Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус дю Сотой на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Рис. 3.6. Сеть дорог, помеченных цифрами магического квадрата

Еще одна классическая игра, стратегия которой становится очевидной, если перевести ее на другой язык, – это игра ним. Есть три кучки бобов. Каждый из участников, дождавшись своего хода, забирает из одной из кучек любое количество бобов. Побеждает тот, кто забирает последний боб. Количество бобов в кучках в начале игры может быть любым.

Предположим, например, что у нас есть три кучки, в которых 4, 5 и 6 бобов. Существует ли стратегия, помогающая победить в этой игре? Хитрость заключается в том, что количество бобов в каждой кучке нужно перевести в двоичную систему счисления. Как вы помните из предыдущей главы, в двоичной системе числа основаны на степенях 2, а не на степенях 10, как в десятичной. Так, 100 в двоичной системе обозначает число 4, потому что в позиции, соответствующей 22, стоит единица. Соответственно, 5 = 22 + 1, то есть 101, а 6 = 22 + 2, то есть 110. Кроме того, есть одно странное правило сложения таких чисел, которое поможет вам понять, выигрышно ли ваше положение в игре. Нужно складывать цифры, стоящие в соответствующих столбцах, но с учетом правила, согласно которому 1 + 1 = 0. Итак,


Выигрышная стратегия требует забрать из одной кучки такое количество бобов, чтобы эта сумма стала равна 000. Оказывается, это всегда возможно. Например, если я заберу 3 боба из кучки, в которой их 5, в ней останутся 2 боба. В двоичной системе 2 – это 010. Сосчитаем сумму еще раз и получим 000:


Самое замечательное в этом то, что любой ход, который сделает после этого ваш противник, изменит сумму так, что в ней появятся какие-нибудь единицы. А если в сумме есть единицы, значит, партия еще не выиграна. Но ваша стратегия позволяет каждый раз возвращать сумму к числу 000. В какой-то момент это приведет к тому, что вы действительно заберете со стола все бобы и победите в этой партии.

Язык двоичных чисел преобразует эту игру в нечто такое, в чем вы всегда можете победить, каким бы ни было количество бобов или кучек. Если только вы выучите двоичные числа. Если в начале игры сумма уже представляет собой последовательность нулей, непременно уступите первый ход противнику. В ином случае делайте первый ход сами, причем так, чтобы он сводил сумму к нулям.

Оказывается, стратегия использования языка двоичных чисел для понимания состояния игры помогает разобраться в массе других сходных игр. Попробуйте сыграть в игру черепахи. Пусть у нас есть ряд черепах, лежащих случайным образом – некоторые лежат на животе, а некоторые перевернуты на спину. (Если у вас дома нет достаточного количества черепах, можно взять монеты. Орлы соответствуют черепахам, лежащим на животе, а решки – черепахам, лежащим на спине.) Каждый из участников игры, когда до него доходит очередь, может перевернуть какую-нибудь черепаху на спину (или монету так, чтобы она лежала не орлом, а решкой вверх). Кроме того, он может, если захочет, перевернуть одну черепаху (или монету), лежащую левее той, которую он перевернул на спину. Вторая черепаха или монета может быть в любом состоянии, на животе или на спине (орлом или решкой). Вот, например, ряд из n = 13 монет:

Р О Р Р О Р Р Р О О Р О Р

Один из возможных ходов в этом положении – перевернуть монету, лежащую в 9-й позиции, чтобы она лежала не орлом, а решкой, и монету, лежащую в 4-й позиции, чтобы она лежала не решкой, а орлом.

Побеждает тот, кто перевернет с живота на спину последнюю черепаху (или из орлов в решки последнюю монету). На первый взгляд кажется, что эта игра не имеет ничего общего с игрой ним, но на самом деле это та же самая игра, только замаскированная.

Число черепах, еще лежащих на животе, соответствует числу кучек, а положение каждой такой черепахи, считая слева, – количеству предметов в соответствующей кучке. В случае показанного на иллюстрации расклада из 13 монет получается 5 кучек, в которых лежат 2, 5, 9, 10 и 12 бобов. Перевернуть черепаху в 9-й позиции на спину (или решкой кверху) и перевернуть черепаху в 4-й позиции на живот – это все равно что забрать 5 бобов из кучки с 9 бобами. Теперь использование языка двоичных чисел, который обеспечивает победу в игре ним, порождает стратегию переворачивания черепах в игре, на первый взгляд не имеющей с той ничего общего.

Хотя вам, возможно, никогда не придется играть в переворачивание черепах, философскую основу победы в этой игре стоит запомнить. Когда вы сталкиваетесь с какой-либо задачей, нельзя ли преобразовать ее в нечто такое, во что вы уже умеете играть? Не существует ли словаря, переводящего эту задачу на язык, делающий решение более очевидным? Когда перед вами возникает стена, в том языке, который вы используете, может не быть способов ее преодолеть. Но, стоит перейти в другой мир, сменив этот язык на другой, там может открыться шорткат, который позволит вам пробраться за стену.

Шорткат к шорткатам

Если задача кажется неподатливой, попытайтесь найти словарь, помогающий перевести ее на другой язык, который яснее покажет решение. Если ваша вновь разгоревшаяся страсть к домашнему мастерству не дает тех результатов, на которые вы рассчитывали, возможно, вам нужно сменить чертежи на числа и посмотреть, не покажут ли измерения, почему детали не желают правильно соединяться. Если бизнес-план, набитый таблицами с числами, не отражает всех достоинств вашего проекта, посмотрите, не станет ли ваша идея понятнее из иллюстраций или графиков. Не найдется ли какого-нибудь алгебраического приема, который сэкономит вам многие часы, уходящие на ввод финансовых данных компании в очередные таблицы? Не окажется ли ваша борьба с конкурентами замаскированной игрой, победная стратегия которой вам уже известна? Вот к чему призывает эта глава: ищите подходящий язык, который поможет вам думать лучше.

Пит-стоп: Память

Хотя я успешно овладел языком математики, меня всегда приводило в отчаяние то, что я не смог освоить более непредсказуемые языки, например французский или русский, которые я пытался выучить, когда мечтал стать разведчиком. Хотя Гаусс тоже отрекся от увлечения языками, чтобы заняться математической карьерой, впоследствии он еще возвращался к изучению новых языков – например, санскрита или русского. К шестидесяти четырем годам он, прозанимавшись русским два года, выучил этот язык настолько хорошо, что смог читать Пушкина в оригинале.

Вдохновившись примером Гаусса, я решил заново попытаться выучить русский. Одна из проблем, с которыми я сталкиваюсь, заключается в том, что мне попросту трудно запоминать новые, незнакомые слова. Мой шорткат к запоминанию – выявление паттернов. Но что делать, если паттернов нет? Я хотел узнать, не бывает ли альтернативных шорткатов, которые используют другие. С этим вопросом лучше всего было обратиться к Эду Куку, гроссмейстеру памяти и основателю новой системы изучения языков Memrise.

Чтобы получить звание гроссмейстера памяти, нужно суметь запомнить за один час 1000-значное число. В течение следующего часа вам дается задача запомнить порядок карт в десяти колодах. Наконец, вам дают две минуты на запоминание еще одной колоды. По правде говоря, пытаться приобрести такую способность кажется делом довольно бессмысленным, но я понял, что для человека, способного на это, запоминание списка русских слов должно быть сущим пустяком.

Учитывая, что цифры 1000-значного числа выбираются случайно, моя стратегия поиска паттернов тут, вероятно, не пригодилась бы. Какой же шорткат использовал Кук, чтобы запомнить тысячу случайно выбранных цифр? Оказывается, он применяет метод так называемого дворца памяти.

«Шорткат сводится к подбору тому, что трудно запомнить, некой замены, которую запомнить легче, – говорит Кук. – Мы помним то, что ощущаем, видим, осязаем, то, что вызывает какие-нибудь эмоции. Это и требуется: преобразование в нечто такое, что задействует первичное сознание.

Чтобы запомнить 1000-значное число, я расставляю по порядку множество картинок, и каждая картинка соответствует какому-нибудь числу. Например, если я пытаюсь вспомнить число вроде 7831809720, его обычно очень трудно запомнить, потому что это просто числа, они звучат приблизительно одинаково, и никакого отдельного смысла в них нет. Но в моем воображении 78 – это тот парень, который травил меня в школе и подвешивал меня за ногу над лестничным пролетом, а на мне были спортивные трусы – очень памятный момент. Гораздо лучше запоминается, чем число 78».

Каждое двузначное число превращается в какого-нибудь персонажа. На личном языке Кука число 31 – это Клаудия Шиффер «в том достопамятном желтом платье из рекламы “ситроена”». Добавление дополнительного цвета важно. «Чем ярче и необычнее образ, тем лучше он запоминается». Число 80 – это один из друзей, у которого очень забавное лицо. 97 – крикетист Эндрю Флинтофф. 20 – отец Кука.

«Я составил этот словарь чисел, когда мне было лет восемнадцать, так что он стал окаменелым отпечатком моего подросткового воображения, моих настроений, красивых людей, о которых я читал в журналах, моих родных, моих лучших друзей», – говорит он.

Хотя Кук прав, что большинству людей все числа кажутся на одно лицо, математик, проводящий все больше и больше времени в путешествиях по миру чисел, начинает познавать индивидуальные черты каждого из них. Каждое обретает свой характер. Про великого индийского математика Рамануджана говорили, что он знает каждое число как личного друга. Однажды, когда он был болен, работавший вместе с ним Харди навестил его в больнице и, не зная, каким разговором развлечь коллегу-математика, вспомнил, что приехал на такси с довольно скучным номером – 1729. Рамануджан немедленно ответил: «Вовсе нет, Харди. Это очень интересный номер. Это наименьшее число, которое можно выразить в виде суммы двух кубов двумя разными способами». 1729 = 123 + 13 = 93 + 103. Однако у большинства нет таких тесных эмоциональных отношений с числами. Вероятно, запомнить Клаудию Шиффер в желтом все же легче, чем сумму кубов.

Но каким образом эти персонажи помогают Куку запомнить 1000 цифр? Главный прием – расположить персонажей в пространстве. «Чтобы составлять очень, очень длинные цепочки информации о чем-нибудь, нужен остов, на который можно спроецировать такие образы, причем оказывается, что у нас поразительно сильная пространственная память. Млекопитающие развили невероятную способность ориентироваться в невероятном множестве разных мест и запоминать их. Мы очень хорошо умеем это делать, даже если нам самим так не кажется. Мы можем запомнить конфигурацию запутанного здания, всего лишь походив по нему несколько минут. И эта сильная способность может служить шорткатом к использованию образов, представляющих в нашей памяти числа. Это называется созданием дворца памяти».

Дворец памяти – это не просто повествование, но повествование, перемещающееся в пространстве. Последнее обстоятельство особенно важно. «Преимущество дворца памяти перед простой историей состоит в том, что истории менее устойчивы к разрывам цепочки. Кроме того, сочинение истории требует дополнительной работы: вам нужно создавать логичный сюжет, а не просто проходить по чисто пространственным структурам; это требует от воображения несколько большего приложения сил».

Несколько лет назад я видел, как Кук строит такой дворец. Мы оба участвовали в «Марафоне памяти» в галерее Серпентайн, проходившем на выходных мероприятии, посвященном исследованию концепции памяти. Я помню, как он устроил для публики поразительную экскурсию по территории галереи и вокруг нее, используя все, что он там видел, для создания дворца памяти, который помог присутствующим запомнить всех президентов Соединенных Штатов. Имя каждого президента было переведено в какой-нибудь чрезвычайно яркий образ. Например, президент Джон Адамс превратился в изображение Адама и Евы, пытающихся устоять на крышке унитаза (слово john – жаргонное название туалета). Затем все эти образы были привязаны к определенным местам в парке. Чтобы вспомнить имена президентов, нужно было только восстановить в памяти эту прогулку – наш мозг, по-видимому, очень хорошо умеет это делать, – а затем обратиться к абсурдным образам, привязанным к разным ее точкам, и они напоминали нужные имена.

Использование пространственной памяти кажется поразительным шорткатом к запоминанию очень длинных последовательностей, будь то числа, президенты или любые другие объекты, которые вы пытаетесь сохранить в памяти. Это на удивление полезный прием, потому что трудность механического запоминания, по-видимому, возрастает экспоненциально. Первые 10 вещей запомнить легко, следующие 10 труднее, а если их больше 100 – почти невозможно. Но, как объяснил мне Кук, «совершенно поразительное свойство пространственного запоминания состоит в том, что его трудность, по-видимому, растет линейно. Я могу запомнить колоду карт приблизительно за минуту – может быть, за две, если захочу проверить, правильно ли я запомнил. Так вот, масштабирование получается линейным: за час я смогу запомнить 30 колод».

Когда я заметил, что способность запоминать расположение карт в колоде – это, возможно, не то искусство, которым захотят овладеть мои читатели, Кук постарался подчеркнуть, что дело совсем не в картах. Эта тактика работает, что бы вы ни пытались запомнить. Он объяснил, что использует в точности ту же самую стратегию, когда читает лекции, не опираясь на свои записи. Нужно преобразовать доклад в прогулку по какому-нибудь знакомому месту – например, по вашему же собственному дому – и расположить в каждой комнате те вещи, о которых вы собираетесь рассказать. По ходу выступления вам будет гораздо легче вспоминать подготовленный доклад, последовательно проходя по дворцу памяти, который вы построили у себя в уме: «Когда отправляешься в путешествие по дворцу памяти, место действия постоянно меняется. Из-за этого опасность смешения разных воспоминаний становится меньше, потому что каждое следующее воспоминание вызывается в новой обстановке».

На технике перевода двузначных чисел в визуальные образы основан и поразительный вычислительный фокус, который умеет показывать мой друг-фокусник Артур Бенджамин. Он научился перемножать в уме шестизначные числа. Один из приемов, которые он использует, – алгебраическое разбиение шестизначных чисел на части, которые можно перемножить по отдельности. Но для того, чтобы продолжать вычисления, ему нужно сохранить эти числа в памяти, чтобы впоследствии вспомнить и использовать их.

Бенджамин обнаружил, что, когда он пытался просто запомнить число, это мешало ему вычислять. Казалось, что численная память занимает то же место, что и вычисления. Поэтому он придумал специальный код, переводящий числа в слова. Оказалось, что запоминание слов происходит в другой, не затрагиваемой вычислениями, части мозга, и впоследствии слова можно вспоминать и снова переводить в числа по мере надобности.

Я беседовал с Эдом Куком в период карантина, введенного в Великобритании в связи с эпидемией COVID-19, и Кук вспомнил, что начал свой путь к званию магистра памяти в другой медицинской изоляции – когда подростком оказался на три месяца в больнице, где ему было нечем заняться. «Отчасти мной двигало удовольствие от доведения дела до логического конца. Студентом я показывал фокусы в барах, запоминая длинные числа и карточные колоды на спор на бутылку шампанского. А еще я начал хвастаться соседям, что я, наверное, один из самых быстрых запоминальщиков карт в мире. А они говорили: “Да ну тебя, Эд! Поди-ка докажи” – и это привело меня к этим чемпионатам памяти».

Дворцы памяти, возможно, помогают запоминать последовательности цифр или читать лекции без конспекта, но как насчет моей мечты выучить русский язык? Эту ли методику использует компания Memrise, созданная Куком программа изучения иностранных языков? Найду ли я наконец секретный шорткат к освоению нового языка?

«Повторение и проверка, – говорит Кук. – Повторяя выученное, мы доказываем своему мозгу, что эта информация достойна запоминания. Важные вещи обычно повторяются. Проверка важна, потому что воспоминания – это движения разума, и эти движения становятся тем увереннее, чем больше мы упражняемся в них».

Честно говоря, это не очень-то похоже на шорткат. Но у Кука есть и другие советы: «Третий компонент – мнемоника. Скажем, у меня есть сложное русское слово “остановка”. Как уложить его в голове? Я могу попытаться соотнести его с известными мне словами моего родного языка так, чтобы они связывали его в единое целое. Если мы хотим закрепить какое-то понятие в уме, его нужно вплести в уже существующую сеть ассоциаций. Например, “оста-“ похоже на “Остин” (Austin), название английской автомобилестроительной компании. Они выпустили достаточно машин – enough cars – что дает мне “-новка”, но я поеду на автобусе, и это напоминает, что значение этого слова – автобусная остановка».

Этот прием кажется более перспективным. Очевидно, необходимость повторения и проверки не позволит мне выучить русский за час. Но мнемоника действительно может оказаться шорткатом к запоминанию русских слов, которые до сих пор не задерживались у меня в памяти. Кроме того, Кук дал еще один, последний, совет по части изучения языков, который он получил от своей бабушки: «Лучше всего изучать язык в романе с иностранкой. Там у вас будут и увлечение, и мотивация, и внимание, и сосредоточенность, помогающие учиться очень быстро».

4

Шорткаты геометрические

Десять человек находятся в Эдинбурге, а еще пять – в Лондоне. Расстояние между этими городами – 400 миль. Где им нужно встретиться, чтобы суммарное расстояние, которое они проедут, было наименьшим?

В большей части этой книги я называю шорткатами абстрактные мысленные способы сокращения путешествия к цели. Но в этой главе я хочу поговорить о некоторых реальных, физических шорткатах. Если вы хотите попасть из точки А в точку Б физического ландшафта, понимание его основополагающей геометрии может помочь вам в прокладке маршрутов, которые приведут вас к цели быстрее, даже если на первый взгляд кажется, что они ведут совершенно в другом направлении.

Даже если вы не планируете реального путешествия, задачи, которые вам приходится решать, иногда можно перевести в нечто геометрическое и найти в их геометрическом представлении туннель или обход, означающий в обратном переводе шорткат к решению исходной задачи. Например, как я расскажу далее, цифровые компании наподобие Facebook и Google использовали то, как большие группы людей могут совместно находить шорткаты на местности, и эта философия легла в основу шорткатов в цифровом мире, по которому мы ежедневно разгуливаем.

Картография физических шорткатов увлекала на старости лет и Гаусса. Хотя в юности он полюбил математику, играя с числами, ему доставляло удовольствие и решение геометрических задач. Но речь шла не только об абстрактных окружностях и треугольниках Евклида. Как это ни удивительно для человека, страстно любившего абстрактные идеи математики, в возрасте сорока с лишним лет Гаусс взялся по поручению правительства Ганноверского королевства за чрезвычайно практическую работу по проведению геодезической съемки его территории. Впоследствии Гаусс заявил[43], что «все измерения мира не стоят одной теоремы, действительно приближающей науку к вечным истинам». В работе, которой занимался, не было точности и красоты теории чисел, увлекавшей его в школе; в ней было множество беспорядочных и неточных измерений с массой ошибок, вызванных неисправностью приборов или небрежностью исполнителей. По общему мнению, получившаяся в результате карта Ганновера не отличалась особой достоверностью.

Но то время, которое он потратил на съемку Ганноверского королевства, сделало возможным революционное открытие новых типов геометрии.

Из пункта А в пункт Б

Как известно, в 1492 году Христофор Колумб вышел в море, чтобы найти шорткат в Индию. Традиционные торговые пути предполагали долгую и опасную дорогу по суше, что ограничивало количество товаров, которые можно было перевезти за одно путешествие. Торговцы стремились найти морские пути. Некоторые считали, что можно проложить маршрут вокруг Африки, хотя другие полагали, что Индийский океан со всех сторон окружен сушей и недостижим этим путем[44]. Даже если такой кружной маршрут был возможен, многие думали, что он будет слишком долгим. Колумб верил, что, плывя на запад, сможет подойти к Индии и Китаю с другой стороны и тем самым открыть более удобный маршрут для ввоза пряностей и шелков, которые Европа покупала на Востоке.

Он произвел необходимые расчеты. Он считал, что для перехода от Канарских островов до Ост-Индии необходимо пройти всего 68 градусов долготы в западном направлении. Это, полагал он, соответствует расстоянию чуть больше 3000 морских миль. Путь, несомненно, получался коротким, если учесть, что длина морского пути из Лондона до Аравийского моря вокруг Африки составляет 11 300 морских миль. К несчастью, Колумб допустил в своих вычислениях несколько чрезвычайно серьезных ошибок, в результате чего сильно недооценил расстояние, которое нужно было пройти, если двигаться на запад.

Длину окружности Земли оценивали еще в древности. В 240 году до нашей эры греческий математик Эратосфен рассчитал, что она составляет приблизительно 250 000 стадиев. А какой длины стадий? Тут мы сталкиваемся с одной из трудностей вычисления расстояний. Какую единицу длины считать стандартной? Во времена Эратосфена такой единицей был стадий, равный длине легкоатлетического стадиона. Беда в том, что греческие стадионы были длиной по 185 метров, а в Египте, где жил и работал Эратосфен, они были короче – по 157,5 метра. Если истолковать эту неопределенность в пользу Эратосфена и взять египетскую длину стадия, получается, что его измерение отличается от современной оценки длины окружности планеты, составляющей 40 075 километров, всего на 2 процента.

Но Колумб предпочел более свежую оценку, которую получил средневековый персидский географ Абу-ль-Аббас Ахмад ибн Мухаммад аль-Фергани, известный на Западе под именем Альфарганус[45]. Колумб считал, что миля, которую Альфарганус использовал в своих вычислениях, – это римская миля, равная 4856 футам. На самом же деле арабская миля у Альфаргануса была гораздо длиннее – 7091 фут[46]!

По счастью для Колумба, на полпути к цели он не оказался посреди открытого океана, где у него кончилась бы провизия и другие припасы, а наткнулся на маленький остров Багамского архипелага, которому он дал название Сан-Сальвадор. Даже после этого он в течение некоторого времени не осознавал своей ошибки и называл обитателей острова индейцами, предполагая, что действительно добрался до Ост-Индии.

Настоящим шорткатом на восток в конце концов стал путь, физически проложенный человеком. Еще Наполеон обдумывал во время египетского похода идею прокладки канала между Средиземным и Красным морями[47]. Но из-за очередных ошибочных вычислений в то время считалось, что уровень Красного моря на целых десять метров выше Средиземного. Чтобы избежать затопления соседних средиземноморских стран, нужно было построить сложную систему шлюзов. В конце концов этот проект оказался не по карману французскому государству.

Когда было установлено, что уровень морей на самом деле одинаков, идея строительства канала стала снова набирать силу. Шорткат был наконец открыт 17 ноября 1869 года. Хотя Суэцкий канал находился под управлением Франции, пройти по нему первым удалось британскому кораблю. В ночь перед официальным открытием капитан паровой шхуны «Ньюпорт» Королевского военно-морского флота под покровом темноты провел свое судно сквозь флотилию, дожидавшуюся разрешения войти в канал, и ухитрился встать первым в очереди. Утром, когда все собрались отпраздновать открытие канала, оказалось, что «Ньюпорт» уже идет к Красному морю. Чтобы позволить пройти остальным судам, пришлось пропустить британцев первыми. Хотя капитан «Ньюпорта» получил официальный выговор от командования флота, неофициально Адмиралтейство поздравило его с успешно проведенной рекламной акцией[48].

Суэцкий канал сократил расстояние от Лондона до Аравийского моря на 8900 километров, уменьшив длительность путешествия на 43 процента. О важности этого шортката можно судить по тому, сколько раз за него сражались. Самый известный из таких случаев произошел в 1956 году, когда президент Египта Гамаль Абдель Насер захватил канал, находившийся тогда под управлением Великобритании, чем вызвал Суэцкий кризис. Сегодня через канал проходят 7,5 процента мировых морских перевозок, что приносит Администрации Суэцкого канала, принадлежащей египетскому государству, 5 миллиардов долларов в год.

Не менее важный шорткат, избавивший суда от необходимости огибать мыс Горн на южной оконечности Южной Америки, был открыт в 1954 году. На Панамском канале, соединяющем Атлантический океан с Тихим, действительно есть несколько шлюзов, через которые судам приходится проходить. Но это связано не с разными уровнями моря по разные стороны от канала, а с тем, что делать его достаточно глубоким оказалось слишком дорого. Вместо этого суда, проходящие через Панаму, пересекают искусственное озеро.

Вокруг света

Учитывая, что первое кругосветное путешествие состоялось только в начале XVI века[49], как Эратосфену еще в 240 году до нашей эры удалось так точно измерить длину окружности планеты? Он, понятное дело, не мог обернуть планету рулеткой. Вместо этого он измерил сравнительно небольшое расстояние на земной поверхности, а затем использовал один хитроумный математический шорткат, позволивший обмерить всю Землю.

Эратосфен был библиотекарем великой Александрийской библиотеки и внес поразительный вклад в несколько областей науки, от математики до астрономии, географии и музыки. Но несмотря на его революционные труды, современники не слишком ценили его таланты и наградили его прозвищем «Бета», намекавшим на его второстепенное положение среди мыслителей.

Одним из его замечательных изобретений был систематический метод составления списка простых чисел. Эратосфен предложил следующий алгоритм нахождения простых чисел в списке всех чисел от 1 до 100: возьмем число 2 и вычеркнем все следующие числа, делящиеся на 2. Для этого нужно просто перемещаться по таблице с шагом в две единицы, вычеркивая все числа, на которые попадаешь. Затем перейдем к следующему невычеркнутому числу. Это, разумеется, число 3. Теперь вычеркнем все числа, делящиеся на 3, проходя по таблице с шагом в три единицы и систематически вычеркивая все числа, на которые мы попадаем. Тут-то алгоритм и начинает работать в полную силу. Следующее число, еще не вычеркнутое из списка, – это 5. Повторим ту же операцию, которую мы производили с предыдущими числами: пройдем по таблице с шагом в пять единиц, вычеркивая все попадающиеся числа.

В этом и состоит принцип действия алгоритма: нужно каждый раз переходить к следующему еще остающемуся в списке числу и вычеркивать все числа, делящиеся на него, проходя по таблице с шагом, соответствующим этому числу. Если применять этот метод систематически, то после вычеркивания чисел, делящихся на 7, остается таблица простых чисел, меньших 100.

Это чрезвычайно удобный алгоритм. Он открывает шорткат, избавляющий от лишних размышлений. Он идеально подходит для реализации в компьютерной программе. Беда в том, что он очень быстро превращается в медленный метод поиска простых чисел. Этот шорткат избавляет от размышлений, потому что использующий его составляет список, действуя как машина. Но в этой книге я хочу воспеть не такие шорткаты. Мне нужна рациональная стратегия поиска простых чисел.

Однако Эратосфену я бы поставил высшую оценку за вычисление окружности Земли, потому что оно было поистине гениальным. Он слыхал, что в городе Сиене есть колодец, над которым один день в году Солнце бывает точно в зените. В полдень дня летнего солнцестояния Солнце светит прямо в этот колодец, не отбрасывая теней на его стенки. Сегодня город Сиене называется Асуан, а находится он неподалеку от тропика Рака – параллели, расположенной на широте 23,4 градуса, которая отмечает самые северные точки, в которых Солнце может быть прямо над головой.

Эратосфен понял, что может использовать эту информацию о положении Солнца и поставить именно в такой день опыт, позволяющий вычислить длину окружности Земли. Хотя ему не пришлось оборачивать всю планету мерной лентой, ходить при проведении опыта пришлось немало. В день летнего солнцестояния он установил в Александрии, находившейся, как он считал, строго на север от Сиене, столб. На самом деле долготы этих городов различаются на 2 градуса, но меня восхищает не точность результата, а сама идея опыта.

В тот день, когда в Сиене Солнце стояло прямо над головой и в тамошнем колодце не было тени, столб, установленный в Александрии, тень отбрасывал. Измерив длину тени и высоту столба, Эратосфен мог построить треугольник с таким же соотношением длин сторон и измерить его угол. Величина этого угла показывала, какая часть окружности Земли отделяет Александрию от Сиене. Измеренный им угол оказался равен 7,2 градуса, то есть 1/50 части полной окружности. Оставалось лишь узнать физическое расстояние между Александрией и Сиене.

Сам Эратосфен не пошел его измерять: он воспользовался услугами профессионального землемера, так называемого бематиста, который должен пройти от одного города до другого по прямой линии. Любое отклонение внесло бы искажения в расчеты. Результат был выражен в более крупных единицах – стадиях. Оказалось, что Александрия находится в 5000 стадиев к северу от Сиене. Если это расстояние составляло 1/50 полного пути вокруг света, значит, длина окружности Земли была равна 250 000 стадиев. Сегодня мы не знаем в точности, сколько шагов землемера, нанятого Эратосфеном, приходилось на один стадий, но, как я уже говорил, это измерение было поразительно качественным. С помощью простых геометрических построений Эратосфен создал шорткат, избавивший его от необходимости отправлять кого-нибудь в пешее путешествие вокруг всей планеты.

С этим опытом тесно связано и само слово «геометрия», потому что по-гречески оно означает «измерение Земли». Оно образовано от слов γῆ (ге) – земля и μέτρον (метрон) – измерение.

Тригонометрия – шорткат к небесам

Древние греки применяли свою математику не только для измерения Земли. Они поняли, что ее можно использовать и для измерения небес. И важнейшим инструментом в этом деле были не телескопы или хитроумные рулетки, а математические средства тригонометрии.

Следы применения этих средств можно найти уже в вычислениях Эратосфена. Тригонометрия – это наука о треугольниках, объясняющая связи между углами треугольников и длинами их сторон. Этот раздел математики открыл перед математиками Античности необычайный шорткат, позволявший измерять космос, не покидая уютной поверхности Земли.

Например, еще в III веке до нашей эры Аристарх Самосский применил тригонометрию для вычисления отношения расстояния от Земли до Солнца к расстоянию от Земли до Луны. Для этого ему нужно было всего лишь измерить угол, образованный Луной, Землей и Солнцем, – тремя вершинами треугольника, – в день, когда Луна освещена ровно наполовину[50]. При этом угол, образованный Землей, Луной и Солнцем, составляет ровно 90 градусов (см. рис. 4.1). Затем, построив треугольник с измеренным углом, Аристарх мог рассчитать отношение расстояний от Земли до Луны и от Земли до Солнца, потому что оно равно отношению сторон меньшего треугольника, который он начертил. Хитрая идея состояла в том, что размеры треугольника значения не имеют: отношение всегда остается тем же самым. Это отношение называется косинусом угла, который измерял Аристарх.

Чтобы вычислить не отношение расстояний, а само расстояние, нужно измерить угол и длину одной из сторон треугольника. Хитроумный способ определения расстояний от Земли до Луны и Солнца открыл Гиппарх, которого традиционно называют первооснователем тригонометрии. Он воспользовался несколькими солнечными и лунными затмениями, в частности солнечным затмением, наблюдавшимся 14 марта 190 года до нашей эры.


Рис. 4.1. Измерение расстояний в Солнечной системе при помощи треугольников

Как и Эратосфен, Гиппарх использовал две разные точки на поверхности Земли. На Геллеспонте[51] затмение было полным, а в Александрии – лишь частичным: там Луна закрывала только четыре пятых Солнца. Благодаря этому Гиппарх, подобно Эратосфену, получил расстояние, которое он мог измерить на Земле. Сочетание расстояния между двумя точками с измеренными углами, под которыми было видно затмение, позволило ему вычислить расстояние от Земли до Луны тригонометрическими методами.

Этот тригонометрический шорткат давал поразительные возможности. Он побудил Гиппарха начать подготовку первого в истории примера тригонометрических таблиц. В них можно было взять какой-нибудь угол и найти отношение длин сторон прямоугольного треугольника, содержащего такой угол. Даже здесь математики открыли шорткаты, избавляющие их от необходимости строить множество треугольников и измерять длины сторон и величины углов каждого из них.

Возьмем, например, равносторонний треугольник: все его стороны одинаковы, а все углы равны 60 градусам. Проведем из одной из его вершин линию, делящую угол при этой вершине на два угла по 30 градусов и образующую с основанием угол 90 градусов. Косинус угла 60 градусов – это отношение длин сторон, образующих этот угол во вновь построенном прямоугольном треугольнике. Легко видеть, что он равен 1/2, потому что длина катета этого нового треугольника равна половине длины стороны исходного равностороннего треугольника.


Рис. 4.2. Косинус 60°

Но математики открыли и изящную формулу, связывающую косинусы углов одного треугольника с косинусами углов треугольника, содержащего угол, вдвое меньший. Это дает нам возможность вычислять и другие величины.

cos2 x = 1/2 + 1/2 cos (2 x)

При помощи этих шорткатов можно составить таблицы косинусов множества разных углов. Именно эти таблицы стали самым действенным измерительным средством для исследования ночного неба. Они же сыграли ключевую роль в прокладывании шорткатов к измерениям на Земле. Их наверняка использовал при проведении геодезических съемок Ганновера и Гаусс. Землемеры до сих пор пользуются этим математическим шорткатом к измерениям.

Например, если вы хотите узнать высоту дерева, измерять ее от корней до вершины складным метром будет делом довольно трудным. Вместо этого геодезист отходит от дерева на некоторое расстояние и измеряет, под каким углом проходит прямая, соединяющая почву с вершиной дерева. Произведя гораздо более простое измерение расстояния между геодезистом и основанием дерева и найдя в таблицах тангенс нужного угла (величину, выражающую отношение длин двух коротких сторон треугольника[52], в данном случае – высоты дерева и расстояния от его основания до геодезиста), геодезист может найти высоту дерева, не залезая ни на какую лестницу.

Красивую демонстрацию способностей тригонометрии по части создания шорткатов дает история измерения метра. Можно подумать, что измерение метра – дело довольно странное, поскольку метр и есть единица измерения. Но история эта начинается с определения того, что такое, собственно говоря, метр.

Измерение метра

С тех самых пор, когда первые древние цивилизации начали строить города, нам понадобились единицы измерения, помогающие вести строительство согласованно. Первые варианты таких единиц появились еще у древних египтян, которые ориентировались на части тела. Локтем называлось расстояние от локтя до кончика среднего пальца. Такая же привязка к частям тела ясно видна в единицах измерения, бытовавших до введения метрической системы. Фут, разумеется, соответствовал длине ступни[53]. Дюйм во многих европейских языках называется тем же словом, что и большой палец[54]. Ярд тесно связан с длиной человеческого шага. Интересно отметить, что единицу под названием «род», которую использовали для измерения земли в саксонские времена, определяли следующим образом: это суммарная длина левых ступней первых 16 человек, вышедших из церкви воскресным утром. Однако размеры и формы тела людей настолько разнятся, что и результаты таких измерений должны получаться чрезвычайно непостоянными.

Король Генрих I попытался решить эту проблему, распорядившись сделать эталоном для стандартизации этих единиц измерения королевское тело. Он постановил, что ярдом следует считать расстояние от кончика носа короля до кончика большого пальца его вытянутой руки. Но и у этого решения, разумеется, были свои недостатки, так как длина ярда могла изменяться каждый раз, когда на престол вступал новый монарх.

Вожди Французской революции полагали, что следует ввести эгалитарную систему измерений, доступную всем. Галилей доказал, что период колебаний маятника зависит от его длины, а не от веса или размаха колебаний. Сначала предложили считать метром длину маятника, колеблющегося с периодом две секунды. Однако выяснилось, что период колебаний зависит еще и от силы тяжести, которая бывает разной в разных точках мира.

Тогда решили определить метр как одну десятимиллионную часть расстояния от полюса до экватора. Хотя в принципе измерить это расстояние мог кто угодно, вскоре стало ясно, что на практике такое определение неудобно. Измерить расстояние от полюса до экватора и привезти в Париж точный метр поручили двум ученым, Пьеру Мешену и Жану-Батисту Деламбру. Но, как понял еще Эратосфен, для этого было вовсе не обязательно измерять все расстояние. Двое ученых решили измерить расстояние между Дюнкерком и Барселоной – городами, находящимися приблизительно на одной и той же долготе. Затем они собирались вывести из результатов этих измерений расстояние от полюса до экватора – так же, как сделал Эратосфен.

Деламбр начал свой путь с севера, из Дюнкерка, а Мешен, которому был поручен южный участок, – из Барселоны. Они договорились встретиться посередине, в южнофранцузском городе Родезе[55]. Но как они вычисляли расстояния? Прежде всего им нужна была стандартная мера длины, которую оба использовали бы в своих измерениях. Но даже при наличии такой меры они не могли перекладывать такую линейку на всем пути от Дюнкерка до Барселоны.

Тут-то и пригодились возможности тригонометрии и треугольников. Деламбр поднялся на колокольню одной из церквей Дюнкерка и нашел на некотором расстоянии две другие возвышенные точки, которые могли служить двумя другими вершинами треугольника. Ему пришлось измерить расстояние от колокольни до одной из этих точек. Этой тяжелой работы было не избежать. Но после этого, используя измеренные величины двух углов треугольника, он мог вычислить длины двух других его сторон. Для измерения углов ему послужил прибор, который назывался повторительным кругом Борда. Он состоял из двух телескопов, установленных на общей оси, и шкалы для измерения угла между ними. Деламбр направил телескопы на две возвышенные точки, которые он видел с вершины колокольни, и просто записал величину угла между телескопами.



Поделиться книгой:

На главную
Назад