Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Глазами Монжа-Бертолле - Лев Викторович Бобров на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

…Придурковатый наш кок отпросился искупаться, но залив его не принял. Он высоко вскидывал его ноги, и при всем тщании кок погрузиться в воду не смог. Это повеселило команду и улучшило несколько ее дурное расположение. Кок к вечеру покрылся язвами и утверждал, что вода залива являет собой разбавленную „царскую водку“…


Все берега пустынны и не имеют пресной воды. Мною не было обнаружено ни единого ручья, каковой впадал бы в это поистине мертвое море…

При подходе к заливу оный рисуется в виде купола из красноватой мглы, пугающей с давних времен мореплавателей. Полагаю, что явление это объясняется сильным испарением воды Кара-Бугаза.

Надлежит помнить, что залив окружен раскаленной пустыней и является, если будет уместно это сравнение, большим котлом, где выкипает каспийская вода.

Грунт залива весьма примечателен: соль, а под ней известковая глина.

Соль, полагаю, особенная, не того состава, что обыкновенная, употребляемая в пищу и для засола…» Так живописал залив Кара-Богаз-Гол в 1847 году путешественник лейтенант Жеребцов. В официальном донесении Гидрографическому управлению он делал категорический вывод:

«На основании всего сказанного, я позволю себе заключить, что побережья залива Кара-Бугазского, как и самый залив, лишены какого бы то ни было интереса государственного».

Мрачным пессимизмом, тоскливой безысходностью веет от каждой фразы лейтенанта Жеребцова. Нет, автора этих строк нельзя обвинить в малодушии. Бывалый моряк, человек недюжинного мужества и трудолюбия, он честно и с горечью поведал о результатах своего нелегкого путешествия.

Неужели «черной пасти» Кара-Богаза удалось навеки отпугнуть от себя человека?

Вот передо мной письмо другого исследователя, датированное 12 декабря 1921 года:

«Глубокоуважаемый и несказанно дорогой Николай Семенович…

Да, много надо сил и мужества, как Вы справедливо указали в своем письме, чтобы жить здесь и бороться за спасение научного исследования Кара-Бугаза и за возможность хотя бы отчасти выполнить намеченные работы. Мы еще в проливе и не можем выйти в залив из-за отсутствия плавучих и живых сил. Только любовь к Кара-Бугазу может заставить ехать и не доехать до него в течение 5 месяцев, надеясь все же быть там. Пока удается производить гидрологические и гидрометеорологические работы в проливе, отдельными выходами наблюдать начало выбросов соли и температуру воды в заливе, производя химические анализы проб воды и образцов соли, приносимых с берегов залива… Работ по обезвоживанию, к сожалению, не производится за отсутствием каких-либо материалов и устройств. Естественное обезвоживание в настоящее время, конечно, немыслимо: страшно сыро, и идут хотя и небольшие, но почти ежедневные дожди. Температура воздуха скачет от +12 до –2,5° при постоянных ветрах. Все же надеюсь по снятии катера с мели, на которую он сел 10.XI, отправиться в залив для производства работ».

Чувствуется, что человек пришел сюда не как турист, который с известной долей отваги решил посетить и описать экзотический уголок природы. Нет, за отрывистыми строчками письма вырисовывается бескорыстие самоотверженного труженика, убежденного в пользе начатого дела для своего народа, неутомимая жажда исследователя, сменившего удобную лабораторию на шаткую палубу старенького суденышка, несгибаемая воля патриота, идущего сквозь опасности в трудный поход ради освоения еще одного «белого пятна» на карте Родины. И это в годы, когда страна, пережившая мировую и гражданскую войны, задыхалась от неимоверной транспортной и промышленной разрухи, от ужасающей нищеты и бесхлебья, от недостатка самых элементарных вещей, не то что тонкой исследовательской аппаратуры…

Кто же он, этот человек, с такой искренней теплотой отвечавший на письмо академика Курнакова?

Горный инженер Николай Иванович Подкопаев. В широко известной читателям повести Константина Паустовского «Кара-Бугаз» ему посвящена целая страница текста… из ста тринадцати. Что же касается академика Курнакова, который был не просто вдохновителем, организатором, но и самоличным участником наступления на Кара-Богаз-Гол, то тщетно будет искать читатель его имя в прекрасной повести Паустовского.

Правда, смешно считать «Кара-Бугаз» историческим справочником. У писателя были совсем иные цели. О них поведал Константин Паустовский в своей книге «Золотая роза».

«…Когда я работал над „Кара-Бугазом“, я думал главным образом о том, что многое в нашей жизни можно наполнить лирическим и героическим звучанием и выразить живописно и точно. Будь то повесть о глауберовой соли или о постройке бумажной фабрики в северных лесах».

Из-под пера замечательного советского писателя вышла увлекательная поэма об одном из настоящих «чудес света», о делах и мечтах человеческих.

Право же, не ради торжества исторической правды затеян наш рассказ.

Разве не увлекательно путешествовать по сложным историческим лабиринтам, которыми шли научные идеи, прежде чем они вылились в сухие строки учебника? Ведь если копнуть поглубже, за любой формулой, за любым выводом откроется полная драматизма эпопея, которая достойна подлинно «Паустовской» кисти! И побольше бы таких книжек, как «Кара-Бугаз». Они отучают смотреть на многие «обыденные вещи» холодным, безразличным взглядом. А там — кто знает? — из искорки чисто читательского любопытства, глядишь, разгорится неугасимое пламя исследовательской жажды…

«Кара-Бугаз» — одна из тех редких книжек, где нечего ни убавить, ни прибавить. И все же, уж коли речь зашла об истории обуздания «черной пасти», наверное, стоило бы помянуть, что не кто иной, как Курнаков, еще в 1909 году предложил направить исследовательскую группу во главе с Подкопаевым на Кара-Богаз-Гол. «Исследования, проведенные под непосредственным руководством академика Курнакова, — писал впоследствии Подкопаев, — дали возможность коренным образом изменить взгляд на Кара-Бугаз, как неисчерпаемое месторождение глауберовой соли».

И не кто иной, как Курнаков, своими работами обратил внимание на огромное промышленное значение освоения Кара-Богаз-Гола для России.

«Действительно, — доказывал Николай Семенович, — необычайная и единственная в своем роде мощность месторождения, относительная легкость добычи и дешевизна сообщения ставят Кара-Бугаз на первое место среди других источников сернонатриевой соли не только в нашем отечестве, но и в целом мире. Ввиду громадных запасов сернонатриевой соли в Кара-Бугазе и горьких озерах Арало-Каспийского бассейна изучение методов использования названного вещества составляет одну из основных задач русской химической технологии. Сюда относятся: добывание соды и серной кислоты, получение сернистых, серноватистых солей, замена угленатриевой соли в стекольном, глиноземном и других производствах».

Добавим: серная кислота — важнейшее сырье в производстве полимеров и удобрений.

Неисчерпаемая кладовая богатств! И это тот самый Кара-Богаз, которому лейтенант Жеребцов твердой рукой подписал свой приговор… Но даже если бы бравый лейтенант оказался более проницательным, тогдашней химии все равно не по плечу оказалось бы овладение «котлом, где выкипает каспийская вода». Лишь физико-химический анализ вручил науке надежные методы изучения подобных систем.

Механизм осаждения соли в заливе — каков он?

Много разных солей содержат воды Кара-Богаза. Но главные составные части рассола: поваренная соль, сернокислый натрий и хлористый магний. Анализ во время экспедиций дал интересные результаты. Концентрация соли в Кара-Богазе в десятки раз выше по сравнению с Каспием. И соотношение между компонентами иное. В водах залива доля сернокислого натрия возрастает, а поваренной соли падает. В чем дело? Курнаков сделал вывод, что сульфат натрия выпадает из раствора в процессе обменной реакции: MgSO4 + 2NaCl↔MgCl2 + Na2SO4.

Разбираясь в фазовых равновесиях, читатель уже сталкивался с четырехфазной системой «айсберг в море»: соль — лед — раствор — пар. Система была двухкомпонентной: поваренная соль + вода. В присутствии всех четырех фаз число степеней свободы — помните? — равнялось нулю. Но нас не интересует столь редкостное стечение обстоятельств (во всяком случае, для Кара-Богаз-Гола). Разберем лучше тот случай, когда температура изменяется, оставаясь все время выше 0 градусов. У системы появляется лишняя степень свободы. Одна из фаз (лед) исчезает. Остаются солевой осадок, раствор и пары над ним. И до тех пор пока на дне лежат кристаллы соли, раствор при любых температурах останется насыщенным. А если солевой осадок не так уж велик? Тогда в какой-то момент он может раствориться целиком. При дальнейшем нагревании системы (теперь уже двухфазной) раствор окажется ненасыщенным. Иными словами, дальнейшему повышению температуры уже не будет однозначно отвечать рост концентрации. Равновесная система раствор — пар утратит зависимость еще от одного параметра — концентрации. И, следовательно, обретет дополнительную степень свободы.

Реальная картина равновесий в любом море, конечно, сложнее. Там, помимо поваренной соли, в воде растворены многие другие соединения. Правда, их количества незначительны сравнительно с ее концентрацией. Так что пренебречь ими — грех не велик. Иное дело рассол Кара-Богаз-Гола. Здесь нельзя не учитывать присутствие сульфата магния. Тем более что он не просто присутствует, а еще вступает с поваренной солью в обменное взаимодействие: MgSO4 + 2NaCl↔Na2SO4 + MgCl2.

Пара взаимно противоположных стрелок — обозначение химического равновесия. Процесс течет в обе стороны.

Нечто в этом же роде наблюдал и Бертолле во время египетской кампании Наполеона. Именно тогда ученый сделал вывод, что химическое взаимодействие — процесс обратимый. В это было трудно поверить. Ведь большинство реакций, с которыми химики имели дело, шло, как правило, в одном направлении.

Опустите в раствор медного купороса стальное перо. Через несколько минут оно покроется золотистым налетом меди. Зато вспять процесс Fe + CuSO4→FeSO4 + Cu сам собой не идет. Если в раствор ляписа добавить поваренной соли, реакция закончится в тот момент, когда практически все азотнокислое серебро превратится в хлористое: AgNO3 + NaCl→AgCl + NaNO3. Выпадет белый творожистый осадок. А если поджечь гремучую смесь, то взрыв приводит к образованию воды: 2H2 + O2→2H2O. Два газа порождают жидкость. И во многих других случаях продукт удаляется из сферы реакции. Волей-неволей казалось, будто процесс завершается лишь с окончательным превращением исходных реагентов в конечные продукты. На самом деле это не так.

Бертолле был все-таки прав, утверждая, что в любом случае устанавливается равновесие между прямой и обратной реакциями.

Правда, равновесие может быть сильно сдвинуто. Настолько сильно, что практически все исходные вещества превратятся в конечные продукты. Но все зависит от условий реакции.

Если хорошенько нагреть водяные пары (до 2000 градусов), начнется расщепление воды: 2H2O→2H2 + O2. Но одновременно будет протекать и реакция соединения: 2H2 + O2→2H2O. Процесс обратим. То же самое справедливо и для взаимодействия N2 + 3H2↔2NH3. Когда скорости прямой и обратной реакций одинаковы, устанавливается равновесие.

Математическое выражение для скорости реакции было найдено в 1864–1867 годах норвежскими учеными К. Гульдбергом и П. Вааге. Оказывается, скорость пропорциональна произведению степеней концентраций. Слово «степень» здесь имеет прямой алгебраический смысл. Возьмем, к примеру, реакцию 2H2 + O2→2H2O. Ее скорость V1 = k1[H2]2[O2]; k1 — некая постоянная величина. Она зависит лишь от способов выражения концентрации наших реагентов H2 и O2. Величина H2 взята в квадрате потому, что стехиометрический коэффициент в уравнении реакции 2H2 + O2→2H2O равен 2. Если он равен 3, то соответственно концентрацию следует брать в кубе. (Например, для взаимодействия N2 + 3H2→2NH3.) И так далее. Скорость обратной реакций 2H2O→2H2 + O2, очевидно, выразится следующим равенством: V2 = k2[H2O]2.

Теперь предположим, что у нас установилось равновесие: N2 + 3H2↔2NH3. Это значит V1 = V2. То есть k1[N2][H2]3 = k2[NH3]2. Проделаем с этим равенством несложную математическую процедуру: [N2][H3]3/[NH3]2 = k2/k1.

Отношение постоянных величин k2/k1 неизменно. Заменим его ради простоты одной буквой K. Это так называемая константа равновесия

K = k2/k1

Читателю предлагается набраться терпения и с карандашом в руках проштудировать этот кусок. Все понятия и формулы нам пригодятся при чтении последней главы.

Полученное соотношение выражает закон действующих масс. Так одна из идей Бертолле обрела четкую математическую форму.

Из закона действующих масс вытекают любопытные следствия.

Во-первых, состояние равновесия не зависит от того, какие реагенты мы берем в качестве исходных. Скажем, в реакции N2 + 3H2↔2NH3 мы по традиции считали исходными веществами азот и водород. Конечным продуктом — аммиак. Но можно взять смесь аммиака с водородом. Или с азотом. Наконец смесь всех трех участников взаимодействия. И в каких угодно пропорциях. Все равно, как только наступит равновесие, соотношение концентраций изменится так, что равенство K = k2/k1 будет неукоснительно соблюдено.

Второй вывод из закона: если в равновесную систему добавить какое-то количество одного из компонентов, равновесие немедленно сместится. Нельзя увеличить или уменьшить ни одной из концентраций, чтобы не вызвать изменения остальных.

Положим, мы добавили водорода. Это немедленно подстегивает скорость прямой реакции. Равновесие утрачено. Правда, ненадолго. Прямая реакция увеличивает выход аммиака. Но рано или поздно снова наступает равновесие. И опять соотношение «действующих масс» будет удовлетворять формуле K = k2/k1. Тому же значению K, что и в исходной стадии — до введения водорода.

Вся эта динамика химических равновесий ускользала от внимания ученых, загипнотизированных законом Пруста — Дальтона и гармонировавшей с ним идеей однобокой направленности химических процессов. Физико-химический анализ, напротив, во главу угла поставил учение о химических и фазовых равновесиях, впитав в себя физические и математические идеи.

Каким бы непокорным ни был Кара-Богаз-Гол, а правилу фаз Гиббса и закону Гульдберга — Вааге он, безусловно, подчиняется.

Так подчас укрощение строптивых «чудес природы» начинается с познания их математических закономерностей.

Мы оставили рассол, плещущийся в «черной пасти», в состоянии равновесия раствор — пар. Между тем внутри одной лишь жидкой фазы этой системы идут свои равновесные процессы, химические: 2NaCl + MgSO4↔MgCl2 + Na2SO4.

Почему бы не использовать для этой реакции формулу закона «действующих масс»? Пожалуйста, вот она:

K = [MgSO4][NaCl]2/[MgCl2][Na2SO4].

Увы, на деле все обстоит гораздо сложнее. Каждая из этих солей — прекрасный электролит. Значит, все они в воде диссоциируют. Например, Na2SO4↔2Na+ + SO42–. Разумеется, и для такой реакции можно написать соотношение: K = [Na2SO4]/[Na+]2[SO42–]. Но глауберова соль распадается на ионы полностью. Что же, ставить в числителе нуль? Очевидный абсурд!

Допустим теперь, что часть сернокислого натрия в недиссоциированном состоянии. Иными словами, K не равно нулю. Это вполне реально: выпадает же Na2SO4 на дно Кара-Богаз-Гола в виде осадка! Но в такой двухфазной системе раствор над солью должен быть насыщенным. Сернокислый же натрий хорошо растворим. Да и другие его спутники в пучинах Кара-Богаза не хуже. Стало быть, в рассоле всегда, даже если он не насыщен, присутствует уйма ионов в больших концентрациях. И они мешают выполнять друг другу закон действующих масс. По крайней мере в той простейшей формулировке, с которой мы познакомились. Приходится вводить поправки. Расчеты становятся более громоздкими.

Конечно, химики в большинстве случаев справляются с математическими трудностями. Но, к сожалению, рассказ о том, как они это делают, отнял бы слишком много места. Сейчас важно усвоить лишь одно: даже за самым бесхитростным уравнением реакции прячется сложное взаимоотношение многих сил. Скорость и направление всякого процесса зависит от разных факторов. Тут и температура, и давление, и присутствие катализатора, и число фаз в системе, и рождение новых фаз, и степень диссоциации, и влияние веществ-соседей — всего не перечесть. Ничего нет удивительного, что в приближенных вычислениях приходится опускать кое-какие третьестепенные детали. Удивительно то, как химия умудрилась проникнуть в этот сложный мир физико-химических равновесий и описать его лаконичным и емким языком математики! И если нынешний химик с законной гордостью может сказать: «Поверил я алгеброй гармонию», — то первое слово признательности за мощное математическое вооружение он обратит к основоположнику физико-химического анализа.

Тщательное изучение результатов экспедиции, дополнительные лабораторные исследования позволили Курнакову вскрыть механизм садки глауберовой соли в каспийском заливе. Летом рассол нагрет до 18–20 градусов. Он далек от насыщения. Зато осенью и зимой при температуре плюс 5,5 градуса раствор становится насыщенным. Но не по отношению ко всем компонентам сразу. Лишь к глауберовой соли. Иначе в осадок выпадала бы смесь солей. А этого не происходит.

«Принимая во внимание, — писал Курнаков, — что рассол Кара-Бугаза представляет равновесную систему, состав соляной массы которой сохраняется приблизительно постоянным в течение современного периода ее существования, мы приходим к весьма важному в практическом отношении заключению, что глауберова соль в Кара-Бугазе кристаллизовалась прежде и выделяется теперь чистой, без подмеси хлористого натрия… Зная величину поверхности и среднюю глубину Кара-Бугаза, мы вычисляем общее количество глауберовой соли, которая может выделяться в заливе, равным 6 миллиардам тонн. Таким образом, Кара-Бугаз представляет собой, несомненно, величайшее месторождение сернонатриевой соли в мире».

В 1920 году о сказочных богатствах Кара-Богаз-Гола узнал Ленин. Правительство поддержало предложения Кара-Бугазского комитета, созданного при Институте физико-химического анализа под председательством Курнакова. На исследовательские работы было отпущено 40 тысяч рублей золотом. 40 тысяч! Из скудной казны молодого Советского государства. Так в 1921 году была снаряжена экспедиция Подкопаева. За три года научной разведки скопилась колоссальная коллекция экспериментальных данных.

Работы Курнакова подтвердили предположение, что глауберова соль в Кара-Богаз-Голе относится к числу периодических минералов. Таких, которые то появляются, то исчезают. К зиме соль ложится могучим пластом на площади в 18 тысяч квадратных километров. Холодные штормовые волны выбрасывают ее далеко на берег. А пенистые языки теплого летнего прибоя слизывают обратно. Но если кристаллы соли залеживаются на солнце, происходят интересные фазовые превращения. Глауберова соль (она же мирабилит) представляет собой десятиводный кристаллогидрат. Высыхая, она переходит в обычный сернокислый натрий Na2SO4.

Гидратные формы существуют не только в кристаллическом состоянии. Они встречаются и в растворах. Это открыл Д. И. Менделеев.

Все знают, что разбавлять концентрированную серную кислоту можно, лишь добавляя ее в воду, а не наоборот. Иначе более легкая вода может закипеть на поверхности густой маслянистой жидкости и обдать незадачливого экспериментатора веером едких горячих капель. Этот эффект связан с химическими превращениями в системе серный ангидрид — вода. Система однофазная, не правда ли? Но однофазная не значит еще однообразная. В ней обретаются разные химические индивиды. Она послужила классическим объектом исследования для великого создателя периодического закона.

Моногидрат H2SO4 общеизвестен. А такой гидрат, как H2SO4·H2O? Или H2SO4·2H2O? H2SO4·6H2O? И даже H2SO4·150H2O?

Странно, но факт: перед нами индивидуальные химические соединения! Никто бы и не догадался, что они существуют в однородной с виду смеси серной кислоты с водой, не прибегни Менделеев к оригинальному физико-химическому способу исследования.

Менделеев измерял, как изменяется приращение удельного веса (s) системы SO3—H2O в зависимости от концентрации (p) серного ангидрида в воде.

Замечательна сама терминология этого труда. Она почерпнута из раздела высшей математики, который называется анализом бесконечно малых.


Удельный вес Менделеев относил к интегральным величинам. Они легко получаются из расчета. Сначала взвешивается кислота в склянке. Потом вес делится на объем. Вот и вычислен удельный вес. А можно прямо в раствор опустить специальный приборчик-поплавок и прочитать по шкале численное значение. Иное дело производная ds/dp. Это приращение удельного веса при уменьшении количества воды в системе. Оно принадлежит к разряду дифференциальных свойств. В них выражается не сама величина, а скорость ее изменения с изменением состава раствора. Обе величины Менделеев наносил на график: ds/dp на ось ординат (вертикаль), p — на ось абсцисс (горизонталь).

Из математических соображений заранее ясно, что если точки лягут на одну сплошную прямую линию, то это будет означать непрерывное изменение свойств системы. Именно такого поведения и ожидали от растворов, этих «однородных смесей».

Но странное дело — чертеж оказался как бы склеенным из обломков прямой. Причем ломаная линия была разорвана на куски: конец одного участка не совпадал с началом другого. Словно кто-то разобрал железнодорожный рельс и растащил в разные стороны его концы у стыков.

Ученый пришел к выводу: геометрические разрывы сплошности отвечают химической катастрофе, скачкообразному распаду особых гидратных форм. Например, для серной кислоты это H2SO4, H2SO4·2H2O, H2SO4·6H2O и так далее. Для этилового спирта C2H5OH·3H2O, C2H5OH·12H2O.

Не успело, однако, открытие Менделеева увидеть свет, как тут же появились опровержения. Утверждалось, что тщательная проверка и перепроверка опытных результатов никаких изломов и разрывов не обнаружила. Их появление, мол, следует отнести на счет неточности наблюдений.

С еще большим рвением оспаривалось теоретическое истолкование данных, полученных столь необычным для классической химии методом. «Если бы гидраты действительно существовали в растворе, то их распадение не имело бы характера скачков, но как везде, так и здесь происходило бы непрерывное изменение состояния равновесия с концентрацией».

Так возражал своему русскому коллеге Вильгельм Нернст, крупнейший немецкий физико-химик (цитата взята из его солидной монографии «Теоретическая химия», переведенному нас в 1904 году).

Думал ли, гадал Нернст, что ему придется в ближайшем переиздании вычеркнуть свое опровержение?

— Изменение равновесного состояния, непрерывно! — считал тогда Нернст.

— Напротив, для так называемой «однородной среды» характерны разрывы сплошности, соответствующие определенным соединениям! И такой вывод подкреплен математическим анализом экспериментальных результатов, — утверждал Менделеев.

Не правда ли, подобное сопоставление мнений, вернее противопоставление, чем-то напоминает спор между Бертолле и Прустом? Только почему вдруг Менделеев занимает позицию Пруста? Разве не было сказано несколькими страницами раньше, что именно гидратная теория Менделеева первой нанесла сокрушительный удар неограниченной монополии закона постоянных и кратных отношений?

Никакого противоречия здесь нет. Вспомните: ведь речь идет о растворах! Тех самых «однородных смесях», от которых открещивался Пруст. Он воздвиг нерушимую стену между химическим соединением и физической смесью.

Химические процессы подчиняются закону постоянства состава. Вот критерий, который утвердился в химии со времен Пруста. А явления в растворах и смесях… О, это совсем другое дело! Их отделяет от химических четкая грань.

«Грани нет между этими явлениями и чисто химическими», — заявил Дмитрий Иванович Менделеев. В своем капитальном труде «О соединении спирта с водой» он высказал мнение, что определенные химические соединения — лишь частный случай неопределенных соединений или растворов. Ибо к жидким однородным системам тоже приложимо мерило стехиометрии! Тому свидетельство гидраты спирта и серной кислоты.

Это было не отрицанием законов Пруста — Дальтона. Скорее их обобщением. Но как ни парадоксально, обобщение вело к ограничению! Теперь прежний критерий объекта химических исследований оказывался явно недостаточным. И Курнаков решительно пересмотрел его, завершив дело, начатое Менделеевым.

Нернст очень скоро убедился в правоте Менделеева. Знаменитый Аррениус, создавший теорию электролитической диссоциации, полностью подтвердил экспериментальные результаты и теоретические выводы автора гидратной теории. А геометрические приемы Менделеева получили блистательное развитие в трудах Курнакова.

Разрывы сплошности на своих диаграммах Менделеев называл «особыми точками». Подобных геометрических характеристик впоследствии оказалось немало. И все они стали тончайшим инструментом исследования в физико-химическом анализе.

Когда мы говорим «раствор», то подразумеваем нечто жидкое. Однако физико-химический анализ занимается и совершенно необычными растворами — твердыми.

Занавес опускается, легко шурша тяжелыми складками, и над просцениумом смыкаются бархатные крылья мхатовской чайки. Спектакль окончен. Улеглись страсти, еще минуту назад кипевшие в извечном конфликте между силами добра и зла. «Финита ля комедиа», — вздохнет завзятый театрал, за улыбкой скрывая зевок. «Система пришла в равновесие», — подумает иной химик, глядя на застывший двукрылый взмах знаменитого мхатовского символа…

Равновесная система… Да, это тоже результат своеобразного драматического конфликта. Только столкновение разыгрывается между силами химического сродства.

Бурны и скоротечны страсти, кипящие в раскаленном чреве доменной печи, сонны и неторопливы геохимические процессы, породившие водную оболочку нашей планеты. Но как бы ни были несхожи между собой огненно-жидкий металл, стынущий в изложницах, и густой рассол Кара-Богаз-Гола, выкипающий под знойным дыханием пустыни, — все это системы, пришедшие в состояние умиротворенного равновесия. Для строгого описания подобных драматических «апофеозов» непригоден общепонятный язык драматургии. Мало того, даже классический язык древней науки, оперирующий латинскими значками химических формул, оказывается в этих случаях невыразительным, слишком скудным, слишком невнятным.


Совершенно по-новому зазвучал язык курнаковских геометрических построений.

Если бы Квазимодо, растопив свинец на крыше Собора Парижской богоматери, опустил в чан термометр, то столбик ртути остановился бы напротив отметки «327 градусов». А стойкий оловянный солдатик из милой и немного сентиментальной сказки Андерсена разомлел от каминного жара и превратился в крохотное металлическое сердечко при 232 градусах. Но до точных цифр обычно нет дела ни героям, ни авторам художественных произведений. Хотя будь эти цифры раза в три больше, нам не довелось бы вспоминать названные эпизоды. Лишь оттого, что свинец и олово плавятся при относительно низкой температуре, их легко растопить над костром или в камине. Но любой порядочный паяльник подтвердит, что третник — сплав олова и свинца — плавится при более низкой температуре (примерно 180 градусов), чем каждый из металлов в отдельности.


Хотите проверить? Возьмите чистое олово и свинец и приготовьте сплавы: 90 процентов Pb плюс 10 процентов Sn, 80 процентов Pb плюс 20 процентов Sn и так далее. Только имейте в виду: проценты здесь не совсем обычные. Не весовые. Не объемные. Атомные.

Пусть надо составить пробу 50 процентов Pb и столько же Sn. Это означает, что на каждые 50 атомов свинца должно приходиться 50 атомов олова. Так и будет, если 1 грамм-атом свинца (82 грамма) сплавить с 1 грамм-атомом олова (50 граммов). Разумеется, вовсе не обязательно брать именно такие количества. Можно обойтись половинками или даже меньшими долями грамм-атома. Лишь бы соблюдалось соотношение 50 процентов Pb плюс 50 процентов Sn. (Правда, чем весомее проба, тем точнее измерения!)

Возьмем еще пример: 90 процентов Pb плюс 10 процентов Sn. 90 процентов от 82 граммов (1 грамм-атом Pb) составит 73,8 грамма, а 10 процентов от 50 граммов (1 грамм-атом Sn) соответственно 5 граммов.

Теперь осталось взять навески Pb и Sn попарно и сплавить в тигле или, на худой конец, в консервной банке.

Здесь читателю предлагается возможность нарисовать чайку на расческе.

Измерьте точки плавления (затвердевания) каждой пробы, а также чистого олова и свинца.

У вас получится 11 цифр. А теперь возьмите линейку и начертите на листке миллиметровки три прямые линии так, чтобы они образовывали букву «П», перевернутую кверху ногами. Длину перекладины (это ось абсцисс) лучше взять равной 10 сантиметрам. Тогда каждое сантиметровое деление будет соответствовать одной из ваших проб. Крайние деления — чистым свинцу и олову. На правой вертикали (это ось ординат) нанесите отметку на высоте, скажем, 65,4 миллиметра. Поставьте рядом цифру 327 градусов. Это температура плавления свинца. Важно запомнить, что избранный масштаб у нас таков: 1 миллиметр соответствует 5 градусам. Теперь легко будет нанести метку 232 градуса на левую вертикаль. Для каждой из остальных девяти отметок можно восстановить по перпендикуляру из сантиметровых делений на оси «состав». Они поднимутся словно зубья расчески. На каждый зубец, соответствующий какому-то определенному соотношению компонентов в сплаве, нанесите температуру плавления. Осталось соединить точки плавной линией — диаграмма готова. Посмотрите: разве не напоминает ваша кривая взмах крыльев мхатовской чайки?

Самая нижняя точка кривой (примерно 180 градусов) очутится на вертикали, исходящей из абсциссы с составом 30 процентов Pb плюс 70 процентов Sn.




Поделиться книгой:

На главную
Назад