Джордан Элленберг
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Научный редактор Михаил Гельфанд
Copyright © 2021 by Jordan Ellenberg
© Издание на русском языке, перевод, оформление. ООО «Манн, Иванов и Фербер», 2023
Обитателям пространства в целом и CJ и AB в частности
Введение. Каковы вещи на самом деле и как они выглядят
Я – математик, публично говорящий о математике. Это как будто снимает блокировку внутри людей, и они начинают делиться со мной историями, которые, я чувствую, уже давно (а может быть, и никогда) никому не рассказывали. И это истории о математике. Иногда они печальные: учитель математики втаптывает эго ребенка в грязь безо всякой причины – просто из низости. Иногда немного счастливее: переживание внезапного озарения в детской голове, к которому взрослые хотели бы вернуться, но так и не смогли. (На самом деле это тоже печально.)
Часто эти истории связаны с геометрией. Похоже, она выделяется в воспоминаниях о старшей школе, как странная высокая нота в припеве. Одни ненавидят ее, говоря, что именно после изучения геометрии математика утратила для них смысл. Другие утверждают, что геометрия – единственная часть математики, которая им понятна. Геометрия – это кинза математики. Мало кто к ней относится нейтрально.
Что же выделяет геометрию? Каким-то образом она первична и встроена в наши тела. С криком покинув материнскую утробу, мы тут же начинаем изучать окружающий мир, каков он на самом деле и как выглядит. Я не из тех людей, которые станут уверять, что все важное в вашей внутренней жизни восходит к потребностям живших в саванне косматых охотников-собирателей, однако вряд ли можно сомневаться в том, что эти люди должны были развить понимание форм, расстояний и мест, вероятно, еще до того, как у них появились слова для их названий. Когда южноамериканские шаманы[1] (и их неюжноамериканские подражатели) совершают свой ритуал, первое, что происходит (ну хорошо, первое, что происходит после неконтролируемой рвоты), – это восприятие чистых геометрических форм: повторяющиеся двумерные узоры вроде решеток в классической мечети или трехмерное изображение шестиугольных ячеек, собранных в колеблющиеся соты. Геометрия существует даже тогда, когда остальная часть нашего мыслящего разума отключена.
Скажу честно: сначала я был к геометрии равнодушен. Что, наверное, странно, если учесть, что сейчас я математик, а заниматься геометрией – моя непосредственная работа!
Все было иначе, когда я был членом школьной команды по математике. Команда называлась «Углы ада»[2], на турниры мы приходили в одинаковых черных футболках и обязательно приносили магнитофон, который играл песню Hip to Be Square[3] группы Huey Lewis and the News. При этом мои товарищи прекрасно знали, что у меня проблемы с задачками типа «показать, что угол APQ равен углу CDF» или что-то в этом роде. Это не значит, что я их вообще не решал! Я их решал, но самым громоздким из возможных способов, то есть вводил координаты для точек, а затем исписывал целые страницы алгебраическими вычислениями, находя площади треугольников и длины отрезков. Все что угодно – лишь бы не так, как принято в геометрии. Иногда я решал задачу правильно, иногда – неправильно. Но каждый раз решение было уродливым.
Если и существует такая вещь, как «геометричность по природе», то я – ее полная противоположность. Можете попробовать пройти с ребенком[4] геометрический тест. Вы показываете ему последовательно пары картинок: преимущественно одинаковой формы, но примерно в каждой третьей паре правая фигура перевернута. Дети гораздо дольше рассматривают перевернутые формы. Они осознают: что-то происходит; и их исследующие мир умы тянутся к новому. Дошкольники, дольше разглядывающие перевернутые фигуры, как правило, получают более высокие баллы и в тестах по математике на пространственное мышление. Они быстрее и точнее представляют себе формы и их внешний вид после поворотов или склеивания. Ну а я? У меня таких способностей практически нет. Знаете маленькую картинку на терминалах бензоколонок, которая показывает, как правильно ориентировать кредитную карту? Для меня она бесполезна. Перевести этот плоский рисунок в трехмерное действие – за пределами моих умственных способностей. Каждый раз мне приходится проверять все варианты – магнитная полоса вверху справа, магнитная полоса вверху слева, магнитная полоса внизу справа, магнитная полоса внизу слева, – пока терминал не согласится прочитать мою карту и продать мне немного бензина.
И все же в целом считается, что геометрия лежит в основе того, что требуется для реального понимания мира. Кэтрин Джонсон, математик из НАСА, ставшая широко известной после книги и фильма «Скрытые фигуры», описала свой успех в отделе летных исследований так: «Все парни имели степени[5] по математике, но забыли всю геометрию, которую знали… А я все еще ее помнила».
Уильям Вордсворт в длинной, во многом автобиографической поэме «Прелюдия, или Становление сознания поэта» рассказывает несколько неправдоподобную историю о жертве кораблекрушения – выброшенном на берег человеке, у которого не было ничего, кроме экземпляра «Начал» Евклида (книги с аксиомами и теоремами, положившей начало геометрии как предмету около двух с половиной тысяч лет назад). Это было удачей для потерпевшего кораблекрушение: несмотря на подавленность и голод, он утешался, пробираясь через рассуждения Евклида и вычерчивая рисунки палкой на песке. «Вот что значит быть молодым, чувствительным, поэтичным!» – пишет Вордсворт в зрелом возрасте. Или, говоря словами самого поэта:
(У шаманов аналогичный подход: ритуал перезагружает мозг и поднимает разум над мучительным лабиринтом, где, как ему кажется, он застрял.)
Самое странное в рассказе Вордсворта о геометрии и кораблекрушении то, что в основном он правдив. Поэт позаимствовал его из мемуаров Джона Ньютона – молодого помощника работорговца, который в 1745 году оказался на острове Плантейн у берегов Сьерра-Леоне; правда, не в результате кораблекрушения: его бросил там хозяин. Островок не был необитаемым: с ним жили африканцы, и его главной мучительницей была африканская женщина, контролировавшая распределение еды. «Важная персона в некоей собственной стране, – описывает ее Ньютон, а затем жалуется, поистине поразительно не улавливая сути дела: – Эта женщина (не знаю, по какой причине) с самого начала была настроена против меня».
Через несколько лет Ньютон едва не умирает в море, ударяется в религию, становится англиканским священником, пишет книгу «Великая благодать» (в которой предлагает изучать совсем другую книгу, если вы в депрессии), наконец отказывается от работорговли и превращается в активного участника движения за отмену рабства в Британской империи. Но вернемся на остров Плантейн. Да, у Ньютона была с собой единственная книга – издание Евклида в переводе Исаака Барроу, и в мрачные моменты жизни он прятался в ее абстрактном комфорте. «Так я часто глушил свои горести[8], – пишет он, – и почти забывал о своих переживаниях».
История о геометрии на песке не единственное заигрывание Вордсворта с этой темой. Томас де Квинси, современник Вордсворта, в своих воспоминаниях писал: «Вордсворт был большим поклонником[9] величавой математики, как минимум высшей геометрии. Секрет его преклонения перед геометрией лежал в антагонизме между этим миром бестелесной абстракции и миром страсти». В школе Вордсворт не преуспевал в математике[10], но завязал крепкую дружбу с молодым ирландским математиком Уильямом Роуэном Гамильтоном; именно он, по мнению некоторых[11], и вдохновил Вордсворта на добавление к «Прелюдии» знаменитого описания Ньютона (Исаака, а не Джона): «Память о разуме гения, что в одиночку бороздит необозримый мысли океан».
Гамильтон с ранней юности был очарован[12] всеми видами академических знаний – математикой, древними языками, поэзией, – но его интерес к математике сильно подстегнула встреча с Зерой Колберном, американским мальчиком-вычислителем. Однажды небогатый фермер из Вермонта Абья Колберн обнаружил, что его шестилетний сын повторяет таблицу умножения, которой его не учили. У мальчика оказались невероятные способности к счету в уме, ничего подобного в Новой Англии до сих пор не видели. (Как и у всех мужчин в семье, у него было по шесть пальцев на руках и ногах.) Отец Зеры показывал сына различным местным сановникам, включая губернатора Массачусетса Элбриджа Герри (мы еще вернемся к нему в совершенно ином контексте), которые посоветовали отвезти мальчика в Европу, поскольку только там есть люди, способные понять и развить его выдающиеся способности. Колберны пересекли Атлантику в 1812 году, и Зера попеременно то учился, то за деньги демонстрировал свой талант по всей Европе. В Дублине он выступал вместе с гигантом-альбиносом и мисс Ханиуэлл – американкой, показывавшей чудеса ловкости с помощью пальцев ног. В 1818 году, когда ему было четырнадцать, он соревновался в вычислениях с Гамильтоном, своим ирландским подростком-аналогом, и с честью вышел[13] из этого состязания, хотя противник был силен. Однако Колберн не стал заниматься математикой: его интересовали исключительно вычисления в уме. Изучая Евклида, он нашел его легким, но «сухим и лишенным интереса». Когда два года спустя Гамильтон встретил вычислителя («Он потерял все признаки шестого пальца», – вспоминал Гамильтон; лондонский хирург удалил его[14]) и стал расспрашивать его о применяемых методах, то обнаружил, что Колберн слабо понимает причины[15] эффективности его арифметических методов. Бросив образование, он попробовал себя на английской сцене, не преуспел, вернулся в Вермонт и прожил остаток жизни проповедником.
Когда Гамильтон в 1827 году встретил Вордсворта, ему было всего 22 года, а он уже был профессором Дублинского университета и королевским астрономом Ирландии. Вордсворту было 57 лет. Гамильтон в письме сестре описывал эту встречу так: молодой математик и старый поэт совершили «долгую-долгую полночную прогулку[16], где больше не было ничего, кроме звезд и наших собственных горячих мыслей и слов». Судя по стилю, Гамильтон не совсем отказался от поэтических амбиций. Он начал посылать Вордсворту свои стихи, и поэт отзывался о них тепло, но критически. Вскоре Гамильтон все же отказался от поэзии, фактически сделав это в стихах, прямо обращаясь к музе в произведении под названием «К поэзии», которое послал Вордсворту. Затем, в 1831 году, он передумал, написал еще одно стихотворение под названием «К поэзии» и тоже отправил его Вордсворту. Ответ поэта – один из классических случаев вежливого «опускания с небес на землю»: «Вы шлете мне потоки стихов, которые я получаю с большим удовольствием, как и все мы; однако мы опасаемся, что это занятие может сбить вас с пути Науки, который вам, похоже, суждено пройти с огромной честью для себя и пользой для других».
Не все окружение Вордсворта ценило сочетание страсти и холодного странного одинокого разума так же, как он и Гамильтон. На званом обеде[17] в доме художника Бенджамина Роберта Хейдона в конце 1817 года друг Вордсворта Чарльз Лэм напился и начал дразнить Вордсворта, издеваясь над Ньютоном и называя ученого «человеком, который не верил ничему, если это не было настолько же ясно, как три стороны треугольника». Подключился к обвинениям и Джон Китс, заявив, что Ньютон лишил радугу романтики, показав, что призма дает тот же оптический эффект. Вордсворт смеялся, стиснув зубы и, вероятно, стараясь избежать ссоры.
В портрете Вордсворта, рисуемом де Квинси, рекламируется еще одна, пока не опубликованная математическая сцена из «Прелюдии». Оказывается, в те времена у стихов были трейлеры! Де Квинси с волнением обещает, что эта сцена, по его мнению, «достигает непревзойденной величественности». В ней Вордсворт засыпает, читая «Дон Кихота», и ему снится встреча с бедуином, едущим на верблюде через пустыню. В руке араба две книги, но, что характерно для сновидений, одна не просто книга, а одновременно и тяжелый камень, а вторая – сияющая морская раковина. (Через несколько страниц оказывается, что бедуин – это Дон Кихот.) Книга-раковина выдает апокалиптические пророчества, если поднести ее к уху. А книга-камень? Это все те же «Начала» Евклида, которые здесь предстают не как скромный инструмент самопомощи, а как средство связи с бесчувственным и неизменным космосом: книга «связала души чистейшими узами разума, пред коими бессильны и пространство, и время». Логично, что де Квинси был хорош в этой психоделической среде: будучи некогда юным дарованием, он потом пристрастился к настойке опия и описал свои головокружительные видения в «Исповеди англичанина, употребляющего опиум» – сенсационном бестселлере начала XIX века.
Представление Вордсворта о геометрии – типичный взгляд стороннего наблюдателя. Да, восхищение, но так восхищаются гимнастом на олимпиаде, выполняющим такие сальто и кульбиты, которые обычному человеку кажутся невозможными. Именно это вы видите в самом знаменитом стихотворении о геометрии – сонете 45 Эдны Сент-Винсент Миллей: «Один Евклид узрел нагую Красоту, лишь он один. И пусть умолкнут те, кто мелет всякий вздор о красоте»[18]. У Миллей Евклид – необычная, неземная фигура, которую в один «святой ужасный день» пронзил луч просветления, в отличие от всех нас, кому, по словам Миллей (и то, если повезет), посчастливится лишь услышать раздающийся вдалеке стук сандалий Красоты по камню.
По большому счету эта книга вовсе не о геометрии. Не поймите меня неправильно. Как математик, я получаю немало пользы от престижа геометрии. Приятно, когда люди считают твою работу таинственной, вечной и возвышающейся над обыденностью. «Как прошел день?» – «Святой и ужасный, как всегда».
Но чем сильнее вы отстаиваете эту точку зрения, тем больше склоняете людей рассматривать изучение геометрии как некую обязанность. И она приобретает легкий затхлый запах чего-то, чем восхищаются, потому что так принято. Типа оперы. Однако такого рода восхищения недостаточно для поддержания антрепризы. Написано множество новых опер, но можете ли вы их назвать? Нет: услышав слово «опера», вы, скорее всего, представляете в черно-белом цвете меццо-сопрано в мехах, во все горло орущую Пуччини.
В геометрии также много нового, но, подобно новой опере, это не так широко освещается, как хотелось бы. Геометрия – это уже давно не Евклид. Это не культурный реликт со шлейфом запаха школьного класса, а живой предмет, развивающийся сейчас быстрее, чем когда-либо ранее. В следующих главах мы познакомимся с новой геометрией распространения пандемии, путаными политическими процессами в США, шашками на профессиональном уровне, искусственным интеллектом, английским языком, финансами, физикой и даже поэзией. (Многие геометры втайне мечтали, подобно Уильяму Гамильтону, стать поэтами.)
Мы живем в динамично развивающемся, глобальном городе геометрии. Геометрия не где-то там, вне пространства и времени, а прямо здесь, с нами, смешанная с рассуждениями повседневной жизни. Она красива? Да, но она не нагая. Геометры видят Красоту в рабочей одежде.
Глава 1. «Я голосую за Евклида»
В 1864 году преподобный Дж. П. Гулливер из Норвича (Коннектикут) вспомнил разговор с Авраамом Линкольном о том, как президент приобрел свое знаменитое умение убеждать. По словам Линкольна, в основе навыка лежала геометрия[19].
Читая законы, я постоянно натыкался на слово
Гулливер был полностью согласен, ответив: «Никто не может хорошо выступать, если не способен прежде определить для себя, о чем он говорит. Хорошее знание Евклида освободило бы мир от половины его бедствий, изгнав половину бессмыслицы, которая вводит его в заблуждение и причиняет мучения. Я часто думал, что “Начала” были бы одной из лучших книг для включения в каталог “Общества трактатов”[21], если бы только они могли заставить людей прочитать ее. Изучение Евклида стало бы средством благодати». Линкольн, по словам Гулливера, засмеялся и согласился: «Я голосую за Евклида».
Как и потерпевший кораблекрушение Джон Ньютон, Линкольн использовал Евклида в качестве источника утешения в тяжелые периоды жизни. В 1850-х годах, после одного срока в Палате представителей, он отошел от политической деятельности и занялся разъездной юридической практикой. На одной из предыдущих работ в качестве землемера он изучил основы геометрии и теперь стремился восполнить пробелы. Его юридический партнер Уильям Херндон, которому часто приходилось делить комнату с Линкольном в маленьких сельских гостиницах, где они останавливались во время разъездов, вспоминал методы учебы Линкольна так: «…Я уже засыпал, а Линкольн, свесив длинные ноги с кровати, засиживался допоздна с зажженной свечой, погрузившись в Евклида».
Однажды утром Херндон застал в конторе Линкольна в состоянии какого-то душевного смятения.
Он сидел за столом, разложив перед собой чистые листы бумаги, большие тяжелые листы, циркуль, линейку, многочисленные карандаши, несколько бутылочек с чернилами разных цветов и множество канцелярских и пишущих принадлежностей. Похоже, он сражался с вычислениями какой-то величины, поскольку вокруг валялись листы бумаги, исписанные кучей цифр. Он был так поглощен своим занятием, что даже не посмотрел на меня, когда я вошел.
Лишь позднее Линкольн наконец выбрался из-за стола и сказал Херндону, что пытался квадрировать круг. Иными словами, он пытался построить квадрат с той же площадью, что и у заданного круга, причем построить в надлежащем евклидовом стиле – с помощью всего двух инструментов: циркуля и линейки. По словам Херндона, Линкольн просидел над этой задачей два дня подряд «почти до изнеможения».
Мне говорили, что[22] так называемая квадратура круга практически невозможна, но тогда я об этом не знал. И сомневаюсь, что это знал Линкольн. Его попытка решить задачу закончилась неудачей; и мы в конторе, заподозрив, что он довольно чувствителен к этому, старались быть осмотрительными и о ней не упоминать.
Квадратура круга – это очень старая проблема, и я подозреваю, что Линкольн мог знать об ее устрашающей репутации; долгое время квадратура круга была метафорой для трудной или невыполнимой задачи. Данте упоминает о ней в «Раю»:
В Греции, где все это начиналось, для случая, когда кто-то пытается решить задачу сложнее, чем требуется, есть типичный раздраженный комментарий: «Я не просил вас квадрировать круг!»
Квадрировать круг незачем, единственная мотивация – сложность и известность проблемы. Люди с менталитетом победителя пытались справиться с нею с Античности до 1882 года, когда Фердинанд фон Линдеманн доказал, что решения не существует (но даже тогда некоторые твердолобые упрямцы продолжали упорствовать… впрочем, найдутся такие и
Оказавшись в библиотеке некоего джентльмена[25], он наткнулся на «Начала» Евклида, которые были открыты на теореме 47 книги I[26]. Он прочитал формулировку. «Черт побери! – воскликнул он (время от времени Гоббс сквернословил для выразительности). –
Гоббс постоянно публиковал очередные способы доказательства и враждовал с крупнейшими британскими математиками того времени. Однажды какой-то корреспондент указал ему на то, что одно из его построений не совсем верно, поскольку точки P и Q, которые он считал совпадающими, на самом деле находились на немного разном расстоянии от третьей точки R: 41 и 41,012 соответственно. Гоббс возразил[27], что его точки достаточно велики, чтобы покрыть столь ничтожную разницу. Так он и отошел в мир иной в глубокой уверенности, что квадрировал круг[28].
Один анонимный комментатор, рецензировавший учебник по геометрии в 1833 году, дал настолько точное описание типичного «квадратурщика», что под него подойдет как Гоббс, живший двумя веками ранее, так и нынешние интеллектуально ущербные личности, по-прежнему корпящие над этой задачей в XXI веке.
Все, что они знают о геометрии[29], – так это то, что в ней есть вещи, которые те, кто изучал ее дольше всего, давно признали невыполнимыми. Услышав, что авторитет знания слишком сильно влияет на умы людей, они предлагают уравновесить его авторитетом невежества; и если случится так, что человек, знакомый с предметом, найдет себе занятие получше, чем выслушивать, как они делятся скрытыми истинами, то он тут же именуется слепым фанатиком, душителем света истины и так далее.
В Линкольне мы находим более привлекательную личность: достаточно амбиций, чтобы попытаться, и достаточно смирения, чтобы признать поражение.
Что Линкольн позаимствовал у Евклида – так это идею, что при известной осторожности вы сможете возвести высокое прочное здание убеждений и согласия с помощью строгих дедуктивных шагов, этаж за этажом, на фундаменте аксиом, в которых никто не может усомниться, или, если хотите, истин, которые кажутся самоочевидными. Тот, кто не считает их таковыми, исключается из дискуссии. Я слышу отголоски Евклида в самом знаменитом выступлении Линкольна – Геттисбергской речи, где он говорит, что Соединенные Штаты убеждены в истинности утверждения, что все люди рождены равными. Слово
Линкольн не первый американец, искавший основы демократической политики в терминологии Евклида; раньше это делал любивший математику Томас Джефферсон. Линкольн отмечал в письме, прочитанном в Бостоне в 1859 году на торжественной церемонии в память о Джефферсоне, где он не смог присутствовать:
Можно с уверенностью утверждать[31], что человек может убедить любого здравомыслящего ребенка в том, что простые утверждения Евклида истинны; но тем не менее в итоге он потерпит неудачу с тем, кто будет отрицать определения и аксиомы. Принципы Джефферсона – это определения и аксиомы свободного общества.
В юности Джефферсон изучал Евклида в колледже Вильгельма и Марии и с тех пор высоко ценил геометрию[32]. Уже будучи вице-президентом, Джефферсон нашел время, чтобы ответить на письмо учащегося из Вирджинии о предполагаемом плане академического обучения, где пишет: «Тригонометрия в известном смысле имеет наибольшую ценность для каждого человека, и едва ли найдется день, когда он не станет прибегать к ней для каких-нибудь надобностей повседневной жизни (хотя б
Я отказался от газет в обмен на Тацита и Фукидида, Ньютона и Евклида и чувствую себя гораздо счастливее[34].
Здесь мы видим реальную разницу между двумя президентами-геометрами. Для Джефферсона Евклид был частью классического образования, необходимого для культурного джентльмена наряду с греческими историками и учеными эпохи Просвещения. Однако с Линкольном – самоучкой, выросшим на ферме, – ситуация обстояла иначе. Вот как преподобный Гулливер описывает Линкольна, вспоминающего свое детство:
Припоминаю, как уходил в свою маленькую спальню после того, как слышал вечерние разговоры соседей с моим отцом, и немалую часть ночи расхаживал взад и вперед, пытаясь понять точный смысл некоторых, на мой взгляд, мрачных фраз. Когда я преследовал какую-то идею, я не мог заснуть, хотя часто пытался, пока не ловил ее; а когда я считал, что поймал, то не удовлетворялся этим, а повторял ее снова и снова, пока не выражал на языке, достаточно ясном, как мне казалось, для любого знакомого мне мальчишки. Это была своего рода страсть, и она осталась со мной, поскольку мне всегда нелегко справиться с какой-то мыслью, пока я не ограничу ее с севера, юга, запада и востока. Возможно, этим объясняются те характерные особенности, которые вы наблюдаете в моих выступлениях.
Это не геометрия, но это взгляды геометра. Вы не оставляете вещи понятыми наполовину, а точно формулируете свои мысли и следите за ходом своих рассуждений точно так же, как Гоббс с изумлением следил за Евклидом. Линкольн считал такого рода систематическое самовосприятие единственным выходом из сумятицы и темноты.
Для Линкольна, в отличие от Джефферсона[35], стиль Евклида – вовсе не то, что пристойно джентльмену или профессору с академическим образованием, поскольку Линкольн не был ни тем ни другим. Это бревенчатая хижина разума, построенная вручную. Если построить ее правильно, она выдержит любые испытания. И она может принадлежать кому угодно в стране, задуманной Линкольном.
Представление Линкольна о геометрии для американских масс, как и многие другие его хорошие идеи, было реализовано лишь частично. К середине XIX века геометрия переместилась из колледжей в старшие классы школ, однако в типичном курсе Евклид стал чем-то вроде музейного экспоната: его доказательства следовало запомнить, воспроизвести и в какой-то степени оценить. О том, как кто-то их
Честно говоря, об историческом Евклиде сказать почти нечего, поскольку нам о нем практически ничего и не известно. Он жил и работал в большом городе Александрия в Северной Африке примерно за 300 лет до нашей эры. И это все, что мы знаем. Его «Начала» – это собрание знаний по геометрии греческих математиков того времени; на десерт в конце книги добавлены основы теории чисел. Значительная часть материала была известна математикам еще до Евклида, но радикально новым и революционным шагом стала
Конечно, существует и другой способ преподавать геометрию, который делает упор на изобретательность и пытается поместить учащегося в кресло Евклидова пилота, чтобы тот мог самостоятельно создавать определения и смотреть, что из них получится. Один из таких учебников, «Изобретательная геометрия», исходит из предпосылки, что «единственное настоящее образование – это самообразование». Не смотрите на конструкции других людей, советует книга, «по крайней мере пока не откроете собственную конструкцию», – и вы не будете беспокоиться и сравнивать себя с другими учениками: все занимаются в собственном темпе, и вы с большей вероятностью усвоите материал, если вам нравится им заниматься. Сама книга – всего лишь последовательность из 446 головоломок и задач. Одни достаточно просты: «Можете ли вы нарисовать три угла двумя прямыми линиями? А четыре угла двумя прямыми линиями?» У других, как предупреждают авторы, на самом деле не может быть решения, и вы оказываетесь в положении
Несколько лет назад в математической библиотеке Висконсинского университета появилась огромная коллекция старых учебников, по которым учились школьники штата последние сто или около того лет[41], но в итоге от них отказались в пользу более новых вариантов. Глядя на эти потрепанные книги, понимаешь: все споры об образовании уже разворачивались не раз. Все, что мы считаем новым и странным (например, книги наподобие «Изобретательной геометрии», где учеников просят самостоятельно придумывать доказательства; математические книги, делающие задачи «актуальными», связывая их с повседневной жизнью школьников; книги по математике, способствующие продвижению общественных движений), на самом деле старо, в свое время тоже считалось странным и, несомненно, снова станет новым и странным в будущем.
Во введении в «Изобретательную геометрию» говорится, что геометрия имеет «место в образовании всех людей, не исключая женщин»: автор книги, Уильям Джордж Спенсер, – один из первых поборников совместного обучения. Более типичное отношение к женщинам и геометрии в XIX веке отражено (но не одобряется) в романе «Мельница на Флоссе» Джорджа Элиота[42], опубликованном в том же году, что и учебник Спенсера. «Девчонки не могут понять Евклида, правда, сэр?» – спрашивает один из персонажей учителя Стеллинга, на что тот отвечает: «У них иногда неплохие способности, но знания их неглубоки, они ничего не могут постичь до конца. Они смышленые, но поверхностные»[43]. Стеллинг представляет в сатирической форме тот традиционный образ британской педагогики, против которого восставал Спенсер: долгий марш через запоминание авторитетов, при котором медленный и тяжелый строительный процесс понимания не просто игнорируют, его остерегаются. «Мистер Стеллинг был не из тех, кто станет ослаблять и изнеживать ум своего питомца, прибегая к упрощениям и объяснениям»[44]. Евклид был своего рода тонизирующим средством для укрепления мужественности, и его приходилось терпеть, как крепкий напиток или ледяной душ.
Недовольство стеллингизмом стало нарастать даже в верхах математических кругов. Британский математик Джеймс Джозеф Сильвестр, о геометрии и алгебре (а также отвращении к отупляющей мертвенности британской академической науки) которого мы еще поговорим, считал, что Евклида нужно спрятать «подальше от школьников», а геометрию преподавать в связке с физикой, делая акцент на геометрию
Мы уже не заставляем школьников заучивать и повторять наизусть Евклида. В конце XIX века в учебники стали включать упражнения, в которых ученикам предлагалось строить собственные доказательства геометрических утверждений. В 1893 году эти перемены узаконил сформированный в 1892-м Комитет десяти, возглавляемый президентом Гарварда Чарльзом Элиотом. Комитету было поручено рационализировать и стандартизировать обучение в американских средних школах. По его утверждению, задача геометрии в школе – прививать ученикам навыки строгого дедуктивного мышления. Эта идея прижилась. В ходе опроса пятисот американских учителей об их задачах в преподавании геометрии, проведенного в 1950 году[46], самым популярным был ответ: «Развить навыки ясного мышления и точного выражения», который почти вдвое превысил вариант: «Дать знание фактов и принципов геометрии». Иными словами, мы здесь не для того, чтобы пичкать учеников всеми известными фактами о треугольниках, а для того, чтобы развивать в них умственную дисциплину, позволяющую добывать эти факты из первоначальных принципов. Школа для маленьких Линкольнов.
А для чего нужна эта умственная дисциплина? Может быть, на случай, если в какой-то момент будущей жизни им понадобится окончательно и неопровержимо доказать, что сумма внешних углов многоугольника равна 360 градусам? Я все жду, когда же это произойдет, но пока безрезультатно.
Основная причина обучения детей формулированию доказательств вовсе не в том, что мир полон доказательств, а в том, что мир полон
Линкольн понимал эту разницу. Его друг и коллега-юрист Генри Клей Уитни вспоминал: «Много раз я видел[47], как он срывает маску с заблуждения и стыдит как заблуждение, так и его автора». Мы постоянно встречаемся с недоказательствами, рядящимися в одежду доказательств, и без должного внимания с нашей стороны они часто обходят нашу защиту. Существуют подсказки, которые вы можете высматривать. Когда в математике какой-то автор начинает фразу со слов «Очевидно, что», на самом деле он говорит: «Мне это кажется очевидным. Вероятно, следовало бы это проверить, но я немного запутался в процессе и потому решил просто заявить, что это очевидно». У газетных аналитиков аналогичная фраза начинается со слов: «Конечно, все мы согласны с тем, что». Всякий раз, сталкиваясь с подобным, вы ни в коем случае не должны верить, что все согласны с дальнейшим. Вас просят трактовать нечто как аксиому, но если мы что-то и обязаны выучить из истории геометрии, так это то, что нельзя включать аксиому в свою книгу, пока она не доказала свою реальную ценность.
Всегда скептично относитесь к любому, кто говорит, что он «просто логичен». Если вам рассказывают не о равенстве треугольников, а об экономической политике, или о каком-то недостойно себя ведущем культурном деятеле, или об уступке, которую от вас хотят, то тут нет ничего «просто логичного», поскольку все происходит в контексте, где логические выводы – если они вообще применимы – неотделимы от всего остального. От вас хотят, чтобы вы ошибочно приняли цепочку уверенно выраженных мнений за доказательство. Но как только вы ощутите резкий
По словам Уитни, Линкольн выделялся вовсе не сверхмощным интеллектом. Многие общественные деятели очень умны, но среди них есть и хорошие, и плохие люди, с сожалением отмечает Уитни. Линкольна же отличало то, что для него «было морально невозможно[48] спорить нечестно; он не мог этого делать по определению, как не мог красть; по сути, для него было одно и то же – лишить человека собственности путем кражи или путем нелогичных или отвратительных рассуждений». То, что Линкольн позаимствовал у Евклида (или то, что уже имелось у Линкольна и гармонировало с тем, что он нашел у Евклида), – это
Единственное, в чем я расхожусь с Линкольном, – что он стыдит автора за заблуждения. Труднее всего быть честным с самим собой, и требуется гораздо больше времени и усилий на разоблачение собственных ошибок. Нужно всегда относиться к своим убеждениям, как к расшатанному зубу, то есть к зубу, в крепости которого вы не совсем уверены. И если что-то вызывает сомнения, не стоит стыдиться; просто спокойно отступите на твердую почву и заново переосмыслите проблемное понятие.
Именно этому в идеале должна научить нас геометрия. Однако «застывшая формалистика», на которую жаловался Сильвестр, от этого ой как далека. На практике урок геометрии, который мы преподаем детям, по словам художника, педагога и популяризатора математики Бена Орлина, обычно таков:
Доказательство – это непонятная демонстрация уже известного вам факта[50].
Орлин приводит пример такого доказательства для теоремы о равенстве прямых углов, то есть утверждения, что любые два прямых угла равны. Что можно спросить у девятиклассника, столкнувшегося с этим утверждением? Типичный формат[51] –
«Транзитивность равенства» – одно из общих понятий Евклида, это арифметический принцип, который он излагает в начале своего труда наряду с геометрическими аксиомами. Принцип таков: две вещи, равные третьей, равны между собой[52].
Не стану отрицать, что есть определенное удовлетворение в сведении всего к таким крошечным, точным шагам. Они так убедительно складываются вместе, словно детальки лего! И подобное ощущение учителю действительно хочется передать.
Но все же… разве не очевидно, что два прямых угла – это одна и та же вещь, просто расположенная на странице в разных местах с разной ориентацией? На самом деле Евклид считал равенство прямых углов четвертой из аксиом – основных правил игры, которые принимаются как истинные без доказательства и из которых вытекает все остальное. Так почему современная школа требует от учеников предъявлять доказательство этого факта, если даже Евклид сказал: «Да ладно, это очевидно»? Потому что существует много разных наборов аксиом, из которых можно вывести геометрию на плоскости, и поступать в точности так, как Евклид, больше не считается самым строгим или педагогически выигрышным приемом. В 1899 году Давид Гильберт переписал всю аксиоматику с нуля, а аксиомы современной американской школы обычно следуют системе Джорджа Биркгофа 1932 года.
Аксиома это или нет, но тот факт, что два прямых угла равны, ученик просто знает. Вы не можете винить школьников в том, что они разочаруются, когда вы им скажете: «Вы думали, что знаете это, но на самом деле не знали, пока не выполнили все шаги в доказательстве в два столбца». Даже несколько обидно!
Слишком многое на уроках геометрии посвящено доказательству очевидных вещей. Я хорошо помню занятия топологией на первом курсе колледжа. Профессор, весьма выдающийся почтенный ученый, потратил две недели на доказательство следующего факта: если вы проведете на плоскости замкнутую кривую без самопересечений, то, какой бы извилистой и причудливой она ни была, она разделит плоскость на две части: одна внутри, а вторая – снаружи кривой.
С одной стороны, как оказалось, весьма сложно написать формальное доказательство этого факта, известного как теорема Жордана о замкнутых кривых. С другой – эти две недели я провел в состоянии едва сдерживаемого раздражения. Неужели в этом и заключается математика? Делать очевидное трудоемким? Читатель, я просто отключался, так же как и мои однокурсники, среди которых были будущие математики и другие ученые. Парочка, сидевшая передо мной, – весьма серьезные студенты, которые впоследствии получат степени по математике в лучших университетах, – начинала энергично обниматься всякий раз, когда выдающийся почтенный ученый поворачивался к доске, чтобы записать очередной тонкий аргумент о небольшом видоизменении многоугольника. Я имею в виду, что они реально заводились, как будто их подростковая страсть друг к другу могла каким-то образом перенести их в другую часть континуума, где такого доказательства еще нет.
Столь высококвалифицированный математик, каким я стал сейчас, мог бы, слегка выпрямившись, сказать: «Ну, молодые люди, вы просто недостаточно искушены, чтобы понимать, какие утверждения действительно очевидны, а какие скрывают в себе тонкости». Возможно, я упомянул бы пугающую рогатую сферу Александера[53], которая показывает, что аналогичный вопрос в трехмерном пространстве вовсе не так прост, как можно подумать[54].
Однако с педагогической точки зрения такой ответ, на мой взгляд, довольно плох. Если в классе мы будем тратить время на доказательство вещей, которые кажутся очевидными, и настаивать на том, что они неочевидны, наши ученики будут кипеть от возмущения, как когда-то я, или найдут себе занятия поинтереснее, когда преподаватель отвернется.
Мне нравится, как мастер преподавания Бен Блюм-Смит описывает эту проблему: чтобы учащиеся действительно ощутили огонь математики, им надо испытать
Вероятно, лучше самому