Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Большая Советская Энциклопедия (ПО) - БСЭ БСЭ на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Поверхностная энергия

Пове'рхностная эне'ргия в термодинамике, избыток энергии в тонком слое вещества у поверхности соприкосновения тел (фаз) по сравнению с энергией вещества внутри тела. Полная П. э. складывается из работы образования поверхности, т. е. работы, необходимой для преодоления сил межмолекулярного (или межатомного) взаимодействия при перемещении молекул (атомов) из объёма фазы в поверхностный слой , и теплового эффекта, связанного с этим процессом. В соответствии с термодинамическими зависимостями удельная полная П. э.

u = s + q = s,

где s удельная свободная П. э., тождественно равная для подвижных жидкостей поверхностному натяжению , q — скрытая теплота (связанная энергия) единицы площади поверхности, Т — абсолютная температура и  — удельная поверхностная энтропия , имеющая обычно отрицательную величину. Свободная П. э. с ростом температуры уменьшается, тогда как полная П. э. неполярных (неассоциированных) жидкостей остаётся постоянной, а полярных — несколько возрастает. Так, для воды при 0, 20 и 100 °С значения u соответственно равны 117, 120 и 129 мдж/м2 или эрг/см2 . С приближением к критической температуре различие в составе и свойствах контактирующих фаз сглаживается, поверхность раздела фаз исчезает и П. э. обращается в нуль. П. э. влияет на многие физико-химические свойства твёрдых тел и жидкостей. Особенно возрастает её роль в высокодисперсных коллоидных системах , где поверхность раздела фаз предельно велика.

  Лит. см. при ст. Поверхностное натяжение и Поверхностные явления .

  Л. А. Шиц.

Поверхностная эрозия

Пове'рхностная эро'зия , смыв поверхностного слоя почвы в результате действия ливневых дождей и талых вод. См. Эрозия , Поверхностный сток .

Поверхностно-активные вещества

Пове'рхностно-акти'вные вещества' , вещества, способные накапливаться (сгущаться) на поверхности соприкосновения двух тел, называемой поверхностью раздела фаз, или межфазной поверхностью. На межфазной поверхности П.-а. в. образуют слой повышенной концентрации — адсорбционный слой (см. также Мономолекулярный слой ).

  Любое вещество в виде компонента жидкого раствора или газа (пара) при соответствующих условиях может проявить поверхностную активность, т. е. адсорбироваться под действием межмолекулярных сил на той или иной поверхности (см. Адсорбция ), понижая её свободную энергию . Однако поверхностно-активными обычно называются лишь те вещества, адсорбция которых из растворов уже при весьма малых концентрациях (десятые и сотые доли %) приводит к резкому снижению поверхностного натяжения .

  Типичные П.-а. в. — органические соединения дифильного строения, т. е. содержащие в молекуле атомные группы, сильно различающиеся по интенсивности взаимодействия с окружающей средой (в наиболее практически важном случае — водой). Так, в молекулах П.-а. в. имеются один или несколько углеводородных радикалов, составляющих олео-, или липофильную, часть (она же — гидрофобная часть молекулы), и одна или несколько полярных групп — гидрофильная часть (см. также Гидрофильность и гидрофобность ). Слабо взаимодействующие с водой олеофильные (гидрофобные) группы определяют стремление молекулы к переходу из водной (полярной) среды в углеводородную (неполярную). Гидрофильные группы, наоборот, удерживают молекулу в полярной среде или, если молекула П.-а. в. находится в углеводородной жидкости, определяют её стремление к переходу в полярную среду. Т. о., поверхностная активность П.-а. в., растворённых в неполярных жидкостях, обусловлена гидрофильными группами, а растворённых в воде — гидрофобными радикалами.

  По типу гидрофильных групп П.-а. в. делят на ионные, или ионогенные, и неионные, или неионогенные. Ионные П.-а. в. диссоциируют в воде на ионы, одни из которых обладают адсорбционной (поверхностной) активностью, другие (противоионы) — адсорбционно неактивны. Если адсорбционно активны анионы, П.-а. в. называются анионными, или анионоактивными, в противоположном случае — катионными, или катионо-активными. Анионные П.-а. в. — органические кислоты и их соли, катионные — основания, обычно амины различной степени замещения, и их соли. Некоторые П.-а. в. содержат и кислотные, и основные группы. В зависимости от условий они проявляют свойства или анионных, или катионных П.-а. в., поэтому их называют амфотерными, или амфолитными, П.-а. в.

  Все П.-а. в. можно разделить на две категории по типу систем, образуемых ими при взаимодействии с растворяющей средой. К одной категории относятся мицеллообразующие П.-а. в., к другой — не образующие мицелл . В растворах мицеллообразующих П.-а. в. выше критической концентрации мицеллообразования (ККМ) возникают коллоидные частицы (мицеллы), состоящие из десятков или сотен молекул (ионов). Мицеллы обратимо распадаются на отдельные молекулы или ионы при разбавлении раствора (точнее, коллоидной дисперсии) до концентрации ниже ККМ. Таким образом, растворы мицеллообразующих П.-а. в. занимают промежуточное положение между истинными (молекулярными) и коллоидными растворами (золями ), поэтому их часто называют полуколлоидными системами . К мицеллообразующим П.-а. в. относят все моющие вещества (см. Моющие средства , Моющее действие , Мыла ), эмульгаторы, смачиватели, диспергаторы и др.

  В мировом производстве П.-а. в. большую часть составляют анионные вещества. Среди них можно выделить следующие основные группы: карбоновые кислоты, а также их соли, алкилсульфаты (сульфоэфиры), алкилсульфонаты и алкил-арилсульфонаты, пр. продукты. Наиболее распространены натриевые и калиевые мыла жирных и смоляных кислот; нейтрализованные продукты сульфирования высших жирных кислот, олефинов, алкилбензолов. Второе место по объёму промышленного производства занимают неионные П.-а. в. — эфиры полиэтиленгликолей. Большинство неионных П.-а. в. получают присоединением окиси этилена к алифатическим спиртам, алкилфенолам, карбоновым кислотам, аминам и др. соединениям с реакционноспособным атомом водорода. Ассортимент П.-а. в. чрезвычайно велик. Приведённые ниже данные (1971) позволяют видеть соотношение объёмов производства П.-а. в. различных типов.

Поверхностно-активные вещества тыс. т %
Анионные Неионные Катионные и пр. 2480 1160 360 62 29 9
Всего 4000 100

Мировое производство П.-а. в. постоянно возрастает, причём доля неионных и катионных веществ в общем выпуске всё время увеличивается. В зависимости от назначения и химического состава П.-а. в. выпускают в виде твёрдых продуктов (кусков, хлопьев, гранул, порошков), жидкостей и полужидких веществ (паст, гелей). Особое внимание всё больше и больше уделяется производству П.-а. в. с линейным строением молекул, которые легко подвергаются биохимическому разложению в природных условиях и не загрязняют окружающую среду.

  П.-а. в. находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Важнейшие области потребления П.-а. в.: производство мыл и моющих средств для технических и санитарно-гигиенических нужд; текстильно-вспомогательных веществ, т. е. веществ, используемых для обработки тканей и подготовки сырья для них; лакокрасочной продукции. П.-а. в. используют во многих технологических процессах химических, нефтехимических, химико-фармацевтических, пищевой промышленности. Их применяют как присадки, улучшающие качество нефтепродуктов ; как флотореагенты при флотационном обогащении полезных ископаемых (см. Флотация ); компоненты гидроизоляционных и антикоррозионных покрытий и т.д. П.-а. в. облегчают механическую обработку металлов и др. материалов, повышают эффективность процессов диспергирования жидкостей и твёрдых тел. Незаменимы П.-а. в. как стабилизаторы высококонцентрированных дисперсных систем (суспензий, паст, эмульсий, пен). Кроме того, они играют важную роль в биологических процессах и вырабатываются для «собственных нужд» живыми организмами. Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений.

  Лит.: Шварц А., Перри Дж., Берч Д ж., Поверхностноактивные вещества и моющие средства, пер. с англ., М., 1960; Ребиндер П. А., Поверхностноактивные вещества и их применение, «Журнал Всесоюзного химического общества им. Д. И. Менделеева», 1959, т. 4, № 5; его же, Поверхностные и объемные свойства растворов поверхностно-активных веществ, там же, 1966, т. 11, № 4; его же, Взаимосвязь поверхностных и объёмных свойств растворов поверхностно-активных веществ, в сборнике: Успехи коллоидной химии, М., 1973; Коллоидные поверхностноактивные вещества, пер. с англ., М., 1966; Nonionic surfactans, ed. M. J. Schick, N. Y., 1967. см. также лит. при ст. Моющие средства .

  Л. А. Шиц.

Поверхностное давление

Пове'рхностное давле'ние, плоское давление, двумерное давление, сила, действующая на единицу длины границы (барьера), разделяющей чистую поверхность жидкости и поверхность той же жидкости, покрытую адсорбционным слоем поверхностно-активного вещества. П. д. имеет молекулярно-кинетическую природу; оно направлено в сторону чистой поверхности и определяется разностью поверхностных натяжений чистой жидкости и жидкости с адсорбционным монослоем.

Поверхностное натяжение

Пове'рхностное натяже'ние, важнейшая термодинамическая характеристика поверхности раздела фаз (тел), определяемая как работа обратимого изотермического образования единицы площади этой поверхности. В случае жидкой поверхности раздела П. н. правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз. Применительно к легкоподвижным поверхностям оба определения равнозначны, но первое предпочтительнее, т.к. имеет более ясный физический смысл. П. н. на границе двух конденсированных фаз обычно называется межфазным натяжением. Работа образования новой поверхности затрачивается на преодоление сил межмолекулярного сцепления (когезии ) при переходе молекул вещества из объёма тела в поверхностный слой . Равнодействующая межмолекулярных сил в поверхностном слое не равна нулю (как в объёме тела) и направлена внутрь фазы с большей когезией. Таким образом, П. н. — мера некомпенсированности межмолекулярных сил в поверхностном (межфазном) слое или, что то же, избытка свободной энергии в поверхностном слое по сравнению со свободной энергией в объёмах соприкасающихся фаз. В соответствии с определениями П. н. его выражают в дж/м2 или н/м (эрг/см2 или дин/см ).

  Благодаря П. н. жидкость при отсутствии внешних силовых воздействий принимает форму шара, отвечающую минимальной величине поверхности и, следовательно, наименьшему значению свободной поверхностной энергии . П. н. не зависит от величины и формы поверхности, если объёмы фаз достаточно велики по сравнению с размерами молекул; при повышении температуры, а также под действием поверхностно-активных веществ оно уменьшается. Расплавы металлов имеют наибольшее среди жидкостей П. н., например у платины при 2000 °С оно равно 1820 дин/см, у ртути при 20 °С — 484. П. н. расплавленных солей значительно меньше — от нескольких десятков до 200—300. П. н. воды при 20 °С — 72,8, а большинства органических растворителей — в пределах 20—60. Самое низкое при комнатной температуре П. н. — ниже 10 — имеют некоторые фторуглеродные жидкости.

  В общем случае многокомпонентных систем в соответствии с термодинамическим уравнением Гиббса при адсорбции изменение П. н.

d s = Г1 d m1 + Г2 d m2 +...,

где Г1 , Г2 ,... — поверхностные избытки компонентов 1, 2,..., т. е. разность их концентраций в поверхностном слое и объёме раствора (или газа), a d m1 , d m2 ,... — изменения химических потенциалов соответствующих компонентов (знак «минус» показывает, что П. н. при положительной адсорбции уменьшается). Разницей в П. н. чистой жидкости и жидкости, покрытой адсорбционным монослоем, определяется поверхностное давление .

  На легкоподвижных границах жидкость — газ (пар) или жидкость — жидкость П. н. можно непосредственно измерить многими методами. Так, широко распространены способы определения П. н. по массе капли, отрывающейся от конца вертикальной трубки (сталагмометра); по величине максимального давления, необходимого для продавливания в жидкость пузырька газа; по форме капли (или пузырька), лежащей на плоской поверхности, и т.д. Экспериментальное определение П. н. твёрдых тел затруднено из-за того, что их молекулы (или атомы) лишены возможности свободного перемещения. Исключение составляет пластическое течение металлов при температурах, близких к точке плавления. Ввиду анизотропии кристаллов П. н. на разных гранях кристалла различно. Понятия П. н. и свободной поверхностной энергии для твёрдых тел не тождественны. Дефекты кристаллической решётки, главным образом дислокации , ребра и вершины кристаллов, границы зёрен поликристаллических тел, выходящие на поверхность, вносят свой вклад в свободную поверхностную энергию. П. н. твёрдых тел обычно определяют косвенно, исходя из межмолекулярных и межатомных взаимодействий. Величиной и изменениями П. н. обусловлены многие поверхностные явления , особенно в дисперсных системах (см. также Капиллярные явления ),

  Л. А. Шиц.

  В живых организмах П. н. клетки — один из факторов, определяющих форму целой клетки и её частей. Для клеток, обладающих жёсткой или полужёсткой поверхностью (многие микроорганизмы, инфузории, клетки растений и т.д.), значение П. н. невелико. У клеток, лишённых прочной надмембранной структуры (большинство клеток животных, некоторые простейшие, сферопласты бактерий), П. н. в основном определяет конфигурацию (клетки, находящиеся во взвешенном в жидкости состоянии, приобретают форму, близкую к сферической). Форма клетки, прикрепленной к какому-либо субстрату или к др. клеткам, зависит преимущественно от др. факторов — цитоскелета, образуемого микротрубочками, контактных структур и т.д. Полагают, что локальные изменения П. н. существенны в таких явлениях, как фагоцитоз , пиноцитоз , гаструляция . Определение П. н. клетки — сложная экспериментальная задача; обычно П. н. клетки не превышает несколько дин/см (10-3 н/м ).

  Л. Г. Маленков.

  Лит.: Адам Н. К., Физика и химия поверхностей, пер. с англ., М.—Л., 1947; Surface and colloid science, ed. E. Matijevié, v. 1, N. Y. — [a. o.], 1969. см. также лит. при ст. Поверхностные явления .

Поверхностной волны антенна

Пове'рхностной волны' анте'нна, бегущей волны антенна , отличающаяся тем, что фазовая скорость электромагнитной волны, которая распространяется вдоль антенны, меньше фазовой скорости распространения плоской волны в свободном пространстве, а амплитуда поля в направлении нормали к антенне убывает по экспоненциальному закону (такую волну называют поверхностной). Замедляющую структуру П. в. а. выполняют в виде ребристой металлической поверхности (см. рис. в ст. Антенна ) либо в виде плоской металлической поверхности, покрытой слоем диэлектрика. Поверхностная волна обычно возбуждается рупорной антенной или электрическим вибратором. Основным достоинством П. в. а. является то, что конструктивно она может быть выполнена в виде вставки, практически не выступающей из несущей поверхности, что очень важно при установке таких антенн на летательных аппаратах. П. в. а. применяют главным образом в радиоустройствах, работающих на сантиметровых и дециметровых волнах.

Поверхностные волны

Пове'рхностные во'лны, упругие волны , распространяющиеся вдоль свободной поверхности твёрдого тела или вдоль границы твёрдого тела с другими средами и затухающие при удалении от границы. Простейшими и вместе с тем наиболее часто встречающимися на практике П. в. являются Рэлея волны .

  О П. в., возникающих и распространяющихся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей, см. Волны на поверхности жидкости .

Поверхностные явления

Пове'рхностные явле'ния, выражение особых свойств поверхностных слоев, т. е. тонких слоев вещества на границе соприкосновения тел (сред, фаз). Эти свойства обусловлены избытком свободной энергии поверхностного слоя, особенностями его структуры и состава. П. я. могут иметь чисто физический характер или сопровождаться химическими превращениями; они протекают на жидких (легкоподвижных) и твёрдых межфазных границах. П. я., связанные с действием поверхностного натяжения и вызываемые искривлением жидких поверхностей раздела, называются также капиллярными явлениями . К ним относятся капиллярное всасывание жидкостей в пористые тела, капиллярная конденсация, установление равновесной формы капель, газовых пузырей, менисков. Свойства поверхности контакта двух твёрдых тел или твёрдого тела с жидкой и газовой средами определяют условия таких явлений, как адгезия , смачивание , трение. Молекулярная природа и свойства поверхности могут коренным образом изменяться в результате образования поверхностных мономолекулярных слоев или фазовых (полимолекулярных) плёнок. Такие изменения часто происходят вследствие физических процессов (адсорбции, поверхностной диффузии, растекания жидкости) или химического взаимодействия компонентов соприкасающихся фаз. Любое «модифицирование» поверхностного (межфазного) слоя обычно приводит к усилению или ослаблению молекулярного взаимодействия между контактирующими фазами (см. Лиофильность и лиофобность ). Физические или химические превращения в поверхностных слоях сильно влияют на характер и скорость гетерогенных процессов — коррозионных, каталитических, мембранных и др. П. я. отражаются и на типично объёмных свойствах тел. Так, уменьшение свободной поверхностной энергии твёрдых тел под действием адсорбционно активной среды вызывает понижение их прочности (см. Ребиндера эффект ). Особую группу составляют П. я., обусловленные наличием в поверхностном слое электрических зарядов: электроадгезионные явления, электрокапиллярные явления , электродные процессы. Физические или химические изменения в поверхностном слое проводника или полупроводника существенно сказываются на работе выхода электрона. Они также влияют на П. я. в полупроводниках (поверхностные состояния, поверхностную проводимость, поверхностную рекомбинацию), что отражается на эксплуатационных характеристиках полупроводниковых приборов (солнечных батарей, фотодиодов и др.). П. я. имеют место в любой гетерогенной системе, состоящей из двух или нескольких фаз. По существу весь материальный мир — от космических объектов до субмикроскопических образований — гетерогенен. Как гомогенные можно рассматривать системы лишь в ограниченных объёмах пространства. Поэтому роль П. я. в природных и технологических процессах чрезвычайно велика. Особенно важны П. я. в коллоидно-дисперсных (микрогетерогенных) системах, где межфазная поверхность наиболее развита. С П. я. связана сама возможность возникновения и длительного существования таких систем. К П. я. в дисперсных системах сводятся основные проблемы коллоидной химии . Во взаимосвязи броуновского движения и П. я. протекают все процессы, приводящие к изменению размеров частиц высокодисперсной фазы (коагуляция , коалесценция , пептизация , эмульгирование). В грубодисперсных и макрогетерогенных системах на первый план выступает конкуренция поверхностных сил и внешних механических воздействий. П. я., влияя на величину свободной поверхностной энергии и строение поверхностного слоя, регулируют зарождение и рост частиц новой фазы в пересыщенных парах, растворах и расплавах, взаимодействие коллоидных частиц при формировании разного рода дисперсных структур . На глубину и направление процессов, обусловленных П. я., часто решающим образом влияют поверхностно-активные вещества , меняющие в результате адсорбции структуру и свойства межфазных поверхностей. Основы современной термодинамики П. я. созданы американским физикохимиком Дж. Гиббсом . В трудах советских учёных П. А. Ребиндера , А. Н. Фрумкина , Б. В. Дерягина , А. В. Думанского получили развитие теоретические представления о природе и молекулярном механизме П. я., имеющие важное практическое значение.

  Использование П. я. в производственной деятельности человека позволяет интенсифицировать существующие технологические процессы. П. я. в значительной мере определяют пути получения и долговечность важнейших строительных и конструкционных материалов; эффективность добычи и обогащения полезных ископаемых; качество и свойства продукции, выпускаемой химической, текстильной, пищевой, химико-фармацевтической и многими другими отраслями промышленности. Большое значение имеют П. я. в металлургии, производстве керамики, металлокерамики, полимерных материалов (пластических масс, резины, лакокрасочных продуктов). Для техники важны такие П. я., как смазочное действие, износ, контактные взаимодействия, структурные изменения в поликристаллических и композиционных материалах, а также электрические и электрохимические процессы и явления на поверхностях твёрдых тел. Познание П. я. в живой природе позволяет сознательно влиять на биологические процессы с целью повышения продуктивности сельского хозяйства, развития микробиологической промышленности, расширения возможностей медицины и ветеринарии.

  Л. А. Шиц.

  В биологии П. я. играют важную роль прежде всего на клеточном, субклеточном и молекулярном уровнях организации живых систем. Различные биологические мембраны отграничивают клетку от внешней среды и обеспечивают её микрогетерогенность. На мембранах клетки и внутриклеточных органелл (митохондрий, пластид и др.) происходят фундаментальные для жизни процессы: рецепция экзо- и эндогенных биологически активных веществ (гормонов, медиаторов, антигенов, феромонов и т.д.); ферментативный катализ (многие ферменты встроены в мембраны, образуя многоферментные каталитические ансамбли); преобразование химической энергии в осмотическую работу; окислительное фосфорилирование , т. е. сопряжение процессов окисления с накоплением энергии в макроэргических соединениях. Особенности взаимодействия поверхностей ответственны за агрегацию клеток, их прикрепление к живым и неживым субстратам (в т. ч. образование тромба при повреждении стенки сосуда, сорбция вирусов на клетках и т.п.). Функционирование важнейших ферментных систем (например, ансамбля дыхательных ферментов) — пример гетерогенного катализа. Адсорбция соответствующих физиологически активных веществ на поверхностях лежит в основе «распознавания» своих и чужих макромолекул (см. Иммунология , Компетенция , Хеморецепция ), наркоза, передачи нервного импульса. В целом П. я. в живых системах отличаются от таковых в неживой природе гораздо большей химической специфичностью, взаимной согласованностью во времени и пространстве. Например, рецепция гормона на поверхности клетки вызывает конформационный переход (см. Конформация ) ряда компонентов мембраны, что обусловливает изменение её проницаемости и гетерокаталитической активности. Это, в свою очередь, вызывает многочисленные физико-химические и биохимические сдвиги в клетке, что в совокупности и определяет её реакцию на воздействие.

  По мере эволюции роль П. я. в процессах жизнедеятельности возрастает. Так, более древний механизм обеспечения клеток энергией — гликолиз осуществляется ферментами цитоплазмы, лишь частично закрепленными на структурах эндоплазматической сети; эволюционно более поздний и экономичный путь получения энергии — дыхание осуществляется за счёт гетерокаталитических систем (см. Окисление биологическое ). У одноклеточных организмов питание происходит путём заглатывания целых макромолекул и их последующего расщепления внутри клетки (см. Пиноцитоз ); у высших — существенную роль играет пристеночное (контактное) пищеварение , когда ферментативный гидролиз макромолекул пищи происходит на внешней поверхности клетки и координирован с последующим транспортом продуктов расщепления в клетку. См. также Проницаемость биологических мембран .

  А. Г. Маленков.

  Лит.: Мелвин-Хьюз Э. А., Физическая химия, пер. с англ., кн. 2, М., 1962, с. 807; Курс физической химии, под ред. Я. И. Герасимова, 2 изд., т. 1, М. — Л., 1969; Успехи коллоидной химии, под ред. П. А. Ребиндера и Г. И. Фукса, М., 1973; Гиббс Д ж. В., Термодинамические работы, пер. с англ.. М. — Л., 1958; Русанов А. И., Фазовые равновесия и поверхностные явления. Л,, 1967; Межфазовая граница газ — твёрдое тело, пер. с англ., М., 1970; Дерягин Б. В., Кротова Н. А., Смилга В. П., Адгезия твёрдых тел, М., 1973; 3имон А. Д., Адгезия жидкости и смачивание, М., 1974; Семенченко В. К., Поверхностные явления в металлах и сплавах, М.. 1957; Recent progress in surface science, ed by J. F. Danielli [a. o.], v. 1—5, N. Y. — L., 1964—72. См. также лит. при статьях Коллоидная химия , Поверхностное натяжение . Васильев Ю. М., Маленков А. Г., Клеточная поверхность и реакции клеток, Л., 1968; Пасынский А. Г., Биофизическая химия, 2 изд., М., 1968; Surface phenomena in chemistry and biology, L. — [a. o.], 1958; Surface chemistry of biological systems, N. Y. — L., 1970.

Поверхностный интеграл

Пове'рхностный интегра'л , интеграл от функции, заданной на какой-либо поверхности. К П. и. приводит, например, задача вычисления массы, распределённой по поверхности S с переменной поверхностной плотностью f (M ). Для этого разбивают поверхность на части s1 , s2 ,..., sn и выбирают в каждой из них по точке Mi . Если эти части достаточно малы, то их массы приближённо равны f (Mi ) si , а масса всей поверхности будет равна . Это значение тем ближе к точному, чем меньше части si . Поэтому точное значение массы поверхности есть

,

где предел берётся при условии, что размеры всех частей si (и их площади) стремятся к нулю. К аналогичным пределам приводят и другие задачи физики. Эти пределы называют П. и. первого рода от функции f (M ) по поверхности S и обозначают

.

  Их вычисление приводится к вычислению двойных интегралов (см. Кратный интеграл ).

  В некоторых задачах физики, например при определении потока жидкости через поверхность S, встречаются пределы аналогичных сумм с той лишь разницей, что вместо площадей самих частей стоят площади их проекций на три координатные плоскости. При этом поверхность S предполагается ориентированной (т. е. указано, какое из направлений нормалей считается положительным) и площадь проекции берётся со знаком + или — в зависимости от того, является ли угол между положительным направлением нормали и осью, перпендикулярной плоскости проекций, острым или тупым. Пределы сумм такого вида называют П. и. второго рода (или П. и. по проекциям) и обозначают

.

  В отличие от П. и. первого рода, знак П. и. второго рода зависит от ориентации поверхности S.

  М. В. Остроградский установил важную формулу, связывающую П. и. второго рода по замкнутой поверхности S с тройным интегралом по ограниченному ею объёму V (см. Остроградского формула ). Из этой формулы следует, что если функции Р, Q, R имеют непрерывные частные производные и в объёме V выполняется тождество

,

то П. и. второго рода по всем поверхностям, содержащимся в V и имеющим один и тот же контур, равны между собой. В этом случае можно найти такие функции P1 , Q1 , R1 , что

, , .

  Стокса формула выражает криволинейный интеграл по замкнутому контуру через П. и. второго рода по ограниченной этим контуром поверхности.

  Лит.: Никольский С. М., Курс математического анализа, т. 2, М., 1973: Ильин В. А., Позняк Э. Г., Основы математического анализа, ч. 2, М., 1973; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 2, М., 1973.

Поверхностный слой

Пове'рхностный слой, тонкий слой вещества близ поверхности соприкосновения двух фаз (тел, сред), отличающийся по свойствам от веществ в объёме фаз. Особые свойства П. с. обусловлены сосредоточенным в нём избытком свободной энергии (см. Поверхностная энергия , Поверхностное натяжение ), а также особенностями его строения и состава. П. с. на границе конденсированных фаз часто называют межфазным слоем. Толщина П. с. зависит от разности плотностей фаз, интенсивности и типа межмолекулярных взаимодействий в граничной зоне, температуры, давления, химических потенциалов и др. термодинамических параметров системы. В одних случаях она не превышает толщины мономолекулярного слоя, в других — достигает десятков и сотен молекулярных размеров. Так, П. с. жидкостей вблизи критических температур смешения могут иметь толщину 1000  (100 нм ) и более. П. с., образованный молекулами (или ионами) адсорбированного вещества, называется адсорбционным слоем. Особенно резко изменяются состав и свойства П. с. при адсорбции поверхностно-активных веществ. Адсорбционное, хемосорбционное и химическое воздействия на П. с. твёрдого тела могут вызвать его лиофилизацию или лиофобизацию (см. Лиофильность и лиофобность ), привести к понижению его прочности (см. Ребиндера эффект ) или, наоборот, повысить механические характеристики. Состояние П. с. различных конструкционных, радиотехнических и др. материалов сильно отражается на их эксплуатационно-технических и технологических характеристиках. Со свойствами П. с. связаны многообразные поверхностные явления в окружающем нас мире.

  Л. А. Шиц.

Поверхностный сток

Пове'рхностный сток, процесс перемещения воды по земной поверхности под влиянием силы тяжести. П. с. делится на склоновый и русловой. Склоновый сток образуется за счёт дождевых и талых вод, происходит на поверхности склона вне фиксированных путей. Русловой сток проходит по определённым линейным направлениям — в руслах рек, днищах оврагов и балок. В формировании руслового П. с. иногда принимают участие также подземные воды и грунтовые воды . П. с. характеризуется объёмом воды, стекающей по поверхности (модуль стока), выраженным в л/сек ×км2 или слоем мм в год или за какой-либо другой период. В СССР наименьший модуль стока в засушливых районах равнин Средней Азии — 0—1 л/сек ×км2 , наибольший в горах Западного Кавказа — до 125 л/сек ×км2 . П. с. изменчив во времени: при среднем годовом модуле стока в бассейне р. Ворскла 2,1 л/сек ×км2 , максимальный модуль весеннего половодья 220 л/сек ×км2 ; в Приморье, где модуль среднего стока составляет 8—15 л/сек ×км2 , максимальные модули ливневого стока достигают 600—700 (и даже более 1000 л/сек ×км2 ).

  К. Г. Тихоцкий.

Поверхность

Пове'рхность, одно из основных геометрических понятий. При логическом уточнении этого понятия в разных отделах геометрии ему придаётся различный смысл.

  1) В школьном курсе геометрии рассматриваются плоскости, многогранники, а также некоторые кривые поверхности. Каждая из кривых П. определяется специальным способом, чаще всего как множество точек, удовлетворяющих некоторым условиям. Например, П. шара — множество точек, отстоящих на заданном расстоянии от данной точки. Понятие «П.» лишь поясняется, а не определяется. Например, говорят, что П. есть граница тела или след движущейся линии.

  2) Математически строгое определение П. основывается на понятиях топологии. При этом основным является понятие простой поверхности, которую можно представить как кусок плоскости, подвергнутый непрерывным деформациям (растяжениям, сжатиям и изгибаниям). Более точно, простой П. называется образ гомеоморфного отображения (т. е. взаимно однозначного и взаимно непрерывного отображения) внутренности квадрата (см. Гомеоморфизм ). Этому определению можно дать аналитическое выражение. Пусть на плоскости с прямоугольной системой координат u и u задан квадрат, координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < u < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = j(u, u ), у =  Y(u, u ), z = c(u, u ) (параметрические уравнения П.). При этом от функций j(u, u ), Y(u, u) и c(u, u) требуется, чтобы они были непрерывными и чтобы для различных точек (u, u) и (u’, u ) были различными соответствующие точки (x, у, z ) и (x’, у’, z' ). Примером простой П. является полусфера. Вся же сфера не является простой П. Это вызывает необходимость дальнейшего обобщения понятия П. Поверхность, окрестность каждой точки которой есть простая П., называется правильной. С точки зрения топологического строения, П. как двумерные многообразия разделяются на несколько типов: замкнутые и открытые, ориентируемые и неориентируемые и т.д. (см. Многообразие ).

  В дифференциальной геометрии исследуемые П. обычно подчинены условиям, связанным с возможностью применения методов дифференциального исчисления. Как правило, это — условия гладкости П., т. е. существования в каждой точке П. определённой касательной плоскости, кривизны и т.д. Эти требования сводятся к тому, что функции j(u, u), Y(u, u), c(u, u) предполагаются однократно, дважды, трижды, а в некоторых вопросах — неограниченное число раз дифференцируемыми или даже аналитическими функциями. Кроме того, требуется, чтобы в каждой точке хотя бы один из определителей

, ,

был отличен от нуля (см. Поверхностей теория ).

  В аналитической геометрии и в алгебраической геометрии П. определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений:

Ф (х, у, z ) = 0.     (* )

  Таким образом, определённая П. может и не иметь наглядного геометрического образа. В этом случае для сохранения общности говорят о мнимых П. Например, уравнение

х2 + у2 + z2 + 1 = 0

определяет мнимую сферу, хотя в действительном пространстве нет ни одной точки, координаты которой удовлетворяют такому уравнению (см. также Поверхности второго порядка ). Если функция Ф (х, у, z ) непрерывна в некоторой точке и имеет в ней непрерывные частные производные , из которых хотя бы одна не обращается в нуль, то в окрестности этой точки П., заданная уравнением (*), будет правильной П.

Поверхность удельная

Пове'рхность уде'льная, усреднённая характеристика размеров внутренних полостей (каналов, пор) пористого тела или частиц раздробленной фазы дисперсной системы . П. у. выражают отношением общей поверхности пористого или диспергированного в данной среде тела к его объёму или массе. П. у. пропорциональна дисперсности или, что то же, обратно пропорциональна размеру частиц дисперсной фазы. От величины П. у. зависят поглотительная способность адсорбентов, эффективность твёрдых катализаторов, свойства фильтрующих материалов. П. у. активных углей составляет 500—1500, силикагелей — до 800, макропористых ионообменных смол — не более 70, а диатомитовых носителей для газожидкостной хроматографии — менее 10 м2 /г. П. у. характеризует дисперсность порошкообразных материалов: минеральных вяжущих веществ, наполнителей, пигментов, пылевидного топлива и др. Величина их П. у. обычно находится в пределах от десятых долей до нескольких десятков м2 /г. П. у. чаще всего определяют по количеству адсорбированного материалом инертного газа и по воздухопроницаемости слоя порошка или пористого материала. Адсорбционные методы позволяют получать наиболее достоверные данные.

  Лит.: Грег С., Синг К., Адсорбция, удельная поверхность, пористость, пер. с англ., М., 1970; Коузов П. А., Основы анализа дисперсного состава промышленных пылей и измельченных материалов, 2 изд., Л., 1974.

  Л. А. Шиц.

Повествование

Повествова'ние, весь текст эпического произведения, за исключением прямой речи (рассказ о событиях, а также описание , рассуждение и пр.). Характер П. зависит от позиции, с которой оно ведётся: оптической — кто видит изображаемое, и оценочной — кто оценивает: сам автор, повествователь (рассказчик), герой. Различают объективное П. (авторская оценка в тексте не присутствует — А. П. Чехов 90-х гг.) и субъективное (автор прямо выражает свои эмоции и выносит приговор — Л. Н. Толстой периода «Воскресения»). В литературе нового времени чётких границ между этими типами и компонентами П. уже нет.

Повести древнерусские

По'вести древнеру'сские, литературные произведения (11—17 вв.), охватывающие различные типы повествования. В литературе Киевской Руси были распространены переводные повести с нравоучительными тенденциями и развитыми сюжетами (повесть об Акире Премудром; повесть «О Варлааме и Иоасафе»; воинское повествование «История Иудейской войны» Иосифа Флавия; «Александрия»; «Девгениево деяние» и др.). Оригинальные русские повести первоначально носили легендарно-исторический характер и включались в летописи (об Олеге Вещем, о мести Ольги, о крещении Владимира и др.). В дальнейшем П. д. развивались в двух основных направлениях — историко-эпическом и историко-биографическом. Первое культивировало принципы повествования о событиях главным образом военных (повести о междоусобных войнах князей; о войнах с половцами 11-12 вв.; о татаро-монгольском нашествии 13-14 вв.; «Сказание о Мамаевом побоище», 15 в.). Воинские повести часто превращались в обширные беллетризованные «истории» («Повесть о Царь-граде», 15 в.; «История о Казанском царстве», 16 в., и др.), в ряде случаев приобретали фольклорно-эпическую окраску («Повесть о разорении Рязани Батыем», 14 в.; «Повесть об Азовском сидении», 17 в., и др.). К повестям такого типа относятся дружинно-эпические «Слово о полку Игореве» (12 в.) и «Задонщина» (14 в.). Воинским повестям свойственны патриотические идеалы, красочность батальных описаний. Среди повествований о событиях выделяются также повести, посвященные проблемам государственности. Легендарно-исторические повествования периода формирования Русского централизованного государства посвящались преемственности мировых монархий и происхождению династии Рюриковичей (повести «О Вавилонском царстве», «О князьях Владимирских» и др., 15—16 вв.). Затем главной темой повестей становится историко-публицистического описание кризиса московской государственности в «смутное время» и смены царствующих династий («Повесть 1606 года», «Сказание» Авраамия Палицына, «Летописная книга» И. Катырева-Ростовского и др.).

  Другое направление П. д. разрабатывало принципы повествования о героях, первоначально основанного на христианско-провиденциальном, торжественно-риторическом описании деяний выдающихся князей в борьбе с внешними врагами (жития Александра Невского, Довмонта Псковского, 13 в.; Дмитрия Донского, 15 в.); эти произведения занимали промежуточное положение между традиционными воинскими повестями и житиями святых. Постепенно историко-биографическое повествование начало перемещать своих героев в бытовую обстановку: повесть о Петре и Февронии Муромских (15—16 вв.), проникнутая сказочной символикой; повесть о дворянке Юлиании Лазаревской (17 в.) и др. Интерес к подвигам героев вытесняется вниманием к взаимоотношениям людей, к поведению личности в быту, которое, однако, ещё обусловливалось церковно-этическими нормами. Повести биографического типа разветвлялись на поучительные жития-автобиографии (жития Аввакума, Епифания) и повествования полусветского, а затем и светского характера, проникнутые средневеково-традиционной моралью (фольклорно-лиричная «Повесть о Горе-Злочастии», книжно-беллетристическая «Повесть о Савве Грудцыне», 17 в.). Повествование всё более отрывается от исторической канвы и овладевает искусством сюжетосложення. В конце 17 в. возникают сатирические повести с элементом литературной пародии («Повесть о Ерше Ершовиче», «Шемякин суд» и др.). Острые сложнобытовые ситуации оснащаются натуралистическими деталями, свойственными ранней новелле (повести о купце Карпе Сутулове и его жене, 17 в.; «Повесть о Фроле Скобееве», начало 18 в.). Вновь входят в моду переводные повести, герои которых русифицируются в сказочном духе («О Бове-Королевиче», «О Еруслане Лазаревиче» и др.), сборники западноевропейских новелл («Великое зерцало», «Фацеции» и др.). П. д. совершают закономерную эволюцию от средневекового исторического повествования к беллетристической повести нового времени.

  Лит.: Пыпин А. Н., Очерк литературной истории старинных повестей и сказок русских, СПБ, 1857; Орлов А. С., Переводные повести феодальной Руси и Московского государства XII—XVII вв., [Л.], 1934; Старинная русская повесть. Статьи и исследования. Под ред. Н. К. Гудзия, М. — Л., 1941; Истоки русской беллетристики. [Отв. ред. Я. С. Лурье], Л., 1970; История русской литературы, т. 1, М. — Л., 1958.

  А. Н. Робинсон.

Повестка судебная

Пове'стка суде'бная, в СССР письменное официальное извещение о вызове в суд. К П. с. приравнивается также телефонограмма или телеграмма. В П. с. указывается: кто, в каком качестве, куда, к кому и на какое время вызывается, а также последствия неявки (например, свидетель может быть подвергнут приводу, обвиняемому изменена мера пресечения на более строгую и т.д.).

  Повесткой оформляется также вызов граждан к следователю (лицу, производящему дознание).

Повесть

По'весть (англ. tale, франц. nouvelle, histoire, нем. Geschichte, Erzähiung), одна из эпических жанровых форм художественной литературы; её понимание исторически изменялось. Первоначально, в истории древней рус. литературы, термин «П.» применяли для обозначения прозаических (а иногда и стихотворных) произведений, не обладающих ярко выраженной экспрессивностью художественной речи («Повесть о разорении Рязани Батыем», повесть о Петре и Февронии, «Повесть о Фроле Скобееве»; см. Повести древнерусские ) и вне зависимости от их жанрового содержания; все они невелики по объёму. В середине 18 в., когда русскими писателями был усвоен термин «роман», жанровые обозначения прозаического произведения потеряли чёткость: произведения, близкие по объёму, назывались по-разному (Ф. А. Эмин назвал своего «Мирамонда» романом, а М. М. Херасков своего «Полидора» — П.). После Н. М. Карамзина П. осознавалась уже как прозаические произведения сравнительно малого, а роман — как большого объёма (А. С. Пушкин выпускает «Повести Белкина», но называет романом «Капитанскую дочку»). В 1835 В. Г. Белинский даёт этому различию общее определение: он называет П. «распавшимся на части... романом», «главой, вырванной из романа». С 1840-х гг., когда стало появляться особенно много совсем небольших по объёму прозаических произведений — рассказов (часто «очеркового» склада), понятие «рассказ» заняло своё особое место в той же шкале обозначений. Постепенно сложилось устойчивое теоретическое представление: «рассказ» — малая форма эпической прозы, «повесть» — её средняя форма, «роман» — большая. Оно преобладает и доныне.

  Однако ещё В. Г. Белинский заметил, что «форма» повести «может вместить в себя» и «лёгкий очерк нравов», «саркастическую насмешку над человеком и обществом», но и «глубокое таинство души», «жестокую игру страстей». Иначе говоря, в прозаических произведениях одного и того же — пусть «среднего» — объёма может быть раскрыто различное жанровое содержание: или нравоописательное («насмешка над человеком и обществом»), или романическое («таинство души», «игра страстей»). А возможно и третье — содержание героическое (столкновение общественных сил). Так, в творчестве Н. В. Гоголя есть «повести» трёх разновидностей жанрового содержания: «Повесть о том, как поссорились...» — «Портрет» — «Тарас Бульба». В творчестве А. П. Чехова есть такие «повести», которые по существу являются небольшими (средними по объёму текста) романами («Три года», «Моя жизнь»).



Поделиться книгой:

На главную
Назад