстве – реальное физическое явление или результат математического описания взаимодействия электромагнитного излучения с вакуумом, как средой, находящейся под действием гравитационного поля.

Для этого необходимо, прежде всего, понять, о каком именно пространстве идет речь – о математическом (мысленная сущность), или о физическом (реальная сущность) гравитационном поле. То, что в уравнении поля Эйнштейна объединены физические и геометрические величины, еще не свидетельствует о физической природе искривления пространства, так как физические члены этого уравнения относятся не к собственно пространству, а к включенным в него источникам гравитационного поля. И корректным, с позиции сохранения непрерывности системы координат, на которой базируется формулировка геометрических членов уравнения поля (континуальности пространства), является условие отсутствия размеров у источников поля. Отметим, что данное условие является обязательным для любого физического поля при его математическом описании известными на настоящий момент методами геометрического построения координатного пространства.

Если же источник поля имеет размеры, то начало связанной с ним системы координат оказывается внутри отличной от собственно поля физической сущности, то есть иного пространства. В этом случае возникает проблема исключения из рассмотрения внутреннего пространства при сохранении свойства непрерывности при отображении внешнего пространства на все пространство. В общей теории относительности данная проблема проявляется при возникновении в решениях уравнения поля параметра , указывающего на существование некоторого размера (радиуса), внутри которого уравнения общей теории относительности вряд ли возможно применить. То есть сама же теория содержит внутреннее противоречие с принятыми при ее создании аксиомами о непрерывности геометрического пространства. И для того, чтобы хоть как-то обеспечить соответствие математической модели гравитационного поля физической реальности при сохранении свойства непрерывности пространства, в общей теории относительности введено представление о его «искривлении» гравитацией как способ отображения плоского пространства с «дырками» на непрерывную континуальную сущность. В этом случае искривленное пространство представляет собой некую адекватную реальности математическую модель гравитационного поля, но не физический вакуум. Таким образом, эффект искривления пространства возникает на этапе его математического определения, и, в принципе, этот эффект не предопределен физическими обоснованиями, так как является следствием принятых аксиом, а не свойств реальной физической сущности. Именно это обстоятельство подтверждается экспериментальными данными, свидетельствующими о том, что пространство в его видимой части является плоским [2].

Весьма показательна в этом смысле аналогия с наблюдателем, находящимся в свободно падающем лифте, иллюстрирующая принцип эквивалентности, являющийся одним из базовых для общей теории относительности. Считается, что наблюдатель в падающем лифте не может экспериментально обнаружить, падает ли его лифт, или находится в состоянии покоя. В соответствии с предложенной аналогией, мы имеем дело с двумя замкнутыми системами, ограниченными непрозрачными стенками. Первой является инерциальная (лабораторная) система координат, а второй – свободно падающая система. При этом свободно падающая система находится под воздействием гравитационного поля, но его влияние на внутреннюю неподвижную относительно лифта систему отсутствует, и наблюдатель в ней находится в невесомости. Считается, что в данной ситуации принцип эквивалентности свободно падающей в гравитационном поле системы координат и лабораторной системы координат, не подверженной действию гравитационного поля, может быть справедлив, если мы принимаем во внимание только точки бесконечно малой окрестности начал координат (для самих начал координат обеих систем указанный принцип безоговорочно справедлив). Однако, в указанных окрестностях мы имеем дело с искажениями, вносимыми в координатную сетку свободно падающей системы гравитационным полем, являющимся центральным. Кроме того, из-за эффекта геодезической девиации «две свободно падающие рядом частицы будут находиться в относительном движении, обнаруживающем наличие гравитационного поля с точки зрения наблюдателя, падающего вместе с ними» (с.166 [5]). И, следовательно, каждому положению в пространстве относительно центра гравитационного поля и каждому моменту времени будут соответствовать свои собственные условия эквивалентности свободно падающей и инерциальной систем координат. Поэтому вряд ли можно признать безупречными определения метрического тензора и аффинной связности, а также уравнения свободного падения (движения) в произвольном поле в произвольной системе координат через координаты касательного плоского пространства, определяемого как локально-инерциальное пространство, в виде:




Но, считается, что указанными обстоятельствами можно пренебречь и распространить действие принципа эквивалентности на бесконечно малые окрестности свободно падающей точки в любой момент времени ввиду несоразмерной малости вносимых гравитационным полем искажений по отношению к характерному размеру поля. Обратим внимание, что в привлечении локально-инерциальных координат к описанию свободного падения тела вовсе нет необходимости. Можно просто использовать тот факт, что при свободном падении тела изменение кинетической энергии целиком и полностью определяется изменением его потенциальной энергии – изменением места расположения тела в гравитационном поле.

В то же время существуют такие физические явления, которые, казалось бы, подтверждают существование реального искривления пространства – аномальное смещение периодов орбит небесных тел в гравитационном поле и смещение позиций небесных тел при их наблюдении вблизи Солнца. И с таким выводом можно было бы безоговорочно согласиться, если бы не существовало иных, чем искривление пространства, объяснений указанных явлений.

Указанные явления можно рассматривать как следствие существования некоторого характерного для любого физического объекта, обладающего массой, размера , внутри которого гравитационное поле действует по иным законам, чем вне его. Этот размер, в принципе, можно считать равным радиусу сферы, плотно заполненной только веществом физического объекта без полевой фазы материи. В этом случае при решении физических задач мы имеем различные положения нуля системы координат. Для стандартной модели (непрерывное пространство) ноль базируется в центре масс физического объекта, а для системы координат, базирующейся только на полевой компоненте материи (пространство с исключенными дырками), этот ноль располагается на поверхности сферы с радиусом , который можно определить как радиус вырождения вакуума и вычет в плоском пространстве. То есть мы имеем дело с «плавающим нулем». Такое свойство позволяет ограничить область действия известных законов гравитации, как описание взаимодействия поля и вещества, с помощью параметра «показателя преломления (сгущения) вакуума»:

Здесь r – расстояние, измеряемое от центра стандартной евклидовой системы координат, то есть истинно пространственное расстояние. А – расстояние в полевой системе координат, центр которой расположен на сфере с радиусом . Возможны и иные формы записи данного показателя, например, по идее исключенного объема . Но для простоты будем в дальнейшем рассматривать первоначально указанную форму записи показателя преломления вакуума.

Таким образом, не изменяя свойств собственно пространства (оно остается плоским), мы вводим систему координат, которая тождественна искривленному гравитацией пространству. Подчеркнем, что такой принцип позволяет совместить физические и математические основания, необходимые для корректного описания движения тел в пространстве, состоящем из двух принципиально различных типов пространств. При этом эффект существования показателя преломления вакуума можно отнести на величину скорости света, положив , считая, что в гравитационном поле скорость света определяется произведением показателя преломления вакуума и скорости света в вакууме на бесконечном удалении от источника гравитационного поля. Данное предположение нельзя считать совсем уж беспочвенным, поскольку академиком Басовым с сотрудниками еще в 1965 году было официально объявлено об экспериментальном обнаружении факта, что величина скорости света в «инверсно заселенной среде» отличается от скорости света в вакууме в сторону ее увеличения. Конечно, опыт Басова свидетельствует о влиянии интенсивности электрического и магнитного полей на свойства физического вакуума, а не о влиянии гравитационного поля на свойства этого вакуума. Но кто гарантирует, что тяготение никак не сказывается на величинах электрической и магнитной проницаемости разреженной среды? Очень жалко, что в ходе данного эксперимента не было определено, каким именно образом изменяются частота и длина волны мощного импульса, имеющего скорость, превышающую скорость света в вакууме. Но именно «инверсная заселенность» среды, в которой распространяется луч лазера, позволяет использовать понятие об особом показателе преломления свободной от имеющих ненулевую массу покоя частиц среды, то есть одной из форм существования физического вакуума. Отметим, что в оптике принято иное правило определения изменения скорости света при переходе границы между двумя оптически прозрачными средами. Но ради удобства, если заранее не оговорено иное, будем использовать не дробные, меньшие единицы значения показателя преломления, а их обратную величину, оставляя все правила по использованию в оптике понятия о показателе преломления неизменными.

Примечательно, что на основе гипотезы о показателе преломления вакуума можно прийти к модели искривленного пространства, чтобы использовать хорошо развитый аппарат общей теории относительности. Для этого, прежде всего, следует эйнштейновский интервал между событиями записать с учетом уточненного определения времени собственного и зависимости65 скорости света от показателя преломления вакуума через выражение:

Поскольку речь идет о сравнении бесконечно малых перемещений в одном и том же месте, то:

Если описывается процесс на движущемся теле, находящемся достаточно далеко от критической точки , то:

Подчеркнем, что время собственное является инвариантной величиной для сравниваемых систем координат только в том случае, если можно пренебречь различиями в оценке значений показателя преломления вакуума наблюдателями из разных систем координат.

Тогда выражение для времени собственного можно записать в виде:


Множитель можно внести в тензор и отнести тем самым все эффекты, связанные с изменением скорости света в зависимости от показателя преломления вакуума, на изменения пространственных координат (искривление пространства) в присутствии гравитационных масс. И теперь можно перейти к модели с искривленным пространством, используя выражения, основанные на применении метрического тензора общей теории относительности.

По определению метрический тензор:

Учитывая, что вещество во Вселенной всегда находится в состоянии свободного падения, а показатель преломления вакуума является функцией от времени, удобнее перейти к величине, обратной показателю преломления вакуума .



Поделиться книгой:

На главную
Назад