Может, сначала это утверждение и кажется странным, но подумайте о нем следующим образом. К 1920-м физики уже вполне освоились с идеей Эйнштейна о том, что материя и энергия взаимозаменяемы согласно его формуле Е=mc2. Это предполагает, что материю можно считать некой замершей энергией, а материю и энергию можно превращать друг в друга. Следовательно, раз уж свет, а точнее электромагнитное излучение, которое представляет собой одну из форм энергии, может иметь двойственную природу, то почему подобным образом не может вести себя и материя?
Де Бройль предположил, что каждый материальный объект можно ассоциировать с «волной материи», длина которой зависит от массы объекта. Чем более тяжела частица, тем короче длина связанной с ней волны. Обратите внимание, что я использовал здесь слово «связанной», поскольку де Бройль все еще считал материальные объекты твердыми «сгустками», к которым каким-то образом добавляются волны. Однако в случае со светом мы видели, что «материал» всегда одинаков, вот только ведет он себя то как волна, то как частица.
Де Бройля вдохновила работа американского физика Артура Комптона, который привел новое неопровержимое доказательство корпускулярной природы света. В 1923 году, за год до завершения диссертации де Бройля, Комптон провел эксперимент, который подтвердил существование фотонов. Он направил рентгеновские лучи (которые по сути являются высокочастотным светом) на блок графита и обнаружил, что частота отраженных лучей становится немного ниже изначальной. Это шло вразрез с предсказанием старой волновой теории, которая гласила, что частота света должна оставаться неизменной. Но если рентгеновские лучи представляли собой поток высокоэнергетических фотонов, сталкивающихся с отдельными электронами графита, то часть их энергии должна была теряться, а это, согласно формуле Планка, вело к понижению частоты.
Градация волн материи де Бройля, связанных с разными объектами.
Вверху: Длина волны де Бройля для коровы будет в несколько триллионов раз меньше атомных измерений – столь короткую волну невозможно будет даже обнаружить. Ее размеры будут находиться в таком масштабе, где значение теряет сама идея пространства. Так что нам не стоит беспокоиться о волновых коровах.
В середине: Длина волны де Бройля для молекулы С60 (фуллерена), движущейся на скорости несколько метров в секунду, примерно равна размеру самой молекулы (около одного нанометра). Внизу: Длина волны де Бройля для электрона, движущегося на скорости несколько метров в секунду, равна толщине человеческого волоса (доля миллиметра). Это значение достаточно велико, чтобы его квантовая волновая природа с легкостью проявляла себя в экспериментах и даже в повседневной жизни.
Не заметить здесь очевидную симметрию де Бройль не смог. Почему фотоны могут обладать одновременно волновыми и корпускулярными свойствами, а электроны не могут? В конце концов, комптоновское рассеяние, как этот процесс называют сегодня, предлагало картину сталкивающихся твердых частиц. Так если фотон можно поставить на одну доску с электроном, может быть, верно и обратное? Экспериментальное подтверждение волновой природы электронов появилось лишь в 1927 году, когда было впервые продемонстрировано, что пучки электронов также дают картину интерференции, – и это стало первым успешным подтверждением фокуса с двумя прорезями в отношении частиц материи.
Но как именно рассуждал де Бройль? Волновая природа материи всегда несколько сбивает с толку. Сам де Бройль не выдвинул предположения, что электрон представляет собой распространенную волну (хотя это предположение вскоре было выдвинуто другими учеными), а сказал, что он является твердой локализованной частицей, переносимой так называемым волновым пакетом. Это изолированный участок волны, подобный пульсу, который можно создать путем наложения многих волн с разной амплитудой и длиной волны таким образом, чтобы они интерферировали и нейтрализовали друг друга везде, кроме крошечной локализованной области, где находится частица.
Де Бройль вывел формулу, которая связала импульс частицы, будь это фотон или электрон, с длиной связанной с ней волны: чем больше импульс, тем короче длина волны. Потому мы и не можем засечь волновое поведение окружающих нас объектов – людей, футбольных мячей, песчинок. Эти объекты на много порядков тяжелее электронов, а длина их волн на много порядков короче, чем длины на субатомном уровне, поэтому ее невозможно обнаружить. Но можно ли измерить волны материи, связанные с электронами и даже целыми атомами? Более того, если они действительно существуют, может, это и объясняет фокус с двумя прорезями? Может, именно связанная с атомом волна проходит сквозь обе прорези одновременно, в то время как сам атом проходит лишь через одну из них?
В то время революционное предложение Луи де Бройля показалось его коллегам-физикам слишком радикальным. Возникли даже сомнения, присуждать ли ему докторскую степень, но в последний момент в научный спор вмешался сам Эйнштейн, который ознакомился с работой де Бройля и убедил экзаменаторов в справедливости его выводов.
Вскоре после того как изыскания де Бройля получили известность, все начало происходить очень быстро. Физики по всей Европе принялись сводить воедино фрагменты нового математического аппарата и спорить о получаемых результатах. На место становились не только кусочки математической мозаики – ученые одновременно и независимо друг от друга совершали открытия, связь между которыми удалось установить лишь значительно позже.
В связи с этим я закончу эту историческую главу и перейду к описанию того, что квантовая механика сообщает нам о поведении природы, вместо того чтобы рассказывать, как физики пришли к тому или иному выводу. Квантовую механику можно объяснить несколькими способами, и следовать тому, как отцы-основатели этой области развивали свои идеи, вряд ли удобнее всего. Например, многие научно-популярные книги о квантовой механике построены на объяснении феноменов вроде «корпускулярно-волнового дуализма», которые называются фундаментальными идеями, лежащими в основе всей теории. Это часто путает читателей и сбивает их с толку. Избежать этого нелегко, но я все же попытаюсь.
Глава 3. Вероятность и случай
Вы верите в судьбу?
Для большинства из нас смысл этого вопроса вполне очевиден: подразумевается, что некоторым событиям суждено произойти, а двум людям предначертано встретиться. Но есть ли в этой идее хоть толика правды?
Может, вам по душе читать гороскопы – довольно неправдоподобная идея, что положение планет может влиять на то, как сложится для вас грядущая неделя, кажется вполне безобидной. Само собой, большинство из нас не воспринимает гороскопы всерьез, однако мысль, что будущее можно предсказать, весьма интересна. На самом деле до квантовой революции ученые почти не сомневались, что в принципе это возможно, предполагая, что, пусть мы и не можем их предсказать, все события будущего тем не менее предопределены и предначертаны.
Исаак Ньютон полагал, что каждая частица во Вселенной должна подчиняться простым законам движения в результате действия четко определенных сил. Это механистическое представление о мире – которое ученые повсеместно разделяют и сегодня, почти три века спустя, – утверждает, что, какими бы сложными ни были природные явления, все в итоге всегда можно свести к взаимодействию фундаментальных кирпичиков материи. Естественный процесс, такой как шторм на море или перемена погоды, может казаться случайным и непредсказуемым, но это просто следствие его сложности и огромного количества задействованных в нем атомов.
Но в принципе, если бы мы знали точное положение и характер движения каждой частицы в заданной системе, сколько бы их ни было задействовано, с помощью законов Ньютона мы могли бы предсказать, как эти частицы будут двигаться и взаимодействовать друг с другом, а следовательно, и как эта система будет выглядеть в любой конкретный момент будущего. Иными словами, точное знание настоящего должно позволять нам предсказывать будущее. Это привело к ньютонианской идее «механической» вселенной – такой вселенной, где вообще нет никаких сюрпризов, поскольку все, что может случиться, является результатом фундаментальных взаимодействий ее частей. Это учение получило название «детерминизм» (от лат.
Само собой, на практике такой детерминизм возможен лишь в простейших системах. Мы прекрасно понимаем, что метеорологи не могут с полной уверенностью предсказать погоду на завтра. Мы даже не можем заранее узнать, выпадет орел или решка или куда закатится шарик рулетки. В современной физике есть отдельная область под названием теория хаоса, которая утверждает, что для определения будущей эволюции системы ее изначальное состояние необходимо знать с бесконечной точностью. Теория хаоса усложняет практическое применение детерминизма.
И правда, простые механические примеры вроде упомянутых выше меркнут в сравнении с тем, как нам необходимо разобраться в бесконечно сложном устройстве человеческого мозга, чтобы понять концепцию свободы воли. Но принцип всегда один: так как люди состоят из атомов, законы Ньютона должны быть применимы и к их мозгу. В связи с этим, когда мы делаем то, что считаем свободным выбором в отношении чего-то, на самом деле это лишь результат механических процессов и атомных взаимодействий в нашем сером веществе, которое подчиняется детерминистским законам, как и все остальное.
Хотя такой взгляд на вещи довольно печален, вам он может показаться вполне нормальным, поскольку мысль о том, чтобы обладать достаточной информацией, чтобы предсказывать будущее, и вовсе не укладывается в голове. Однако здесь возникает гипотеза: если бы у нас был достаточно мощный компьютер, снабженный достаточным объемом памяти, чтобы сохранить в нем сведения о положении и скорости каждой частицы во Вселенной, то он, вероятно, смог бы рассчитать, как Вселенная будет развиваться.
Одним из самых серьезных сдвигов в человеческом мышлении, произведенных квантовой революцией, стала идея индетерминизма – то есть исчезновения детерминизма вместе с концепцией механической вселенной. Поэтому, как ни жаль мне вам это сообщать, но еще три четверти века назад было доказано, что в качестве научной идеи «судьба» оказалась ложной.
Результат игры в пул
Представьте, как мы с помощью мощного компьютера пытаемся предсказать, что случится в игре в пул, делая предсказание в ту секунду, когда биток ударяется о пирамиду. Каждый шар на столе в этот момент начинает катиться в своем направлении, причем большая часть шаров претерпевает более одного столкновения и отталкивается от бортов. Само собой, компьютер должен знать точную силу первого удара битка и точный угол, под которым он сталкивается с первым шаром пирамиды. Но достаточно ли этого? Когда все шары наконец остановятся – а некоторые из них, возможно, даже закатятся в лузы, – насколько близким к реальности окажется предсказание компьютера? В то время как предсказать результат столкновения двух шаров вполне вероятно, учесть все сложные траектории движения множества шаров практически невозможно. Если хотя бы один шар покатится под немного иным углом, то другой шар, который он мог миновать в изначальной картине, теперь сможет коснуться его, в результате чего обе траектории существенным образом изменятся. И итоговый результат вдруг окажется совсем другим.
Похоже, нам необходимо сообщить компьютеру не только сведения о начальном состоянии битка, но и точное расположение остальных шаров на столе: касаются ли они друг друга, каковы точные расстояния между ними и бортами и так далее. Но даже этого недостаточно. Крошечной пылинки на любом из шаров хватит, чтобы изменить его траекторию на некоторую долю миллиметра или чуть снизить его скорость. И снова это приведет к эффекту домино, который изменит итоговую расстановку. В теории хаоса это называется «эффектом бабочки» – идея заключается в том, что бабочка машет крыльями и тем самым едва заметно изменяет атмосферное давление, что в результате постепенно приводит к серьезному отклонению от того сценария, который развернулся бы, если бы бабочка не взмахнула крыльями, к примеру, вызывая несколько позже грозу на другом конце света, хотя в ином случае этой грозы не случилось бы.
Следовательно, нам нужно предоставить компьютеру точные данные о состоянии поверхности стола. Возможно, в некоторых местах сукно протерто сильнее. Минимальное влияние окажут даже температура и влажность воздуха.
И все же вам может показаться, что в этом нет ничего невозможного. Что в принципе это выполнимо. Само собой, если бы между шарами и столом не было трения, они бы продолжили сталкиваться и расходиться в разные стороны гораздо дольше, а следовательно, нам нужно было бы еще более точно знать изначальное положение шаров, чтобы определить, где они окажутся, наконец остановившись[15].
«И что?» – скажете вы. В конце концов, раз уж мы никогда не сможем узнать все о конкретной системе, нам приходится высчитывать вероятности различных результатов. Чем больше мы знаем, тем с большей уверенностью мы можем сказать, что именно произойдет.
Иногда мы не можем сделать верное предсказание не только из-за собственной неосведомленности, но и из-за неспособности контролировать изначальные условия. Мы не можем даже дважды одинаково подбросить монетку, чтобы повторить полученный в первый раз результат. Пускай мы подбросили монетку и получили решку. Подбросить ее второй раз точно так же, чтобы она перевернулась то же самое количество раз и снова легла решкой вверх, очень и очень сложно.
И снова мы приходим к выводу, что у нас недостаточно информации о системе. В примере с игрой в пул я ни за что не смогу повторить удар и толкнуть биток точно таким же образом, чтобы добиться идентичного итогового результата, при котором все шары окажутся точно на тех же позициях, что и в первый раз. Тем не менее такая повторяемость является сутью ньютонианского мира. Такое детерминистское поведение представляет собой черту ньютоновой, или классической, механики. В квантовой механике все совершенно иначе.
Квантовая непредсказуемость
В квантовом мире царит серьезная непредсказуемость, которую мы не можем списать на свою неосведомленность о точном состоянии изучаемой системы или на практическую неспособность задать изначальные условия. На этом уровне она представляет собой фундаментальную характеристику самой природы. Мы не можем с уверенностью предсказать, что именно случится в квантовом мире не потому, что наши теории недостаточно хороши, и не потому, что нам недостает информации, а потому, что сама Природа функционирует «неопределенным» образом.
Часто выясняется, что в мире атомов мы можем лишь рассчитать вероятности различных результатов. Такие вероятности, однако, определяются не по тому же принципу, которым мы руководствуемся, когда определяем вероятность при броске монеты или игральных костей. Квантовые вероятности вплетены в саму теорию, и мы даже в принципе не можем определить их более точно.
Хороший пример представляет собой радиоактивный распад атомных ядер, при котором идентичные изначальные условия могут привести к разным результатам. Представьте миллион идентичных радиоактивных атомных ядер, которые являются нестабильными и рано или поздно спонтанно «распадутся», при этом испустив частицу и перейдя в более стабильное состояние. В то время как квантовая механика позволяет нам рассчитать так называемый период полураспада (время, за которое распадется половина ядер), определить с ее помощью, когда распадется каждое конкретное ядро, мы не в состоянии. Знание периода полураспада приобретает хоть какую-то значимость, когда мы применяем его к статистически большому числу идентичных ядер. Можно рассчитать вероятность того, что ядро распадется через заданное время, однако более точные расчеты мы провести не в силах – и наша неосведомленность здесь ни при чем.
Решить эту дилемму можно, просто сказав, что квантовой механикой дело не ограничивается, а непредсказуемость радиоактивного распада действительно можно списать на нашу неосведомленность, поскольку нам не хватает более глубокого понимания Природы, с помощью которого мы могли бы точно предсказать, в какой именно момент распадется любое из ядер, точно так же как более полное знание о силах, участвующих в процессе подбрасывания монетки, позволило бы нам предсказать его результат. Если бы это было так, в поисках ответа нам пришлось бы выйти за границы квантовой механики. В шестой главе мы увидим, что таких взглядов придерживался Альберт Эйнштейн, который не мог смириться с тем, что квантовая механика словно бы утверждает, что на фундаментальном уровне наш мир по сути своей непредсказуем. И правда, одним из самых знаменитых высказываний Эйнштейна стало его замечание о том, что «Бог не играет в кости», которым он показал свое неприятие вероятностной концепции мира. Однако Эйнштейн ошибался.
Давайте внимательнее рассмотрим происхождение квантовой непредсказуемости и индетерминизма.
Обводящие удары
Мы понимаем, как окружающие нас объекты двигаются и взаимодействуют друг с другом под влиянием сил, и можем предсказывать их поведение в основном благодаря Исааку Ньютону. Помню, несколько лет назад в физическом журнале была напечатана статья, в которой с математической точки зрения анализировалась изогнутая траектория полета футбольного мяча. Бразильский футболист Роберто Карлос, фотография которого была напечатана на обложке журнала, известен своими выдающимися свободными ударами, совершая которые он умел заставить мяч полететь по более изогнутой траектории в облет защитной стенки, чем это было под силу большинству футболистов. Фокус – хотя вряд ли, конечно, Роберто Карлос подробно изучал все эти уравнения – заключался в том, как именно ударить мяч, чтобы он завертелся и в полете вступил во взаимодействие с воздухом. Точно так же годами совершенствовались мячи для гольфа, чтобы траекторию их полета можно было контролировать при определенном ударе. Само собой, есть и бесчисленное количество других примеров. Суть в том, что во всех случаях движения макроскопических объектов уравнения движения можно решить при наличии необходимых вводных данных. Если нам известны масса и форма тела, точная природа воздействующих на него сил, его точное текущее положение и скорость, то мы путем решения уравнений движения можем рассчитать его точное положение и скорость в любой момент будущего. В этом и заключается вся соль более ранней дискуссии о ньютонианском детерминизме.
Анатомия уравнения
Говоря о «решении» уравнения для классической частицы (а именно, той, что не подвержена квантовому поведению), мы имеем в виду, что применяем алгебру, для того чтобы найти значение точного положения и скорости этой частицы в определенный момент будущего. Но уравнение Шрёдингера отличается. Его решение, скажем, для движения электрона внутри атома представляет собой не просто набор чисел, описывающих, где электрон будет находиться в любой конкретный момент (который мы бы получили, решая ньютоновы уравнения, описывающие движение Луны вокруг Земли).
Решение уравнения Шрёдингера гораздо полнее. Это математическая величина, известная под названием «волновая функция» и обозначаемая греческой буквой Ψ (пси). Если вы ищете корни всей квантовой странности, то вы их только что нашли: все они содержатся в волновой функции.
В элементарной алгебре всегда существует неизвестная величина х. Представьте, что х – это положение частицы: «х обозначает место», где нужно копать. В более продвинутой алгебре значение х может зависеть от значения второй неизвестной, скажем
Волновая функция в уравнении Шрёдингера немного похожа на них. Она представляет собой неизвестную величину и может быть вычислена для любого момента времени, чтобы описать состояние квантовой частицы. Под «состоянием» здесь я подразумеваю все, что мы вообще можем знать о частице.
В физике мы всегда пользуемся математическими символами, чтобы описать некоторую величину или свойство системы, которую мы изучаем. Мы обозначаем величину напряжения буквой V, давление – буквой Р и так далее. Отличие квантовой механики заключается в том, что не существует прибора, который мог бы измерить квантовую функцию подобно тому, как мы измеряем давление и напряжение. Хотя концепция «давления» несколько абстрактна в том смысле, что это величина, которая описывает коллективное движение молекул газа, ее существование хотя бы можно ощутить физически. В отличие от существования волновой функции.
Уравнения движения Ньютона действительно так точны и надежны, что с их помощью можно на много лет вперед предсказать орбитальное движение планет и их лун. Эти уравнения использовались НАСА для расчета траекторий ракет, летящих на Луну и обратно. Во всех вышеприведенных примерах определение текущего состояния физической системы и воздействующих на нее сил в принципе позволяет нам точно определить все будущие состояния этой системы.
Так почему мы не можем применить то же самое уравнение для описания движения микроскопической частицы вроде электрона? Если электрон в данный момент находится в определенной точке и мы применяем к нему некоторую силу, например включая электрическое поле, то мы должны быть в состоянии сказать наверняка, что через пять секунд он будет находиться в такой-то точке.
Но это не так. Оказывается, уравнения, описывающие движения окружающих нас объектов, от песчинок и футбольных мячей до планет, в квантовом мире бесполезны.
Самое важное уравнение физики
Серьезный вклад в развитие теоретического понимания квантовой механики внес австрийский физик Эрвин Шрёдингер, который взял идеи де Бройля и поставил их на твердое математическое основание. Важно отметить, что существует несколько математических способов описать поведение квантовой системы вроде электрона или атома, и подход Шрёдингера – лишь один из них. Однако именно так квантовую механику обычно преподают студентам-физикам и так я буду ее разбирать на страницах этой книги.
Шрёдингер решил проверить, можно ли с помощью идеи де Бройля о волнах объяснить модель атома Бора. Напомню, Бор предположил, что электроны в атомах двигаются по фиксированным (квантованным) орбитам, но никто не знает, почему так происходит. Шрёдингер предложил новое уравнение, которое описывает не принцип движения частицы, а принцип развертывания волны. В результате у него получилось волновое уравнение.
В наши дни авторы научно-популярных книг об идеях современной физики, как правило, обходят стороной все математические уравнения, кроме Е=mc2, о котором я уже упоминал. Но уравнение Шрёдингера заслуживает хотя бы краткого обзора (см. формулу на странице 64), пускай и из эстетических соображений[16].
Результатом решения уравнения Шрёдингера является математическая величина, называемая волновой функцией. Именно здесь и проявляет себя вся вероятностная природа квантовой механики. В случае с электроном, к примеру, волновая функция не дает нам его точного положения в конкретный момент времени и раскрывает лишь вероятность того, что электрон окажется в том месте, где мы будем его искать. Само собой, вы сразу подумали: но этого мало! Сложно поверить, что мы не можем получить никакой более точной информации, чем сообщение о том, где может находиться электрон. Конечно, прочитав это, вы все равно ничего не поняли. Поэтому я постараюсь объяснить лучше.
Волновая функция содержит большое количество информации. В любой момент времени она обладает значением для каждой точки в пространстве. Так что, в отличие от положения в пространстве классической частицы, волновая функция распространяется на все пространство – отсюда и термин «волновая». Но не стоит думать, будто она представляет собой настоящую физическую волну наподобие волны света. Тут я должен признаться, что на самом деле никто не знает, что такое волновая функция. Большинство физиков считает ее абстрактной математической сущностью, которую можно использовать для получения информации о природе. Другие относят ее к ее собственной, очень странной отдельной реальности. В шестой главе мы увидим, что обе эти точки зрения могут быть одинаково справедливы. Как ни странно, важнее всего, что, вне зависимости от того, реальна волновая функция или нет, ее математические свойства остаются неизменными, а в том, что она может сообщить нам о поведении природы на субатомном уровне, нет никаких сомнений.
Давайте в качестве примера возьмем единственный электрон, заключенный в коробку. Представим, что мы точно знаем его изначальное положение, и введем эту информацию в уравнение Шрёдингера. Таким образом мы сможем рассчитать его волновую функцию для более позднего момента. Теперь давайте представим, что мы ввели в компьютерный файл или записали на бумаге массив чисел, которые представляют собой значения волновой функции электрона для разных точек сетки внутри коробки. Использовать эту информацию, чтобы с некоторой степенью уверенности определить местоположение электрона, мы уже не сможем. Вместо этого нам придется довольствоваться знанием того, где он окажется с наивысшей степенью вероятности. Это делается следующим образом.
Волновая функция описывает каждую точку пространства двумя числами. Вероятность того, что электрон находится в непосредственной близости от этой точки, представляет собой сумму квадратов этих чисел[17]. Я говорю это, чтобы вы поняли, что сама по себе волновая функция не является вероятностью, сначала ее надо возвести в квадрат[18].
Вероятность распределения электрона, заключенного в коробке. Это не физическое облако, описывающее «размазанный» электрон, а математическое облако вероятности. Если мы знаем наверняка, что электрон изначально находился в одном из верхних углов коробки, то его волновая функция вскоре распространится на весь объем коробки. Однако большая плотность вероятностного облака, рассчитанная на основании волновой функции, скажет нам, что электрон до сих пор,
Вероятностная природа, а следовательно, и неотъемлемая непредсказуемость квантовой механики требует более подробного обсуждения сущности волновой функции. Например, можно объяснить вам, как волновая функция изменяется со временем, используя удачную аналогию.
Грабителя только что выпустили из тюрьмы, но местная полиция уверена, что он не завязал со своим криминальным прошлым, и может следить за его возможными перемещениями по городу, постоянно изучая карту. Хотя полицейские не могут установить его точное местоположение в конкретный момент времени, они могут определить вероятность совершения ограблений в разных районах. Сначала в зоне наивысшего риска оказываются дома возле тюрьмы, но с течением времени опасная область расширяется. Также можно с некоторой долей уверенности сказать, что богатые районы города с большей вероятностью попадают под удар, чем бедные. Эту волну совершаемых одним человеком преступлений можно считать волной вероятности. Она неосязаема и нереальна, это просто набор абстрактных чисел, присвоенных каждому району города. Точно так же волновая функция распространяется во все стороны из той точки, где в прошлый раз был замечен электрон, и позволяет нам определять вероятность того, где он окажется впоследствии.
Вскоре полицейские получают информацию об ограблении, совершенном по определенному адресу, и понимают, что их подозрения были верны. Это изменяет распределение вероятностей, поскольку теперь они знают, что вор не мог уйти далеко от места преступления. Точно так же, если электрон засекают в определенном месте, то его волновая функция тотчас изменяется. В момент обнаружения вероятность нахождения электрона в другом месте равняется нулю. Если снова выпустить его из поля зрения, его волновая функция снова распространится.
Что происходит, когда мы не смотрим?
Однако между примерами с грабителем и электроном есть огромная разница. Хотя полицейские могут лишь определить вероятность, с которой грабитель находится в том или ином месте, они понимают, что это происходит из-за нехватки информации. В конце концов, грабитель не «распространяется» по городу, и, несмотря на то что полиция может полагать, что он находится где угодно, на самом деле он, само собой, находится лишь в одном месте в каждый конкретный момент. Это так очевидно, что мне даже кажется лишним вам об этом сообщать. Но что насчет электронов? Большинство физиков полагает – и не без причины, как мы увидим в нескольких следующих главах, – что тогда, когда мы не отслеживаем движение электрона, описать его мы можем только при помощи волновой функции. Более того: электрон сам по себе даже не существует в качестве обычной частицы, положение которой точно определено в каждый момент времени. Его влияние распространяется в пространстве. Узнать, почему так происходит, мы не в состоянии. У нас есть только волновая функция, а она представляет собой лишь набор чисел (конечно же, физически значимых). Как только мы смотрим, волновая функция, как считается, «схлопывается» и электрон становится локализованной частицей.
Это может показаться вам смешным и даже абсурдным. Почему электрон просто не может всегда вести себя, как настоящая частица? Хотя мы и не можем с уверенностью сказать, что он делает, пока мы не смотрим, это ведь явно не означает, что он не делает ничего? Что ж, если вы так думаете, вы не одиноки: Эйнштейн мыслил сходным образом. Однако большинство физиков уверены, что эта удобная картина неверна. Тем не менее значительное и растущее меньшинство уже сомневается в этом, о чем я подробнее расскажу в Главе 6.
Вернемся к нашей простой аналогии и термину «волна преступности». Он подразумевает нечто колеблющееся, обладающее пиками и впадинами, как рябь на поверхности пруда. Выходящие из одной точки волны распространяются концентрическими кругами (как от брошенного в воду камня). Квантовая волновая функция тоже должна быть «волнистой», иначе мы не увидим волнообразное свойство интерференции в фокусе с двумя прорезями. На этом этапе вас уже не должно удивлять, что фокус с двумя прорезями как-то связан со свойствами волновых функций.
На самом деле волновая функция не просто колеблется, как водяная волна. Она ведет себя гораздо сложнее. Я упоминал, что в каждой точке пространства волновая функция определяется двумя числами, известными как ее действительная и мнимая части. Совокупность всех «действительных» чисел дает нам одну волну, а совокупность «мнимых» – другую, и волновая функция представляет собой их комбинацию. Кроме того, типичная волновая функция при построении на графике будет иметь довольно сложную форму, зависящую от описываемой системы. Единичный электрон, заключенный в коробке, само собой, будет описываться достаточно простой волновой функцией. Но волновая функция, описывающая структуру атомного ядра, включающего в себя множество протонов и нейтронов, подчиняющихся сложным правилам, тоже будет гораздо более сложной.
Принцип неопределенности Гейзенберга
Одним из важнейших следствий вероятностной природы волновой функции является идея неопределенности. Не стоит путать ее с уже знакомым нам индетерминизмом, который утверждает, что знание определенных аспектов состояния частицы, в частности ее положения в конкретный момент времени, не подразумевает, что существует возможность с уверенностью определить ее будущее положение. Идея неопределенности подразумевает, что мы не можем одновременно с точностью знать все о квантовой системе, даже если попытаемся измерить все ее характеристики.
Самый известный пример неопределенности дает соотношение, впервые открытое Вернером Гейзенбергом. Свободно перемещающийся в пространстве электрон может находиться где угодно; мы говорим, что его положение бесконечно неопределенно. Но положение электрона, заключенного внутри очень маленькой коробки, достаточно хорошо известно, так что неопределенность его положения довольно мала. Это означает, что числа, связанные с его волновой функцией, будут равняться нулю везде, за исключением внутреннего пространства коробки. Такую волновую функцию называют локализованной в пространстве.
Принцип неопределенности Гейзенберга гласит, что мы не можем одновременно знать и точное положение, и импульс квантовой частицы. Это странное свойство природы, позволяющее нам знать либо один, либо другой аспект, но не оба сразу, привело Нильса Бора к открытию принципа дополнительности, который гласит, что оба как будто бы противоречащих друг другу аспекта необходимы для полного описания квантовой частицы.
Контуры этой вазы можно также счесть силуэтами двух человеческих лиц, смотрящих друг на друга. Однако одновременно видеть оба аспекта изображения проблематично: если мы видим два лица, то нет вазы; если же перед нами ваза, то нет лиц.
Пока что я описывал так называемую «волновую функцию в координатном представлении» (на основании которой можно рассчитать вероятность обнаружения электрона в различных точках координат). Существует и другая величина, называемая волновой функцией в импульсном представлении, которая сообщает нам, с какой вероятностью электрон обладает определенным импульсом, или скоростью, в каждый конкретный момент времени. Если нам известна волновая функция в координатном представлении, мы можем вывести волновую функцию в импульсном представлении (и наоборот), используя математическую процедуру, называемую преобразованием Фурье. Локализованная волновая функция в координатном представлении всегда дает распространенную волновую функцию в импульсном представлении[19], и наоборот. Таким образом, электрон, обладающий локализованной волновой функцией в координатном представлении, а следовательно, низкой неопределенностью своего положения, всегда имеет высокую неопределенность импульса (или скорости). Точно так же электрон, скорость которого достаточно хорошо известна (на основании локализованной волновой функции в импульсном представлении), обязательно будет обладать распространенной волновой функцией в координатном представлении, из-за чего его положение будет в высокой степени неопределенным.
В этом и заключается суть принципа неопределенности Гейзенберга. В своей математической форме он гласит, что никто не может одновременно знать точное положение и скорость электрона (или любой другой квантовой сущности). Однако не верьте книгам, в которых сказано, что это происходит в результате того, что экспериментатор случайным образом подталкивает электрон путем определения его положения, тем самым изменяя его скорость и направление движения. Скорее это является следствием природы волновых функций, которые описывают возможное положение и состояние движения электрона, даже когда мы на него не смотрим.
Физики до сих пор не могут сойтись во мнении, обладает ли электрон определенным положением и скоростью в любой момент времени, пока мы на него не смотрим. Правда заключается в том, что соотношение неопределенности представляет собой следствие взаимодействия двух типов волновых функций, а раз уж волновые функции сообщают нам все, что мы вообще можем узнать об электроне, больше нам сказать здесь нечего. Принцип неопределенности накладывает ограничение на то, что мы можем предсказать о квантовом состоянии, а следовательно, и узнать о нем при непосредственном наблюдении.
Ядерные облака
В физике существует множество явлений, которые просто невозможны согласно классической механике и которые следует объяснять при помощи принципа неопределенности Гейзенберга. Один из примеров представляет собой моя сфера исследований в ядерной физике. В Главе 7 я объясню, что атомное ядро представляет собой одну из самых сложных физических систем. С момента его открытия прошло практически сто лет, а мы до сих пор узнаем все новые и новые его секреты. Именно в нем доминируют законы квантовой механики.
Позже мы внимательнее посмотрим внутрь ядра атома и увидим, что частицы, из которых оно состоит, то есть протоны и нейтроны, удерживаются вместе благодаря сильному ядерному взаимодействию. На очень коротких расстояниях эта сила действует подобно клею, но за поверхностью ядра ее влияние полностью пропадает.
Ядра самых легких элементов, как правило, имеют одинаковое количество положительно заряженных протонов и электрически нейтральных нейтронов. Ядра, в которых содержится больше среднего для их массы количества либо протонов, либо нейтронов, как правило, нестабильны и быстро трансформируются в более стабильную форму, превращая лишние протоны в нейтроны или наоборот, чтобы изменить баланс.
В середине 1980-х годов в ходе экспериментов японской исследовательской группы, проводившихся в Лаборатории Лоуренса в Беркли (Калифорния), было открыто новое свойство очень богатых нейтронами ядер элемента лития. Ядра атомов стабильных форм лития содержат три или четыре нейтрона, связанных с тремя протонами. Проведенный в Беркли эксперимент показал, что размер ядра лития-11 (три протона плюс восемь нейтронов) гораздо больше, чем ожидалось и чем можно было списать на появление дополнительных нейтронов. Направив в ускорителе пучок таких ядер на тонкую углеродную пластинку, ученые смогли измерить, сколько ядер выдержало взаимодействие с углеродом и оказалось по другую сторону пластинки. Чем больше были ядра лития-11, тем больше была вероятность, что они столкнутся с ядрами углерода и расколются на части. Ожидалось, что многие ядра сумеют без проблем пройти сквозь пластинку, однако на другой ее стороне детекторы засекли гораздо меньше ядер, чем предсказывалось. Здесь можно провести грубую аналогию с просеиванием песка сквозь сито. Чем больше песчинки, тем меньше их проходит насквозь.
Теоретики вскоре поняли, что они имеют дело с ядрами, которые не похожи на другие ядра, существующие в природе. Два внешних нейтрона лития-11 очень слабо связаны с остальной частью ядра (его «сердцевиной») и большую часть времени находятся относительно далеко от этой сердцевины. На самом деле они парят за пределами радиуса действия ядерной силы, которая удерживает их на месте, и образуют так называемое «нейтронное облако». Само собой, объем этого облака все равно гораздо меньше того объема, который занимают электроны атома лития.
Нейтронное облако представляет собой исключительно квантовый феномен и не должно существовать согласно классической механике[20]. Однако я использовал для описания этих облачных нейтронов тот же язык, которым Бор излагал свою старую квантовую теорию об электронах на орбите. Теперь мы знаем, что это не совсем правильно. Так что позвольте мне описать все точнее.
Чтобы объяснить большой размер ядерных облаков менее прямолинейно, можно прибегнуть к принципу неопределенности. Для их изучения был проведен другой эксперимент, в котором их намеренно раскалывали в ходе ядерной реакции и следили, как разлетаются фрагменты. Было замечено, что, разлетаясь, осколки оставались довольно близко друг к другу и очень медленно расходились в разные стороны.
С квантовомеханической точки зрения, можно сказать, что изначальный импульс фрагментов имеет очень узкий диапазон в районе нуля, или в высокой степени локализованную волновую функцию в импульсном представлении. Так как фрагменты (два нейтрона и сердцевина) связаны очень слабо, расколоть такое ядро несложно. Таким образом волновая функция в импульсном представлении, которая описывает их относительное движение после раскола ядра, не слишком отличается по форме от той волновой функции, которая описывает целое ядро.
Принцип неопределенности сообщает нам, что эта волновая функция в импульсном представлении соответствует очень распространенной волновой функции в координатном представлении, а следовательно, и широкому диапазону распределения вероятностей. Таким образом, нейтронное облако представляет собой не два «размазанных» нейтрона, а большой объем пространства вокруг ядра, в котором эти нейтроны могут быть найдены с высокой вероятностью. Это вероятностное облако нейтронов.
Квантовое описание атома сводится к вероятностному облаку электронов, окружающему крошечное ядро (вверху слева). Однако так мы можем сказать только
Золотые годы квантовой механики
В период с 1925 по 1927 год в квантовой физике произошла гораздо более значительная революция, чем та, которую на заре нового века начал Планк. В 1922 году Нильс Бор получил Нобелевскую премию за «заслуги в исследовании строения атомов и испускаемого ими излучения». Но к этому моменту сразу несколько молодых европейских физиков, работая над своими докторскими диссертациями, стали задаваться вопросом, можно ли считать теорию Бора о проквантованных электронных орбитах окончательной. В то время тремя великими магистрами атомной теории считались работавший в Копенгагене Бор, Арнольд Зоммерфельд из Мюнхена и Макс Борн из Геттингена. Но серьезный вклад в науку было суждено сделать их студентам.
До 1925 года физики знали, что основной проблемой атомной теории Бора[21] была ее неспособность описать взаимодействие двух электронов внутри атомов при помощи идеи орбит Бора. Его уравнения отлично работали в случае с атомом водорода, содержащим всего один электрон, но атомную структуру следующего за ним элемента, гелия, который обладал уже двумя электронами, описать с их помощью было невозможно. Один из дерзких юношей, Вольфганг Паули, в мае 1925 года так описал это отчаянное положение в своем письме коллеге: