Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Большая Советская Энциклопедия (АН) - БСЭ БСЭ на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Отсюда уже нетрудно заключить, что дифференцируемость функции f в смысле комплексного анализа имеет место в том и только том случае, когда она дифференцируема в смысле действительного анализа и справедливо равенство ¶f/¶ = 0, являющееся краткой формой записи уравнений Коши — Римана; при этом

  ¶fz = f’ = df/dz.

  Равенство ¶f/¶ = 0 показывает, что дифференцируемыми в смысле комплексного анализа являются те и только те функции f, которые, рассматриваемые формально как функции независимых переменных z и  «зависят только от z», являются «функциями комплексного переменного z».

  Интеграл от функции f = j + iy вдоль (ориентированной спрямляемой) кривой Г можно определить с помощью понятия криволинейного интеграла:

 

  Центральное место в теории моногенных функций (теории Коши) занимает следующая итегральная теорема Коши: если функция моногенна в односвязной области D, то SГ f(z)dz = 0 для любой замкнутой кривой Г, лежащей в этой области. В произвольной области D то же утверждение справедливо для замкнутых кривых Г, которые непрерывной деформацией могут быть стянуты в точку (оставаясь в пределах области D). Опираясь на интегральную теорему Коши, нетрудно доказать интегральную формулу Коши: если функция f моногенна в области D и Г — простая замкнутая кривая, принадлежащая области D вместе со своей внутренностью DГ то для любой точки zÎDГ

 

(ориентация кривой Г предполагается положительной относительно области D Г)

  Пусть функция f моногенна в области D. Фиксируем произвольную точку z0 области D и обозначим через g окружность с центром в точке z0 и радиусом r > 0, принадлежащую, вместе со всем кругом: К: Iz - z0I < r, области D. Тогда

 

  Представим ядро Коши 1/(tz) для tÎg и zÎK в виде суммы бесконечной геометрической прогрессии:

  поэтому ряд сходится равномерно относительно tÎg при любом фиксированном zÎK, интегрируя этот ряд — после умножения на

  почленно, получают разложение функции f в степенной ряд

  сходящийся в круге K: I z - z0 I < r.

  Уточним теперь понятие аналитичности. Пусть f — функция, определённая в области D; она называется аналитической (или голоморфной) в точке z0 области , если существует окрестность этой точки (круг с центром в z0), в которой функция f представляется степенным рядом:

f (z) = a0 + a1(z - z0) + a2(z - z0)2 +. . . . + an(z - z0)n+ . . .

  Если это свойство имеет место в каждой точке z0 области D, то функция f называется аналитической (голоморфной) в области D.

  Выше было показано, что функция f, моногенная в области D, аналитична в этой области. В отдельной точке это утверждение неверно; например, функция f(z) = êzê2 = z моногенна в точке z0 = 0, но нигде не аналитична. С другой стороны, функция f , аналитическая в точке z0 области D, моногенна в этой точке. Более того, сумма сходящегося степенного ряда имеет производные всех порядков (бесконечно дифференцируема) по комплексному переменному z; коэффициенты ряда могут быть выражены через производные функции f в точке z0 по формулам: an=f(n)(z0)/n!. Степенной ряд, записанный в форме

  называется рядом Тейлора функции f в точке z0. Тем самым, аналитичность функции f в области D означает, что в каждой точке области D функция f бесконечно дифференцируема и её ряд Тейлора сходится к ней в некоторой окрестности этой точки.

  Следовательно, понятия моногенности и аналитичности функции в области тождественны и каждое из следующих свойств функции f в области D — моногенность, дифференцируемость в смысле комплексного анализа, дифференцируемость в смысле действительного анализа вместе с выполнением уравнений Коши — Римана — может служить определением аналитичности f в этой области.

  Важнейшее свойство А. ф. выражается следующей теоремой единственности: две функции, аналитические в области D и совпадающие на каком-либо множестве, имеющем предельную точку в D, совпадают и во всей области D (тождественны). В частности, аналитическая в области функция, отличная от тождественного нуля, может иметь в области лишь изолированные нули.

  Если Е — произвольное множество (в комплексной плоскости и, в частности, на действительной прямой), то функция f (z), zÎE, называется аналитической на множестве E, если каждая точка этого множества имеет окрестность, на пересечении которой с множеством Е функция f представляется сходящимся степенным рядом; это означает в действительности, что f аналитична на некотором открытом множестве, содержащем Е (точнее, существует открытое множество, содержащее Е, и аналитическая на нём функция, f совпадающая с f на множестве E). Для открытых множеств понятие аналитичности совпадает с понятием дифференцируемости по множеству (моногенности). Однако в общем случае это не так; в частности, на действительной прямой существуют функции, не только имеющие производную, но и бесконечно дифференцируемые в каждой точке, которые не являются аналитическими ни в одной точке этой прямой. Например,

  С другой стороны, для справедливости теоремы единственности А. ф. существенно свойство связности множества E. Поэтому А. ф. рассматриваются обычно в областях, т.е. на открытых и связных множествах.

  Важную роль в изучении А. ф. играют точки, в которых нарушается свойство аналитичности — т. н. особые точки А. ф. Рассмотрим здесь изолированные особые точки (однозначных) А. ф. Пусть f — А. ф. в области вида 0 < |z - z0| < r; в этой области f разлагается в ряд Лорана:

содержащий, вообще говоря, не только положительные, но и отрицательные степени z - z0. Если в этом разложении члены с отрицательными степенями отсутствуют (an = 0 для n = -1, -2,...), то z0 называется правильной точкой f. В правильной точке существует и конечен

полагая f(z0) = a0, получают функцию, аналитическую во всём круге ïz - z0ï < r.

  Если ряд Лорана функции f содержит лишь конечное число членов с отрицательными степенями z - z0:

  то точка z0 называется полюсом функции f (порядка m); полюс z0 характеризуется тем, что

  В случае, если ряд Лорана содержит бесконечное число отрицательных степеней z — z0, то z0 называется существенно особой точкой; в таких точках не существует ни конечного, ни бесконечного предела функции f. Если z0 — изолированная особая точка функции f, то коэффициент a-1 в её разложении в ряд Лорана называется вычетом функции f в точке z0.

  Функции, представимые в виде отношения двух функций, аналитических в области D, называется мероморфными в области D. Мероморфная в области функция аналитична в этой области за исключением, быть может, конечного или счётного множества полюсов; в полюсах значения мероморфной функции считаются равными бесконечности. Если допустить такие значения, то мероморфные в области D функции могут быть определены как функции, которые в окрестности каждой точки z0 области D представимы рядом по степеням z — z0, содержащим конечное (зависящее от z0) число членов с отрицательными степенями z — z0.

  Часто аналитическими в области D называют как аналитические (голоморфные), так и мероморфные в этой области функции. В этом случае голоморфные функции называют также регулярными аналитическими или просто регулярными. Простейший класс А. ф. составляют функции, аналитические во всей плоскости; такие функции называют целыми. Целые функции представляются рядами вида

a0 + a1z + a2z2 + ... + anzn +...,

сходящимися во всей комплексной плоскости. К ним относятся многочлены от z, функции

  Функции, мероморфные во всей плоскости (т. е. представимые в виде отношения целых функций), называются мероморфными функциями. Таковыми являются рациональные функции от z (отношения многочленов),

эллиптические функции и т. д.

  Для изучения А. ф. важное значение имеют связанные с ними геометрические представления. Функцию w = f(z), z(D можно рассматривать как отображение области D в плоскость переменного w. Если f есть А. ф., то образ f(D) области D также является областью (принцип сохранения области). Из условия комплексной дифференцируемости функции f в точке z0ÎD следует, что при f’(z0) &sup1; 0 соответствующее отображение сохраняет углы в z0, как по абсолютному значению, так и по знаку, т. е. является конформным. Т.о., существует тесная связь между аналитичностью и важным геометрическим понятием конформного отображения. Если f аналитична в D и f(z¢) &sup1; f(z¢¢) при z¢ &sup1; z¢¢ (такие функции называются однолистными), то f¢ (z) &sup1; 0 в D и f определяет взаимно однозначное и конформное отображение области D на область G = f(D). Теорема Римана — основная теорема теории конформных отображений — утверждает, что в любой односвязной области, граница которой содержит более одной точки, существуют однолистные А. ф., конформно отображающие эту область на круг или полуплоскость.

  Дифференцируя уравнения Коши — Римана, нетрудно усмотреть, что действительная и мнимая части функции f = j+iy, аналитичны в области D, удовлетворяют в этой области уравнению Лапласа:

т. е. являются гармоническими функциями. Две гармонические функции, связанные между собой уравнениями Коши — Римана, называются сопряжёнными. В односвязной области D любая гармоническая функция j имеет сопряжённую функцию y и является, тем самым, действительной частью некоторой аналитической в D функции f. Связи с конформными отображениями и гармоническими функциями лежат в основе многих приложений теории А. ф.

  Всё сказанное выше относилось к однозначным А. ф. f рассматриваемым в данной области D комплексной плоскости. Задаваясь вопросом о возможности продолжения функции f как А. ф. в большую область, приходят к понятию А. ф., рассматриваемой в целом — во всей своей естественной области существования. При таком продолжении данной функции область её аналитичности, расширяясь, может налегать сама на себя, доставляя новые значения функции в точках плоскости, где она уже была определена. Поэтому А. ф., рассматриваемая в целом, вообще говоря, оказывается многозначной. К необходимости изучения многозначных А. ф. приводят многие вопросы теории функций (обращение функций, нахождение первообразных и построение А. ф. с заданной действительной частью — в многосвязных областях, решение алгебраических уравнений с аналитичными коэффициентами и др.); такими функциями являются

  алгебраические функции и т. д. Регулярный процесс, приводящий к полной А. ф., рассматриваемой в своей естественной области существования, был указан К. Вейерштрассом; он носит название аналитического продолжения по Вейерштрассу.

  Исходным является понятие элемента А. ф. — степенного ряда с ненулевым радиусом сходимости. Такой элемент W0: a0 + a1(z - z0) + a2(z - z0)2 + ... + an(z - z0)n + ... определяет некоторую А. ф. f в своём круге сходимости K0. Пусть z1 — точка круга K0, отличная от z0. Разлагая функцию f в ряд Тейлора с центром в точке z1, получают новый элемент W1:

b0 + b1(z - z1) + b2(z- z1)2 + ... +bn (z— z1)n + ... ,

  круг сходимости которого обозначают через K1. В общей части кругов K0 и K1 ряд W1 сходится к той же функции, что и ряд W0. Если круг K1 выходит за пределы круга K0, то ряд W1 определяет функцию, заданную посредством W0, на некотором множестве вне K0 (где ряд W0 расходится). В этом случае элемент W1 называется непосредственным аналитичным продолжением элемента W0. Пусть W0, W1 ..., WN — цепочка элементов такая, что Wi+1 является непосредственным аналитичным продолжением Wi (i = 1, ..., N — 1); тогда элемент WN называется аналитичным продолжением элемента W0 (посредством данной цепочки элементов). Может оказаться так, что центр круга KN принадлежит кругу K0, но элемент WN не является непосредственным аналитичным продолжением элемента W0. В этом случае суммы рядов W0 и WN в общей части кругов K0 и KN имеют различные значения; тем самым аналитичное продолжение может привести к новым значениям функции в круге K0.

  Совокупность всех элементов, которые могут быть получены аналитичным продолжением элемента W0, образует полную А. ф. (в смысле Вейерштрасса), порожденную элементом W0; объединение их кругов сходимости представляет собой (вейерштрассову) область существования этой функции. Из теоремы единственности А. ф. следует, что А. ф. в смысле Вейерштрасса полностью определяется заданием элемента W0 При этом в качестве исходного может быть взят любой др. элемент, принадлежащий этой функции; полная А. ф. от этого не изменится.

  Полная А. ф. f, рассматриваемая как функция точек плоскости, принадлежащих её области существования D, вообще говоря, является многозначной. Чтобы избавиться от многозначности, функцию f рассматривают не как функцию точек плоской области D, а как функцию точек некоторой (лежащей над областью D) многолистной поверхности R такой, что каждой точке области D соответствует столько (проектирующихся в неё) точек поверхности R, сколько различных значений принимает функция f в этой точке: на поверхности R функция f становится однозначной функцией. Идея перехода к таким поверхностям принадлежит Б. Риману, а сами они называются римановы поверхности. Схематическое изображение римановых поверхностей функций  приведены на рис. 1 и 2 (соответственно). Абстрактное определение понятия римановой поверхности позволило заменить теорию многозначных А. ф. теорией однозначных А. ф. на римановых поверхностях.

  Фиксируем область D, принадлежащую области существования D полной А. ф. f, и какой-либо элемент W функции f с центром в точке области D. Совокупность всех элементов, которые могут быть получены аналитичным продолжением элемента W посредством цепочек, центры которых принадлежат D, называется ветвью А. ф. f . Ветвь многозначной А. ф. может оказаться однозначной А. ф. в области D. Так, например, произвольные ветви функций  соответствующие любой односвязной области, не содержащей точку O, являются однозначными функциями; при этом   имеет ровно n, a Lnz — бесконечное множество различных ветвей в каждой такой области. Выделение однозначных ветвей (с помощью тех или иных разрезов области существования) и их изучение средствами теории однозначных А. ф. являются одним из основных приёмов исследования конкретных многозначных А. ф.

  Понятие А. ф. нескольких переменных вводится с помощью кратных степенных рядов — совершенно аналогично тому, как это было сделано выше для А. ф. одного переменного. А. ф. нескольких комплексных переменных по своим свойствам также во многом аналогичны А. ф. одного комплексного переменного; однако они обладают и рядом принципиально новых свойств, не имеющих аналогов в теории А. ф. одного переменного. Более общим является понятие А. ф. на комплексных многообразиях (понятие комплексного многообразия является обобщением понятия римановой поверхности для многомерного случая).

  Лит.: Привалов И. И., Введение в теорию функций комплексного переменного, 11 изд., М., 1967; Смирнов В. И., Курс высшей математики, 8 изд., т. 3, ч. 2, М.—Л., 1969; Маркушевич А. И., Теория аналитических функций, 2 изд., т. 1—2, М., 1967—68; Лаврентьев М. А., Шабат Б. В., Методы теории функций комплексного переменного, 3 изд., М., 1965; Голузин Г. М., Геометрическая теория функций комплексного переменного, 2 изд., М., 1966; Евграфов М. А., Аналитические функции, 2 изд., М., 1968; Свешников А. Г., Тихонов А. Н., Теория функций комплексной переменной, М., 1967; Фукс Б. А., Теория аналитических функций многих комплексных переменных, 2 изд., М., 1963; Владимиров В. С., Методы теории функций многих комплексных переменных, М., 1964; Маркушевич А. И., Очерки по истории теории аналитических функций, М.— Л., 1951; Математика в СССР за тридцать лет, 1917 — 1947, М.— Л., 1948, с. 319—414; Математика в СССР за сорок лет, 1917 — 1957, т. 1, М., 1959, с. 381—510.

  А. А. Гончар.


Рис. 1 и 2 к ст. Аналитические функции.

Аналитические языки

Аналити'ческие языки', тип языков, в которых грамматические отношения выражаются служебными словами, порядком слов, интонацией и т. п., а не словоизменением, т. е. не грамматическим чередованием морф в пределах словоформы, как в синтетических языках. К А. я. относятся английский, французский, новоперсидский, болгарский языки. Однако практически не существует ни чисто А. я., ни чисто синтетических (см. Синтетические языки). В А. я. чередование морф в пределах словоформы сохраняется в системе спряжения и частично склонения. Например, во французском языке je parle — «я говорю», но nous parlons — «мы говорим», в английском языке I work — «я работаю», но I worked — «я работал». В синтетических языках распространены и аналитические конструкции. В процессе исторического развития языков в А. я. образуются новые флективные формы, а в синтетических языках флективные формы вытесняются аналитическими конструкциями. Деление языков на аналитические и синтетические основывается на той или иной преобладающей языковой тенденции, характерной для морфологической структуры словоформы.

Аналитический учёт

Аналити'ческий учёт, система бухгалтерских записей, дающая детальные сведения о движении хозяйственных средств; предназначается для оперативного руководства хозяйством и составления отчётности; строится по каждому синтетическому счёту в отдельности. Наиболее укрупнённые и общие для всех предприятий отрасли позиции А. у. предусматриваются в плане счетов и называются субсчетами. В отличие от синтетического учёта, А. у. ведётся не только в стоимостных, но и в натуральных показателях, а также содержит справочные данные. По синтетическим счетам с наиболее расчленённой системой записей для А. у. применяют отдельные учётные регистры (картотеки, ведомости и др.) — для пообъектного учёта основных средств по видам их и местам нахождения, складского количественно-сортового учёта материалов и готовой продукции, для лицевых счетов расчётов с рабочими и служащими по заработной плате, для учёта затрат в разрезе аналитических позиций калькуляционных счетов производства — по видам продукции, стадиям обработки, статьям калькуляции т. п. Записи А. у. по таким счетам сверяют с записями синтетического учёта посредством сальдовых либо оборотных ведомостей, итоги которых должны быть тождественны итогам записей в соответствующем синтетическом счёте. При менее разветвленной номенклатуре аналитических позиций — по фондовым, собирательно-распределительным счетам, большинству расчётных счетов — записи А. у. совмещают в общих регистрах с записями синтетического учёта (накопительных ведомостях, журналах-ордерах, табуляграммах и др.). Записи А. у. в этих регистрах заменяют записи синтетического учёта либо служат основанием для них. Достоверность показателей А. у. периодически проверяют путём инвентаризации.

  Лит. см. при ст. Бухгалтерский учёт.

  С. А. Щенков.

Аналитическое продолжение

Аналити'ческое продолже'ние (математическое), см. в ст. Аналитические функции.

Аналогичные органы

Аналоги'чные о'рганы (от греч. análogos — соответственный), органы и части животных или растений, сходные в известной мере по внешнему виду и выполняющие одинаковую функцию, но различные по строению и происхождению. Например: крылья птиц — видоизменённые передние конечности, крылья насекомых — складки хитинового покрова. Органы дыхания рыб и ракообразных (жабры), сухопутных позвоночных (лёгкие) и насекомых (трахеи) имеют также различное происхождение. Жабры рыб — образования, связанные с внутренним скелетом, жабры ракообразных происходят из наружных покровов, лёгкие позвоночных — выросты пищеварительной трубки, трахеи насекомых — система трубочек, развившихся из наружных покровов. А. о. имеются также у растений: например, колючки барбариса — видоизменённые листья, колючки боярышника развиваются из побегов (см. Аналогия в биологии). Сходство А. о. — результат эволюционного приспособления разных организмов к одинаковым условиям среды. Т. к. строение, развитие и происхождение А. о. различны, их сопоставление не позволяет судить о родстве между организмами. Ср. Гомологичные органы.

  Л. Я. Бляхер.

Аналогия в биологии

Анало'гия в биологии, внешнее сходство организмов разных систематических групп, а также органов или их частей, происходящих из различных исходных зачатков и имеющих неодинаковое строение; обусловлена общностью образа жизни или функции, т. е. приспособлением к сходным условиям существования. Примеры А.: обтекаемая форма тела у водных млекопитающих — китов, дельфинов и у рыб (рис.); усики винограда (образующиеся из побегов) и усики гороха (видоизменённые листья) и др. (см. Аналогичные органы). Понятие А. было введено Аристотелем и обозначало функциональное, и морфологическое сходство органов различных организмов. Р. Оуэн (1915) уточнил это понятие как функциональное подобие, противоположное гомологии. Ч. Дарвин (1859) считал, что А. возникает в ходе эволюции в сходных условиях жизни в результате приспособления к окружающей среде организмов далёких систематических групп (см. Конвергенция в биологии).

  Лит.: Дарвин Ч., Происхождение видов. Соч., т. 3, М., 1939, с. 608; Шимкевич В. М., Биологическое основание зоологии, 5 изд., т. 1—2, М.— П., 1923—25; Бляхер Л. Я., Аналогия и гомология, в сб.: Идея развития в биологии, М., 1965.


Аналогичная форма тела у акулы (А), ископаемого присмыкающегося — ихтиозавра (Б) и млекопитающего — дельфина (В).

Аналогия в лингвистике

Анало'гия в лингвистике, сближение первоначально отличных друг от друга форм вследствие стремления к распространению продуктивной модели (словоизменения, словообразования, фонетические изменения и т. п.): например, у существительных мужского рода типа «двор» форма творительного падежа множественного числа «дворами» возникла вместо старой формы «дворы» по А. с формой слов женского рода типа «руками».

Аналогия (сходство)

Анало'гия (греч. anālōgía — соответствие, сходство), сходство предметов (явлений, процессов и т. д.) в каких-либо свойствах. При умозаключении по А. знание, полученное из рассмотрения какого-либо объекта («модели»), переносится на другой, менее изученный (менее доступный для исследования, менее наглядный и т. п.) в каком-либо смысле, объект. По отношению к конкретным объектам заключения, получаемые по А., носят, вообще говоря, лишь вероятный характер; они являются одним из источников научных гипотез, индуктивных рассуждений (см. Индукция) и играют важную роль в научных открытиях. Если же выводы по А. относятся к абстрактным объектам, то они при определённых условиях (в частности, при установлении между ними отношений изоморфизма или гомоморфизма) могут давать и достоверные заключения. Подробнее см. Моделирование, Подобия теория.

  Лит.: Аристотель, Аналитики первая и вторая, М., 1952; Асмус В. Ф., Логика, [М.], 1947; Милль Дж. Ст., Система логики силлогической и индуктивной, пер. с англ., 2 изд., М., 1914; Пойа Д., Математика и правдоподобные рассуждения, пер. с англ., М., 1957; Уемов А. И., Основные формы и правила выводов по аналогии, в кн.: Проблемы логики научного познания, М., 1964; Веников В. А., Теория подобия и моделирование применительно к задачам электроэнергетики, М., 1966; Хорафас Д. Н., Системы и моделирование, пер. с англ., М., 1967.

  Б. В. Бирюков, А. И. Уемов.

Аналогия (юридич.)

Анало'гия (юридич.), решение судом какого-либо случая, непосредственно не предусмотренного законом, путём применения нормы права, относящейся к др. сходным случаям, либо посредством применения общих начал, общих правовых принципов и смысла законодательства, поскольку этот случай оказывается в сфере правового регулирования, в которой действуют эти принципы. Необходимость применения права по А. вызывается несовершенством законодательства, наличием пробелов в законе и неполнотой его в момент издания, а также появлением в последующем новых сторон общественных отношений, подлежащих регулированию этим законом, и т. п.

  По советскому праву возможность применения в определённых случаях А. должна быть оговорена непосредственно в законе. Так, в СССР допускается А. в гражданских отношениях и это прямо указано в Основах гражданского судопроизводства Союза ССР и союзных республик 1961 (ст. 12): «В случае отсутствия закона, регулирующего спорное отношение, суд применяет закон, регулирующий сходные отношения, а при отсутствии такого закона суд исходит из общих начал и смысла советского законодательства». Суд обязан в каждом конкретном случае тщательно проверять, действительно ли данный случай непосредственно не урегулирован какой-либо нормой права, чтобы абсолютно исключить возможность произвольного применения судом закона.

  Действующие Основы уголовного законодательства Союза ССР и союзных республик 1958, а также принятые на их базе УК союзных республик исключают применение в уголовном судопроизводстве права по А., хотя по ранее действовавшему советскому уголовному законодательству это допускалось в исключительных случаях и при определённых законом условиях. Отказ от применения А. по уголовным делам продиктован необходимостью дальнейшего укрепления социалистической законности, усиления и повышения гарантий прав граждан на основании демократического принципа: «Нет преступления и нет наказания без указания об этом в законе». С учётом этого в действующем советском уголовном законодательстве более точно и более дифференцированно определены составы преступлений, размеры и виды наказаний.

  А. неизвестна и современному законодательству других социалистических государств (Болгарии, Венгрии, Польши, Югославии и др.). А. не применяют и в практике судебно-следственных органов этих государств.

  В современном законодательстве буржуазных государств принцип применения уголовного закона по А. прямо не выражен. Однако фактически судебные органы стран англосаксонской системы права (США, Англии) практикуют применение уголовного закона по А. посредством т. н. судебных прецедентов.

  С. Г. Новиков.

Аналоговая вычислительная машина

Анало'говая вычисли'тельная маши'на (АВМ), вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции над машинными величинами, как правило, соответствует некоторый физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе решающего элемента (например, законы Ома и Кирхгофа для электрических цепей, выражение для эффекта Холла, лоренцовой силы и т. д.).

  Особенности представления исходных величин и построения отдельных решающих элементов в значительной мере предопределяют сравнительно большую скорость работы АВМ, простоту программирования и набора задач, ограничивая, однако, область применения и точность получаемого результата. АВМ отличается также малой универсальностью (алгоритмическая ограниченность) — при переходе от решения задач одного класса к другому требуется изменять структуру машины и число решающих элементов.

  К первому аналоговому вычислительному устройству относят обычно логарифмическую линейку, появившуюся около 1600. Графики и номограммы — следующая разновидность аналоговых вычислительных устройств — для определения функций нескольких переменных; впервые встречаются в руководствах по навигации в 1791. В 1814 английский учёный Дж. Герман разработал аналоговый прибор — планиметр, предназначенный для определения площади, ограниченной замкнутой кривой на плоскости. Планиметр был усовершенствован в 1854 немецким учёным А. Амслером. Его интегрирующий прибор с катящимся колесом привёл позднее к изобретению английским физиком Дж. Томсоном фрикционного интегратора. В 1876 другой английский физик У. Томсон применил фрикционный интегратор в проекте гармонического анализатора для анализа и предсказывания высоты приливов в различных портах. Он показал в принципе возможность решения дифференциальных уравнений путём соединения нескольких интеграторов, однако из-за низкого уровня техники того времени идея не была реализована.



Поделиться книгой:

На главную
Назад