Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Некто или нечто? - Михаил Ефимович Ивин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В 1721 году болезнь завезли с Кубы в Барселону.

За год в Барселоне погибло 4633 человека. Тогда же в маленьком испанском городе Тортосе треть жителей (пять тысяч из пятнадцати) погибли от лихорадки. Оставшиеся в живых просто покинули город. Позднее, уже в середине прошлого века, Желтый Джек за один год погубил 5656 жителей Лиссабона.

Как же так? Египетской стегомии в Европе нет, кто же разносит заразу в Испании и Португалии? Оказалось, что вирус желтой лихорадки может передаваться от больного к здоровому и некоторыми другими комарами.

В последние десятилетия Желтый Джек ни разу не наведывался в порты и города Европы.

Немало этому способствовали предохранительные прививки. Вакцину против желтой лихорадки разработала в 1933 году группа ученых под руководством лауреата Нобелевской премии американца Макса Тейлора. Она привита уже миллионам людей.


Но медики и вирусологи все же начеку. Скоростные воздушные лайнеры, пересекающие за одну ночь громадные расстояния, усилили опасность переноса некоторых болезней, в том числе желтой лихорадки. Дотошные исследователи узнали, что заражённые комары легко выдерживают воздушные путешествия. Пригревшись ночью в теплом салоне воздушного лайнера, стегомия способна заражать одного пассажира за другим, пока ее не прихлопнут.

Не все еще ясно в поведении Желтого Джека. Не все повадки вируса изучены. Но за ним бдительно следят. Нет-нет, да он и поднимет голову. Совсем недавно, в начале 60-х годов, Желтый Джек погубил в Эфиопии за короткий срок 9 000 человек.

Теперь вернемся к началу нашего века. В незнаемом мире, открытом Ивановским, вирус желтой лихорадки уличен был первым как возбудитель болезни человека.

Шел двадцатый век. В разных странах с помощью бактериальных фильтров продолжались поиски невидимок. Продолжались и научные споры, вызванные необычайным открытием.

⠀⠀ ⠀⠀ ⠀⠀

⠀⠀ ⠀⠀ ⠀⠀

Глава шестая

Ивановский

⠀⠀ ⠀⠀ ⠀⠀

Мог ли он думать, что ему повредит собственное открытие?

А вышло именно так.

В 1901 году истекли пять лет, которыми он располагал для подготовки и защиты докторской диссертации. Работа не была готова. Исследование глубоко захватило его. Он вышел далеко за рамки темы, обозначенной в заглавии диссертации: «Мозаичная болезнь табака». Нарождалась новая наука — вирусология. У ее колыбели разгорались научные споры. Естественно, что Ивановский, первооткрыватель мира сверхмалых созданий, оказался в центре этих споров.

И в это самое время ему, как не защитившему в срок докторскую диссертацию, надлежало покинуть кафедру в столичном университете. И не только кафедру. Это значило распроститься с Петербургом, где он кончил гимназию, а затем университет, где жили его учителя, распроститься с лучшей в России ботанической лабораторией Фаминцына, где он много лет подряд ставил свои опыты.

Трудность и новизна темы, которую разрабатывал Ивановский, не были приняты во внимание. Машина сработала: совет факультета вынес решение заменить его другим ученым, имеющим докторскую степень. Выбор пал на профессора Варшавского университета Палладина. Ивановскому же предложили место, которое оставлял Палладин. В провинциальном городе, каким считалась тогда Варшава, университетской кафедрой мог заведовать и магистр.

Так они поменялись местами — Ивановский с Палладиным. Ни Петербургский университет, ни Варшавский от этой замены не проиграли. Владимир Иванович Палладин, талантливейший ученик Тимирязева, впоследствии академик, был выдающимся ботаником. Он прославился своими глубокими исследованиями дыхания растений. Но и Варшава приобрела в лице Ивановского не только крупного ученого, но и весьма искусного педагога…

Делать нечего. Забрав жену и сына, Дмитрий Иосифович отбыл к новому месту службы.

Уже через год после отъезда из Петербурга докторская была готова. А еще через год в Киеве он защитил ее, получив, наконец, докторское звание, из-за которого претерпел столько тягот.

Ровно через полвека после защиты, в 1953 году, докторская диссертация Ивановского была переиздана в Москве. В самом этом факте ничего необычного нет. Труды выдающихся ученых прошлого печатаются вновь, даже если они утратили злободневность, если споры, отраженные в них, давно разрешены. Это — история, она всегда поучительна. Но для переиздания диссертации Ивановского были, кроме того, еще и другие основания…

Табачная мозаика описана Ивановским в его диссертации куда более тщательно и подробно, нежели другими учеными, изучавшими эту болезнь в те времена. Свои наблюдения в Крыму, на Черноморском побережье Кавказа, в Бессарабии и на Украине он подкрепляет сотнями опытов, проведенных в поле и в лаборатории. И все это изложено просто, хорошим русским языком и доступно не специалисту.

Но главное в диссертации то, что делает ее интересной для любого современного биолога, — споры Ивановского с Бейеринком и английским ученым Вудсом.

Бейеринк доказывал, что возбудитель табачной мозаики не просто очень мал, он принципиально отличается от любого микроба. Чем же? Он не корпускулярен. Выражаясь по-житейски, это означает, что возбудитель вовсе не имеет фигуры. Заразна сама жидкость, самый сок больного растения, а не отдельные частицы, пребывающие в соке. «Живое жидкое заразное начало» — вот что вызывает таинственную болезнь табака. Становится понятным, почему Бейеринк, ища название для возбудителя мозаики, употребил термин «вирус», так и оставшийся в мировой науке, правда, в ином значении, чем то, которое придавал ему голландец. Вирус у древних римлян — ядовитая жидкость, что-то вроде «живого» змеиного яда.

Все это — насчет живого жидкого заразного начала — не просто догадки знаменитого микробиолога. Великолепный экспериментатор, Бейеринк поставил серию изящных опытов. Они подтверждали, по его мнению, что заразное начало табачной мозаики не может быть корпускулярным, то есть не может состоять из обособленных частиц.

Бейеринк проводил эти свои опыты на агаре. Агар — слово малайское. Означает — желе. Получают его из морских водорослей. Он имеет вид студня. В кондитерской промышленности из агара — с разными добавками, понятно, — делают пастилу, мягкие конфеты. В лабораториях на агаре удобно делать плотные питательные среды, разводя на них микроорганизмы — бактерии, грибы, одноклеточные водоросли…

Бейеринк налил несколько капель сока больного мозаикой табака на тонкую агаровую пластинку, рассуждая так: раз возбудитель жидкий, то он просочится сквозь толщу агарового студня, непременно

44

сохранив свои заразные свойства; а на поверхности пластинки останутся все бактерии и их споры, как бы малы они ни были. Выждав дней десять, Бейеринк обеззаразил верхний слой агара и снял его с большими предосторожностями, применяя чистейшую платиновую лопаточку. Уверенный таким образом, что он не занес в толщу агара заразу извне, он разделил нижнюю часть пластинки на два слоя и оба применил для заражения табачных растений.

Вскоре на всех зараженных растениях появилась табачная мозаика.

Правота Бейеринка казалась неоспоримой, хотя вызывала недоумение одна странность. Крупный ученый утверждал, что существует некое заразное начало, не разделенное на обособленные частицы-корпускулы. А в те времена уже доказано было, что любая материя на нашей планете — будь то живая или неживая, в том числе и жидкость — состоит из отдельных частиц. Мы знаем, что энергия — и та корпускулярна. Все дело в размере корпускул.

Ивановский, споря с Бейеринком, впрочем, не прибегал к этим доводам. Он предпочитал более сложный, но и более верный путь. Он стал шаг за шагом повторять опыты знаменитого микробиолога. Как и ожидал Ивановский, опыты голландца сами по себе были безупречны: зараженный сок проникал в толщу агара, табачные растения, обработанные им, заболевали.

Верны ли, однако, выводы, сделанные Бейеринком?

«Осталось исследовать пригодность самого метода, — пишет Ивановский, — то есть действительно ли в застывший агар могут проникать только растворенные вещества».

Для следующей серии опытов Ивановский решил воспользоваться тушью. Он налил на агар несколько капель черной жидкости. Уже через сутки тушь стала проникать в толщу студня. На десятый день в черный цвет окрашивался слой толщиной до пяти миллиметров, а в течение 1–3 месяцев доходил до 10–20 миллиметров.

Что же доказывали эти странные опыты? В туши взвешены зернышки, придающие жидкости черную окраску. Они различимы в микроскоп. Пролейте тушь из пузырька через ту же свечу Шамберлена и вы получите светлую жидкость — зернышки будут уловлены фильтром. Значит, эти зернышки непременно проходят в толщу агара, иначе желе внутри бы не окрасилось. Более того. Зернышки эти, поскольку они видны в микроскоп, крупнее по размеру, чем предполагаемый возбудитель мозаики. Значит, уж никак нельзя доказывать, что возбудитель, как бы мал он ни был, не может проникнуть в агар, если он корпускулярен, не растворен начисто в жидкости.

На той же точке зрения, что Ивановский, стоял и Леффлер, тот самый немецкий профессор, который открыл возбудителя ящура. Леффлер и его коллеги проделали такой опыт. Профильтровав лимфу больного ящуром теленка, они заразили ею второго теленка; дождавшись, когда он заболеет, его лимфой заразили третьего; от третьего перенесли заразу на четвертого теленка; от четвертого — на пятого; от пятого — на шестого.

Шестой теленок заболел так же скоро, как первый.

Подобные же опыты Ивановский еще раньше Леффлера проделывал на табачных растениях. Результат тот же: «…заболевшее от прививки стерилизованного сока растение способно передать заразу другому здоровому растению, это последнее — третьему и т. д.».

Все это доказывает, что заразное начало в этих случаях не могло быть просто ядовитой жидкостью, наподобие змеиного яда или ядов, выделяемых бактериями, скажем, при дифтерите. Простой яд при перепрививке от теленка к теленку непременно бы разжижался, разбавлялся. Его действие ослабевало бы. Яд ведь не может размножаться. А раз заразное начало, будучи многократно разбавлено, не утрачивает своей силы, то, очевидно, в нем содержится живой, имеющий форму агент, способный размножаться. Вероятно, им является ничтожно малый микроб.

Создается впечатление, что в этом трудном споре Ивановский и Леффлер были кругом правы, а Бейеринк кругом неправ. Но, пожалуй, это не совсем так. Односложный ответ тут не подходит.

Бейеринк обладал чутьем большого ученого. И он понял, что возбудитель табачной мозаики, наделенный столь странными свойствами, не может быть просто микробом малого размера; это особенное болезнетворное начало. Тут он был прав. Но на этом правота его в споре с Ивановским кончается. Особому, не известному дотоле науке возбудителю он отказывал, без всяких к тому оснований, в корпускулярности. Правда, понадобилось еще три десятилетия, чтобы твердо установить, что вирус — плотная частица, а не «ядовитая жидкость».

Ивановский, а следом за ним и Леффлер, оказались правы, полагая, что возбудитель табачной мозаики может быть только корпускулярным. Но они ошибочно считали его микробом.

Ученому, открывающему не известный науке мир, мучительно трудно прорываться сквозь завесу устоявшихся понятий. Нужны новые методы, новые подходы, новые понятия. И складываются они не сразу.

Особняком стоит еще один участник спора, английский ученый А. Вудс. В 1899 году он опубликовал статью, в которой пытался доказать, что мозаичная болезнь вызывается не каким-то заразным началом, привнесенным извне, а ферментами самого организма. Ферменты или энзимы — это белки особенного вида. Обладая огромной активностью, они регулируют все химические реакции, происходящие в живой материи. Обмен веществ в организме находится полностью под контролем ферментов, он был бы просто немыслим без них. По Вудсу выходило, что заразное заболевание может зародиться внутри клеток самопроизвольно, по причине каких-то нарушений в механизме ферментов. «Активный агент, вызывающий мозаичную болезнь табака, скорее является энзимом, чем живым жидким заразным началом, как думает Бейеринк», — писал Вудс.

Ивановский опроверг Вудса, доказав, что «развитие мозаичной болезни без всякого участия внешней заразы» просто немыслимо. «Гипотеза Вудса опровергается твердо установленным фактом заразительности мозаичной болезни», — читаем мы в диссертации.


В те годы появилась и другая догадка: вирус — комочек измененной больной протоплазмы растений. Ивановский, основываясь на своих многочисленных опытах, считал и эту догадку неосновательной.

И в Никитском саду, и в петербургской лаборатории Ивановский много времени посвящал изучению клеток табачных листьев, пораженных мозаичной болезнью. Он обнаруживал под микроскопом много такого, что не наблюдалось в здоровых листьях. Возле ядра клетки попадались какие-то тельца, похожие на амеб. Прижатые к оболочке ядра, они имели такой вид, словно собирались вот-вот проглотить ядро. В клетках больного листа было гораздо меньше хлоропластов — этих крошечных чечевичек, содержащих хлорофилл. Но самое интересное, что открыл Ивановский в клетках желтой, пораженной части листьев, — некие таинственные кристаллические образования. Вот как говорит о них в докторской диссертации сам Дмитрий Иосифович: «В качестве включений, совершенно отсутствующих в зеленой части препарат, часто (если не всегда) замечаются какие-то бесцветные кристаллообразные отложения, похожие всего более на отложения воскообразных веществ… Растворить их мне ни в чем не удалось… По-видимому, сходны с ними и отложения в форме тончайших бледных пластинок… При наблюдениях на живом препарате мне случалось видеть перемещения такой пластинки вместе с плазмой; в других случаях легко было убедиться, что они лежат в том же слое, как и хлоропласты, причем часто раздвигают последние».

Дмитрий Иосифович тщательно зарисовал эти «включения» (теперь они широко известны в мировой научной литературе под названием «кристаллы Ивановского») и приложил в виде цветной таблицы к диссертации.

Но что они такое, эти кристаллы? Ивановский этого не знал, спросить было не у кого, он первый их наблюдал. И никаких предположений он делать не стал. Это было не в его правилах — строить догадки, ни на чем не основанные.

Между тем Ивановский своими глазами видел, зарисовал и описал скопления вируса табачной мозаики — того самого возбудителя, который тщетно разыскивали и Майер, и он, и Бейеринк, и Леффлер, и Вудс. Да, каждая пластинка, каждый кристаллик, едва различимые в микроскоп, состояли из биллионов вирусных частиц. Уже потом дознались, что в зараженных растениях вирус часто образует кристаллы и каждая частица кристалла несет в себе заразу. Мог ли предполагать Ивановский, что заразное начало примет форму кристалла, свойственную лишь минералам? Ведь он считал возбудителя табачной мозаики живым микробом. Какие же тут могут быть кристаллы?

Тайна удивительных кристаллов раскрылась спустя много лет после смерти Дмитрия Ивановского…

Открыть и не знать, что ты такое открыл! Искать годами и не знать, что нашел. Это самая драматическая страница в научной биографии Ивановского.

Спор о возбудителе табачной мозаики, возникший на рубеже двух столетий, и сейчас интересует не только историков науки. Дело в том, что спор продолжается. Природа вируса не ясна и доныне. Вот почему ученые проявляют такой интерес к диссертации, которая защищалась более полувека назад.

⠀⠀ ⠀⠀ ⠀⠀

⠀⠀ ⠀⠀ ⠀⠀

Глава седьмая

Бешенство и дикование

⠀⠀ ⠀⠀ ⠀⠀

В 1903 году, в то самое время, когда Ивановский защищал свою докторскую, произошло еще одно событие: было доказано, что возбудитель бешенства проходит через бактериальный фильтр, то есть что он принадлежит к тому же невидимому племени вирусов, что и возбудитель табачной мозаики.

Впрочем, оба события — и защита Ивановским диссертации и открытие вируса бешенства — были замечены лишь узким кругом специалистов. Даже в мире науки вряд ли в ту пору кто мог оценить в полной мере значимость открытия Ивановского. Что же касается второго события, то широкая публика твердо знала: пастеровские прививки вполне предохраняют от бешенства; а проходит или не проходит через фильтр микроб, или как его там ни назови — это уж от лукавого…

Но все ж таки, выходит, Пастер научился предупреждать смертельную болезнь, не зная ее возбудителя? Да, так. Вспомним, что Дженнер почти за сто лет до Пастера ввел прививки против оспы, уж и подавно ничего не ведая о заразном начале, вызывающем эту болезнь.

Пастер назвал Дженнера «одним из величайших людей». Сам Луи Пастер принадлежит к той же плеяде ученых, которые останутся в памяти человека, пока существует род людской.

Дженнер был сельский доктор, Пастер — химик и кристаллограф. Дженнер лечил пахарей и доильщиц, не думая вначале ни о каких открытиях. Пастер тем более не помышлял о научной карьере, в школьные годы он довольно равнодушно относился к наукам.

Потом у молодого Луи Пастера пробудился интерес к химии. Он начал с того, что, казалось, не имело никакого отношения к болезням, — занялся изучением виноделия и пивоварения. Английский торговец написал ему, что французскими винами, несмотря на их высокое качество, торговать рискованно: «Вначале мы охотно покупали эти вина, но очень быстро пришли к грустному выводу, что торговля ими приносит большие убытки из-за болезней, которым они подвержены».

Подобные же неприятности происходили во Франции с пивом: оно прокисало.


Пастер долгое время постигал тонкости виноделия и пивоварения. И пришел к неожиданным для того времени выводам: портят вино и пиво микроскопические растения (дрожжи, плесени, бактерии) — не те, что участвуют в брожении, а посторонние, «дикие». Пиво и вино, не содержащие живых микроорганизмов, не болеют.

Пастер нашел и способ предупреждать винные болезни. Он предложил прогревать вино перед перевозкой до температуры 50–60 градусов. Такая процедура не изменяет свойств вина, но зато обезвреживает попавшие в него микроорганизмы. «Для проверки моего метода, — писал Пастер своему другу, — в Габон будут посланы партии прогретых и непрогретых вин; до сих пор наши соотечественники, работающие в колониях, пили чистый уксус».

Проверка показала, что прогретое вино может храниться долго, не меняясь, а непрогретое быстро прокисает. Таким же способом Пастер предложил сохранять и пиво: разлитое по бутылкам, оно затем подогревалось.

Так возник метод обеззараживания пищевых продуктов, получивший название пастеризации. Ныне во всем мире пастеризуют молоко, прогревая его в течение получаса.


Пастер довел метод обеззараживания до совершенства. Лабораторные стеклянные сосуды, простерилизованные им в 1864 году, в то время, когда он изучал болезни вина и пива, оставались абсолютно чистыми, то есть лишенными микроорганизмов, почти сто лет.

От вина и пива чистый химик Луи Пастер перешел к исследованию болезней животных, а потом и человека. Неожиданный переход? Пастер пишет: «Видя, как пиво и вино подвергаются порче вследствие того, что в них незаметно попадают микроскопические организмы и быстро там размножаются, мы не можем отделаться от мысли о возможности подобных явлений и в организме человека и животных».

Вино и пиво можно предохранить от болезней, подогревая их. Очистить любую жидкость от микробов можно, также пропустив ее через фильтр. Но как избавить человека от опасных возбудителей болезней? Дженнер указал путь, он предложил предохранительные прививки. Помог счастливый случай, Дженнер нашел ослабленный, неопасный для человека возбудитель оспы у коров. Но природа вряд ли запасла вакцины, подобные оспенным, для других заразных болезней. Надо пробовать самому, искусственным путем ослабить микроб, — рассудил Пастер.

Он занялся куриной холерой. Выделив от больной курицы бактерии, он размножил их в бульоне, а потом стал переливать из одной чашечки в другую. Каждый раз он переносил из чашечки в чашечку по одной капле зараженного бульона.

Пастер надеялся, что при многократных пересевах бактерии ослабнут и можно будет употребить их для предохранительных прививок. Но только ничего у него не вышло. Перенесенная из чашечки в чашечку сто раз, стократ разбавленная, культура холерной бактерии все равно оказывалась смертельной для курицы.

Пастер вводил подопытным курицам свежую культуру бактерий. Уверившись, что она в любом виде несет гибель, он попробовал впрыснуть очередной курице из пробирки с бактериальной культурой, простоявшей несколько месяцев. Курица поскучнела, нахохлилась, перестала было клевать корм. Но продолжалось это недолго, вскоре она выздоровела. Ее поместили отдельно и неустанно за ней наблюдали.

Когда она оправилась совершенно, ей ввели порцию той бактериальной культуры, от которой все курицы до нее погибали. Она не заболела.

Метод найден: если пересевать бактериальную культуру не сразу после того, как она выращена, а дав ей постоять четыре месяца и больше, то бактерии ослабляются и в таком виде годятся для предохранительных прививок.

Ободренный успехом, Пастер захотел применить этот же способ для предупреждения сибирской язвы — болезни скота, опасной также для человека. Культура бацилл сибирской язвы, простояв несколько месяцев, убивала подопытных животных так же скоро, как и свежая.

Раздумывая над этой неудачей, Пастер припомнил, что года за два до того он заражал сибирской язвой морских свинок. Известно было, что возбудитель сибирской язвы очень долго может сохраняться в почве. Пастер на свинках и проверял — сколь долго? Ему указали место, где двенадцать лет назад была захоронена корова, погибшая от сибирской язвы. Он взял из захоронения почву, развел ее и впрыснул нескольким морским свинкам. Они все погибли.

Удалось дознаться, что столь необычная живучесть присуща не самим бациллам сибирской язвы, а их спорам, с помощью которых бацилла размножается. Значит, чтобы выработать ослабленную, не смертельную вакцину, надо избавиться от спор. Пастер взялся за дело вместе со своими неизменными помощниками — Шамберленом и Ру. Они стали выращивать бациллу сибирской язвы при разных температурах; примечали, какая температура более всего угнетает споры. После многих проб доискались: если выдерживать бактерии сибирской язвы в течение десяти дней при плюс 42–43 градусах, то возбудители теряют способность образовывать споры. Такая вакцина не опасна для организма.

Летом 1881 года Пастер и его сотрудники в присутствии большой комиссии специалистов проделали массовый опыт. Стадо овец в 50 голов разделили на две равные партии. Одной партии впрыснули вакцину сибирской язвы, вторую оставили для контроля, ничего не впрыскивая. После того всему стаду впрыснули смертельную дозу неослабленной сибироязвенной бациллы. Через сутки все 25 овец, оставленные для контроля, пали. Привитые остались живы, не проявив даже признаков болезни.

В течение следующего года во Франции получили вакцину, предохраняющую от сибирской язвы, 85 тысяч овец.

Так Пастер доказал, что заразное начало — яд — в ослабленной форме может служить противоядием.

Вслед за тем Пастер задумал испробовать свой метод для борьбы с бешенством (водобоязнью). Болезнь эта, уносившая сравнительно мало жертв, никогда не принимавшая характера большой эпидемии, тем не менее во все века наводила ужас на людей.

Биографы Пастера писали, что он в девятилетием возрасте перенес тяжелое потрясение — на его глазах умирал человек, укушенный бешеным волком. Зрелище это запало в душу мальчика на всю жизнь и будто бы нашло потом отражение в его научных исканиях.

О великих людях почти всегда рассказывают подобные истории. Но все-таки научные искания движимы не воспоминаниями детства, а многими другими, часто неожиданными обстоятельствами.

Вид погибающего от бешенства человека способен потрясти не только ребенка. Русский ученый Данило Самойлович писал в восемнадцатом веке: «Из многочисленных болезней, которыми род человеческий угнетаем бывает, едва что страшней и едва что жалостнее может сыскиваться, как только видеть человека, зараженного ядом от упущения бешеной собаки». У Антона Павловича Чехова вырвались такие слова: «Нет болезни мучительнее и ужаснее, чем водобоязнь. Когда впервые мне довелось увидеть бешеного человека, я дней пять потом ходил, как шальной, и возненавидел всех в мире собачников и собак».

Люди знали всегда: можно исцелиться от оспы, можно выжить, даже перенеся чуму, но бешенство — это всегда гибель, неизбежная и мучительная.



Поделиться книгой:

На главную
Назад