1 ступенька: 1.
2 ступеньки: 11 или 2.
3 ступеньки: 111 или 12 или 21.
4 ступеньки: 1111 или 112 или 121 или 211 или 22.
5 ступенек: 11111 или 1112 или 1121 или 1211 или 2111 или 122 или 212 или 221.
Последовательность количества вариантов выглядит так: 1, 2, 3, 5, 8… Возможно, вы уже заметили паттерн. Следующее число получается сложением двух предыдущих. Возможно, вы даже знаете, как называются эти числа. Это же числа Фибоначчи! Они названы в честь математика XII века, открывшего, что эти числа – ключ к процессам роста природных объектов. Цветочных лепестков, сосновых шишек, ракушек, популяций кроликов. Все эти числа, по-видимому, следуют одному и тому же паттерну.
Фибоначчи открыл, что процессы роста в природе следуют одному простому алгоритму. Правило сложения двух предыдущих чисел – это шорткат природы к созданию сложных структур, например ракушек, шишек или цветков. Каждый организм использует две последние созданные им вещи в качестве ингредиентов для следующего шага.
Рис. 1.4. Построение спирали при помощи чисел Фибоначчи
Использование паттернов в развитии структур – ключевой шорткат природы. Взять, например, тот способ, которым природа создает вирус. Вирусы обладают чрезвычайно симметричной структурой. Связано это с тем, что алгоритм создания симметричной структуры прост. Если вирус имеет форму симметричного кубика, то ДНК, которая воспроизводит эту молекулу, нужно создать лишь несколько экземпляров одного и того же белка, образующего грани кубика, а затем вся структура вируса может быть построена по тому же правилу. Никакие особые инструкции для разных граней не требуются. Паттерн позволяет строить вирус быстро и рационально, что и делает его таким смертельно опасным.
Но можем ли мы быть уверены, исходя из столь малого количества данных, что секрет подъема по лестнице действительно скрыт в числах Фибоначчи?
На самом деле правило точно объясняет, как вычислить количество вариантов для следующего этапа, лестницы из 6 ступенек. Нужно взять все возможные варианты для четырех ступенек и прибавить в конце по двойному шагу. Или взять все возможные варианты для пяти и прибавить к ним по шагу одинарному. Это дает все возможности для шести ступенек. Получается сочетание двух предыдущих чисел последовательности.
Чтобы получить ответ на исходную головоломку, нужно вычислить десятый член последовательности.
1, 2, 3, 5, 8, 13, 21, 34, 55, 89
Существует 89 разных вариантов. Этот паттерн – шорткат к вычислению количества возможных способов подъема до вершины лестницы. И этот же паттерн позволяет решить эту задачу, даже если ступенек будет 100 или 1000.
Хотя эти числа названы в честь Фибоначчи, первым их открыл не он. Это были индийские музыканты, игравшие на табла[21]. Они издавна состязались друг с другом, щеголяя разными ритмами, которые им удавалось извлекать из своих барабанов. По мере исследования разных типов ритмов, которые получались из долгих и кратких тактов, они и пришли к числам Фибоначчи.
Если долгий такт в два раза длиннее краткого такта, то количество ритмов, которые может составить из них музыкант, играющий на табла, будет таким же, что и количество вариантов подъема по лестнице. Каждый одинарный шаг соответствует краткому такту, а каждый двойной шаг – долгому. Значит, число возможных ритмов определяется правилом Фибоначчи. Более того, это же правило дает музыканту алгоритм построения новых ритмов из уже существующих более коротких.
В том обстоятельстве, что один и тот же паттерн объясняет столь разнородные явления, есть нечто потрясающее. Фибоначчи полагал, что это закон роста в природе. С точки зрения индийских музыкантов, игравших на табла, этот паттерн порождает ритмы. Он же позволяет получить число вариантов подъема по лестнице одинарными и двойными шагами. Есть даже некоторые финансовые аналитики, считающие, что эти числа можно использовать для предсказания момента, в который падающий курс акций достигнет нижней точки и снова начнет расти. Этот финансовый паттерн не вполне бесспорен и уж точно не универсален, но некоторым инвесторам удается применять его для принятия правильных решений. Столь действенным делает шорткат способность выявить фундаментальную структуру, скрытую за самыми разными фасадами. Один и тот же паттерн может дать решения множеству кажущихся совершенно разными задач. Когда приступаешь к решению новой задачи, часто бывает полезно проверить, не сводится ли она к старой задаче, решение которой вы уже нашли.
Связи между шорткатами
Я не могу противостоять искушению прибавить к этой истории небольшой эпилог, в котором пожинаются плоды проделанной ранее тяжелой работы. Моя исходная стратегия вычисления количества способов подъема на вершину лестницы привела меня к вопросу о способах выбора 3 предметов из 7. На самом деле математики уже нашли хитроумный метод, укорачивающий путь к вычислению этих вариантов. Он называется треугольником Паскаля (хотя, как и в случае Фибоначчи, оказывается, что первым его открыл вовсе не Паскаль: это заслуга древних китайцев).
Рис. 1.5. Треугольник Паскаля
Треугольник этот строится по правилу, похожему на правило Фибоначчи, но в этом случае каждый элемент нижележащего ряда вычисляется как сумма двух элементов, расположенных над ним. Используя это правило, построить треугольник легко, но замечательнее всего то, что он содержит все те интересные числа, которые я искал. Предположим, я заведую пиццерией и хочу похвастаться количеством разных пицц, которые у меня можно заказать. Если мне нужно узнать число вариантов выбора 3 начинок из 7 возможных, я беру (3 + 1) – е число в (7 + 1) – м ряду треугольника: 35. Этот шорткат показывает мне, что я могу приготовить 35 разных пицц. В общем случае выбора
Рис. 1.6. Числа Фибоначчи, треугольные числа и степени двух в треугольнике Паскаля
Связи такого рода – одна из тех вещей, которые я особенно люблю в математике. Кто бы мог подумать, что в треугольнике Паскаля прячутся числа Фибоначчи? Однако, рассмотрев нашу головоломку двумя разными способами, я нашел тайный туннель, шорткат, соединяющий эти, казалось бы, совершенно разные уголки математического мира! А кроме того, оказывается, что в треугольнике спрятаны еще и треугольные числа и степени двойки. Треугольные числа находятся на одной из диагоналей треугольника, а степени двух получаются суммированием всех чисел каждого ряда. В математике полно таких странных туннелей, открывающих перед нами шорткаты, которые мы можем использовать для превращения одних объектов в другие.
Обнаружение паттернов в данных нужно не только для решения занятных задачек о способах подъема по лестницам и тому подобном. Оно является ключевым элементом предсказания развития Вселенной, и Гаусс убедился в этом, когда предсказал траекторию движения Цереры. Это жизненно важный фактор понимания изменений климата. Оно играет центральную роль в помощи компаниям, пытающимся разобраться в неопределенностях будущего. Возможно, оно даже может дать нам некоторые представления о ходе истории человечества. В наше невероятно богатое данными время в интернете каждый день производится один эксабайт (1018 байт) данных. Это огромное количество чисел, требующих анализа. Но, если заметить в них паттерн, можно найти шорткат к ориентации в этом колоссальном цифровом мире.
Шорткаты на основе паттернов сводятся к выявлению правил или алгоритмов, лежащих в основе производства данных, в которых вы хотите разобраться. Шорткаты этого типа продолжают работать, даже когда масштабы задачи, казалось бы, неконтролируемо увеличиваются. Лестница может становиться все длиннее и длиннее, но шорткат по-прежнему приводит к ответу.
Однако паттерны касаются не только чисел. Во многих областях жизни есть паттерны, которые мы можем использовать для переноса понимания из одной дисциплины в другую. Например, понимание паттернов музыки – важнейшая часть обучения игре на музыкальных инструментах. Всемирно известная виолончелистка Натали Клейн считает, что паттерны музыкальных произведений помогают ей предсказывать направление, в котором может развиваться та или иная пьеса, еще до того, как она дочитает нотную запись.
В дальнейшем у меня будет возможность поговорить о шорткатах в психотерапии со Сьюзи Орбах. Оказывается, она использует множество паттернов человеческого поведения. Она может опираться на паттерны, о которых узнала в процессе работы с предыдущими пациентами, в помощи новым обращающимся к ней пациентам. Но люди – существа несколько более беспорядочные и своеобразные, чем числа, так что с этими паттернами, о которых расскажет Орбах, следует обращаться с осторожностью. Лучше всего паттерны работают, когда мир выражается в числах, что все чаще и чаще происходит в нашем цифровом мире. Наши цифровые отпечатки все в большей степени преобразуют наше человеческое поведение в числа. Стоит найти в этих числах паттерн, и перед вами открывается шорткат к возможности предсказания будущих действий человека.
Шорткат к шорткатам
Обнаружение паттернов – это поразительный шорткат к пониманию будущего. Если вы обнаружите паттерн в биржевых курсах, это может дать вам преимущество, когда вы займетесь инвестициями. Где бы вы ни сталкивались с числами, ищите в данных скрытые паттерны. Но паттерны бывают не только в числах. Они есть и у людей. Если вы заметите паттерн в ударах своего противника по игре в теннис, вы будете готовы к его следующему обводящему удару. Если вы поймете паттерны в пищевых привычках посетителей своего ресторана, вы сможете кормить их, не производя чрезмерного количества отходов и не создавая запасов невостребованной еды. Выискивание паттернов было основополагающим шорткатом человечества с тех самых пор, как мы начали делать первые шаги из своей саванны.
Пит-стоп: Музыка
Несколько лет тому назад я решил научиться играть на виолончели. Но это дело оказалось более долгим, чем я надеялся, так что я активно ищу хитрые шорткаты, которые могли бы мне помочь. Если математика – наука паттернов, то музыка – это искусство паттернов. Не может ли все дело быть в успешном использовании этих паттернов?
Виолончель – не первый инструмент, на котором я учился играть. В том же году, когда мистер Бейлсон рассказал нам историю о юном Гауссе, учитель музыки нашей общеобразовательной школы спросил, кто из нашего класса хочет научиться играть на каком-нибудь музыкальном инструменте. Руки подняли три человека. В конце урока учитель отвел нас в кладовку при кабинете музыки. В ней не было практически ничего, кроме трех труб, составленных в стопку. Поэтому все трое стали играть на трубе.
Я не жалею об этом выборе. Труба – чудесный, многосторонний инструмент. Я набил руку, играя в духовом оркестре нашего городка, играл в окружном оркестре и даже немного пробовал свои силы в джазе. Но, тихо сидя в оркестре и считая про себя такты в ожидании следующего вступления труб, я смотрел на сидевших на авансцене виолончелистов, которые, как мне казалось, играли все время. Должен признаться, мне было немного завидно.
Теперь, уже взрослым, я решил потратить те небольшие деньги, которые завещала мне крестная, на покупку виолончели. На остатки от этой суммы я собирался брать уроки. Но меня несколько беспокоило, удастся ли мне научиться играть на новом инструменте во взрослом возрасте. В детстве меня не волновало, что на обучение музыке уходит много времени. Я учился в школе, впереди были еще многие годы учебы. Но, когда мы взрослеем, лет впереди остается меньше, и мы становимся гораздо более нетерпеливыми. Я хотел играть на виолончели прямо сейчас, а не через семь лет. Есть ли какой-нибудь шорткат к игре на музыкальном инструменте?
Книга «Гении и аутсайдеры»[23] (2008) Малкольма Гладуэлла популяризировала теорию, гласящую, что достижение мастерства в любой области требует по меньшей мере 10 000 часов упражнений. Там было высказано спорное заявление, что этого может быть достаточно для достижения международного признания в своей области, хотя исследователи, на результатах которых оно было основано, заявили, что их результаты истолковали неверно. Но неужели не существует никакого шортката, который позволил бы мне выступать с исполнением виолончельных сюит Баха, не тратя 10 000 часов на упражнения? Если заниматься по часу в день, эти упражнения заняли бы 27 лет!
Я решил обратиться к одной из своих любимых виолончелисток всех времен, Натали Клейн. Клейн впервые привлекла внимание мировой публики в 1994 году, когда стала одной из самых молодых победителей престижного конкурса «Молодой музыкант года», проводимого телерадиокомпанией Би-би-си; там она исполняла концерт для виолончели Элгара. Каков же был ее путь к всемирной славе?
Натали начала играть на виолончели в шесть лет, но всерьез стала заниматься этим инструментом на несколько лет позже. «К четырнадцати или пятнадцати, – рассказала она мне, – я старалась заниматься от четырех до пяти часов в день. Некоторые работают гораздо больше. Есть дети, которые в шестнадцать лет упражняются часов по восемь в день. Есть коллеги, скажем, из России или дальневосточных стран, где работать в таком режиме с жесткой дисциплиной начинают гораздо раньше, чем у нас на Западе».
Этот уровень дисциплины, объяснила Клейн, был нужен для закрепления двигательной памяти и точности, которых требует владение инструментом: «Несомненно, есть минимальное число часов, которое нужно потратить, когда учишься играть на инструменте, по три-четыре часа в день в подростковом возрасте. Это необходимо, потому что иначе физически невозможно добиться нужной механики движений». Взять, например, Яшу Хейфеца. Хейфец был одним из величайших скрипачей в истории. Известно, что бо́льшую часть своей жизни он каждое утро упражнялся, играя гаммы – в общей сложности несколько тысяч часов одних лишь гамм.
В этом отношении виолончелисты подобны спортсменам. Невозможно пробежать марафон или победить в спринтерском забеге на 100 метров без многочасовых тренировок. Эта настройка тела и разума, дающая возможность быстро играть музыкальные фразы, требует самого обычного повторения. Я знаю по собственному опыту, что некоторые пьесы я могу научиться играть, только повторяя фразы снова и снова, чтобы тело почти что знало, что́ ему делать, без участия мозга.
Но Клейн настойчиво подчеркивала, что одного лишь упорного труда мало. «Важно, что именно ты повторяешь, – говорит она. – 10 000 часов упражнений – дело хорошее, но это обязательно должны быть 10 000 часов того, что нужно. Их нельзя просто отработать. Как я говорю своим ученикам, в эти 10 000 часов должны быть вовлечены разум, тело и душа».
Может показаться, что упорные упражнения – вовсе не шорткат, но это не так. Как часто мы тратим время впустую, потому что делаем что-то неправильно или не стараемся прилагать максимум усилий или просто не понимаем, зачем мы тратим на то, чем занимаемся, столько времени?
Когда речь заходит о действенных упражнениях, часто говорят о так называемом потоке. Поток – это термин, который венгерский психолог Михай Чиксентмихайи ввел в 1990 году для описания психологического состояния, в котором мы полностью погружены в то, чем занимаемся. Он писал: «…лучшие моменты нашей жизни… приходят к нам не в состоянии расслабленности или пассивного созерцания… наилучшие моменты обычно случаются, когда тело и разум напряжены до предела в стремлении добиться чего-то трудного и ценного»[24]. Поток существует на стыке высочайшего мастерства и чрезвычайной трудности. Если вам не хватает мастерства, а вы пытаетесь сделать нечто слишком трудное, вы впадаете в состояние тревоги. Если некое дело оказывается слишком легким для вашего уровня мастерства, вам, вероятно, становится скучно. Но, если у вас есть и мастерство, и задача соответствующего уровня трудности, вы можете достичь состояния потока или «оказаться в зоне». Всем нам хотелось бы достичь этого состояния; многие пишут инструкции по методам попадания в поток, рекомендуя медитации, специальное потоковое звуковое сопровождение, пищевые добавки, психические триггеры потока, кофеин…
Но Клейн относится к таким средствам быстрого достижения результатов скептически. «К потоку не бывает шорткатов, – говорит она. – Чтобы нарушать правила, их сначала нужно выучить, и ощущение освобождения, которое приводит в поток, приходит именно тогда, когда эти правила нарушаешь. В состояние вдохновения приводит дисциплина».
Хотя шорткатов, позволяющих избежать физического обучения музыканта, и не существует, я все же думаю, что исполнители тратят столько времени на упражнения, занимаясь гаммами или арпеджио, именно потому, что это создает шорткаты, которые выручают их во время выступлений. Если вы видите в партитуре последовательность нот, соответствующую гамме или арпеджио, вам незачем читать каждую ноту. Вместо этого вы можете прибегнуть к шорткату, на изучение которого вы уже потратили множество часов.
Шорткатов к освоению навыков тонкой моторики, необходимых для высококлассного музыканта, не существует, но, возможно, есть шорткаты для разучивания новых пьес. Клейн посоветовала мне работы музыковеда Генриха Шенкера. На самом деле я уже встречался с трудами Шенкера раньше, хотя и в другом контексте. Специалисты по информатике использовали его идеи в попытках запрограммировать искусственный интеллект (ИИ) на сочинение правдоподобных музыкальных произведений. Цель анализа по Шенкеру состоит в выявлении фундаментальной структуры, лежащей в основе музыки, так называемого
«Он упрощает, упрощает и упрощает, пока не получит самую простую формулу, позволяющую понять произведение, – говорит она. – Это можно назвать шорткатом к пониманию структуры музыкальной пьесы. Речь идет о макро-, а не о микропредставлении».
Оказывается, паттерны входят в набор инструментов музыканта, когда он разбирается в сложностях музыкального произведения. Я спросил, не может ли это быть полезным шорткатом к заучиванию музыкальных сочинений? Выявление основополагающей структуры последовательности чисел дает мне шорткат, избавляющий от необходимости заучивать информацию механическим повторением. Сама Клейн запоминает концерты, снова и снова репетируя их исполнение, пока очередная пьеса не закрепляется в ее двигательной памяти. Но для других музыкантов паттерны могут играть важную роль. Клейн сказала мне: «У меня есть друг, Вадим Холоденко. Он своего рода гений. Я видела, как он днем прочитывает пьесу, которую до этого слышал раз или два, а тем же вечером исполняет ее на концерте, и делает это лучше, чем большинство других музыкантов, которые работали над ней три месяца. Он видит крупные формы и абсолютно уверен, что у него все получится, и тогда оставшиеся пробелы заполняются. Он, несомненно, видит макрокартину и верит в макро больше, чем в микро, это уж точно».
Мой преподаватель виолончели научил меня еще одному интересному шорткату для разучивания новых произведений. Часто бывает так, что один и тот же пассаж можно сыграть на виолончели несколькими способами, потому что одну и ту же ноту можно сыграть на разных струнах. Первый и самый очевидный способ сыграть какую-нибудь ноту часто оказывается нерациональным, и в результате рука играющего прыгает по всему инструменту. Но, если мыслить более стратегически, можно найти альтернативные способы исполнения пассажей, при которых вам не нужно все время передвигать руку то вверх, то вниз. Разработка способа исполнения произведения может быть своего рода головоломкой: как лучше всего расположить пальцы на струнах, чтобы сыграть пьесу с наименьшими затратами сил?
Клейн тоже так считает: «Иногда я играю очень изобретательно. Мне кажется, меня никто этому не учил, но мне самой показалось, что было бы очень полезно научиться побольше работать большим пальцем. Это мне очень помогло. Есть еще несколько виолончелистов, которые делают так же, начиная с великого виолончелиста Даниила Шафрана. Я думала, что это мое изобретение, но на самом деле это не так. Все сводится к решению задач. Чем острее задача, тем более творческим может быть ее решение».
Однако, несмотря на все эти полезные способы работать с музыкой, в сущности, по мнению Клейн, в том, чем она занимается, не бывает шорткатов: «Для того, кто хочет стать профессиональным виолончелистом, особенно заниматься сольными выступлениями, получить известность, ощущать, что твою работу внимательно изучают, – ничего такого нет. Никаких шорткатов. И именно это мне и нравится. Как известно, Пабло Казальс упражнялся всю жизнь, и когда ему было девяносто пять, его спросили: “Маэстро, почему вы все еще продолжаете упражняться?” – и он ответил: “Потому что мне кажется, что у меня наконец начинает что-то получаться. Я совершенствуюсь”. По-моему, именно это побуждает продолжать работать. Нужно много тяжелого труда, и легче не становится. Чтобы работать всю жизнь, нужно увлекаться своим делом. Невозможно достичь самой высокой вершины».
Именно поэтому многих специалистов не слишком беспокоят шорткаты. Клейн сказала мне: «Идея шортката кажется привлекательной в краткосрочной перспективе, но не в долгосрочной. Я думаю, если бы было много шорткатов, задачи не казались бы нам такими же интересными».
Я признаю, что между стремлением достичь цели и легкостью, с которой это можно сделать, есть некое противоречие. Если задача оказывается слишком легкой, ее решение не приносит удовлетворения. И все же я не хочу заниматься бездумной, монотонной работой. Самое большое удовольствие я получаю именно от тех шорткатов, которые открываются после того, как я некоторое время топчусь на месте, не зная, удастся ли мне вообще добраться до цели. Выбросы адреналина в те моменты, когда становится виден хитроумный путь к решению, – это моя страсть, которая разгоралась по мере совершенствования моего математического мастерства. Но в том, что касается виолончели, я понимаю: хотя некоторые паттерны могут быть полезны, никаких шорткатов, избавляющих от тяжелой работы, тут не существует.
2
Шорткаты вычислительные
Вы – бакалейщик и хотите взвешивать товары от 1 до 40 килограммов на простейших равноплечных весах. Каково минимальное число гирь, необходимых для этого, и какого они должны быть номинала?
Удобный шорткат для выражения какой-нибудь идеи бывает мощным средством ускорения мысли. Тот способ, которым я могу выразить концепцию миллиона при помощи всего лишь семи символов – 1000000, – кажется мне само собой разумеющимся. Но в этих семи символах скрыта целая история поразительно интересных шорткатов, помогающих рационально разбираться в числах и вычислять. В течение всей истории человечества – и даже сейчас, если речь идет о коммерции, строительстве или банковском деле, – те, кому удавалось вычислить ответ быстрее и рациональнее, чем конкурентам, получали преимущество. В этой главе я хочу рассказать о некоторых хитроумных способах, которые мы изобрели для работы с числами и вычислений. Интересно отметить, что эти шорткаты могут быть действенными стратегиями даже там, где речь идет вовсе не о числах.
Многие думают, что раз я работаю в области фундаментальной математики, я, наверное, занимаюсь делением в столбик, вычисляя множество знаков после запятой. Неужели мое рабочее место еще не занял электронный калькулятор? Такое ошибочное представление, что математики – это такие сверхвычислители, встречается часто. Но это вовсе не значит, что в моей работе нет вычислений. Многие изощренные математические темы начинались с задач, требовавших изобретения хитроумных арифметических методов, – как это было с шорткатом, который нашел в школе Карл Фридрих Гаусс. Существует богатая история шорткатов, которые открыли люди, пытавшиеся считать более рационально. Даже калькуляторы, которыми мы пользуемся сегодня, были запрограммированы с учетом некоторых из наиболее удачных шорткатов, придуманных на протяжении многих лет математиками.
Мы привыкли считать компьютеры всемогущими устройствами, способными сделать что угодно. Но возможности компьютеров тоже небезграничны. Взять хотя бы задачу о сложении чисел до 100, которую решал Гаусс. Разумеется, компьютер справится с ней без всякого труда. Однако бывают числа, слишком большие даже для компьютера. Если попросить его сложить все числа, меньшие такого числа, он зависнет. В целом компьютерам по-прежнему нужны люди, придумывающие шорткаты, которые, будучи вставлены в компьютерные программы, позволяют машинам делать больше и быстрее. В этой главе я расскажу о довольно поразительном применении одной на первый взгляд заумной математической идеи – мнимых чисел, – открывшем очень важный шорткат, который позволяет компьютерам решать множество самых разных задач, в том числе сажать самолеты достаточно быстро, чтобы они не сталкивались в воздухе.
Шорткат к счету
Уже то, как именно мы записываем числа, может определить, будут ли вычисления простыми или окажутся сложной и трудной работой, в которой легко ошибиться. Момент, когда мы поняли, что удобное символическое обозначение сложных идей – это шорткат к эффективному мышлению, был важным моментом развития человечества. Судя по историческим данным, каждая цивилизация осознавала, что письменность вообще и записывание устной речи в частности дает мощное средство для сохранения, передачи и использования новых идей. И каждый раз при возникновении новой системы письменности какого-либо языка, как правило, появлялись и новые хитроумные способы записи концепции чисел. Но те цивилизации, которые создавали более удобные системы записи чисел, получали в свое распоряжение шорткаты к более быстрым и рациональным методам вычислений и работы с данными.
Одним из самых первых шорткатов, открытых математиками, было удобство позиционной системы счисления. Когда вы считаете что-нибудь, будь то овцы или дни, в первую очередь вам может прийти в голову идея пометить каждую овцу или каждый день особым символом. По-видимому, именно так и считали первые люди. Имеются кости с зарубками, сделанными 40 000 лет назад, которые считают примером первых попыток счета.
Уже это достижение было важным. Оно отмечает начало зарождения абстрактной концепции чисел. Археологи не знают, что именно подсчитывали при помощи этих зарубок, но у людей уже было понимание, что у их количества и количества овец или дней, что бы они там ни считали, есть нечто общее. Проблема состоит в том, что отличить 17 от 18 в записи, сделанной зарубками на кости, может быть довольно непросто. Нужно заново пересчитать все зарубки. В какой-то момент почти в каждой культуре возникает светлая идея создания некой сокращенной, более удобной для чтения записи всех этих зарубок.
Несколько лет назад, когда я жил в Гватемале, меня заинтриговали странные последовательности точек и тире, встречавшиеся на тамошних банкнотах. Я спросил нашу соседку, не закодированы ли в местных деньгах надписи какой-то странной азбукой Морзе. Она объяснила, что это действительно код, но закодирован на каждой банкноте ее номинал. Точки и тире были сокращенным представлением способа записи чисел, существовавшим в культуре майя. Майя понимали, что человеческому мозгу трудно определять количество зарубок, когда их больше четырех. Поэтому они не ставили на странице все больше и больше точек, а, дойдя до пяти, проводили через четыре точки линию – как делают заключенные, считающие дни до выхода на свободу. Таким образом линия стала условным обозначением числа пять.
Но что делать, если нужно сосчитать еще большее количество? Древние египтяне разработали весьма впечатляющую систему иероглифов, обозначающих разные степени десяти. Число десять обозначалось изображением пут для скота (приспособления, ограничивающего движения животного), сто – веревочной петлей, тысяча – цветком кувшинки, десять тысяч – согнутым пальцем, сто тысяч – лягушкой и, наконец, миллион – коленопреклоненным человеком с воздетыми к небу руками; у него был такой вид, будто он только что выиграл в лотерею.
Это была хорошо продуманная система. Чтобы обозначить миллион, египетский писец мог не наносить на кость миллион зарубок, а просто нарисовать на папирусе фигурку коленопреклоненного человека. Такое умение легко записывать большие числа было одним из факторов, позволивших Египту превратиться в могущественную цивилизацию, способную успешно собирать налоги со своего населения и строить крупные города.
Но и в египетской системе было нечто весьма нерациональное. Если писец хотел записать число 9 999 999, он должен был использовать 63 символа. А если к этой сумме добавлялась еще одна единица, нужно было изобретать новый символ, обозначающий 10 000 000. Заметим теперь, что в нашей современной системе счисления для записи такого большого числа, как 9 999 999, мы используем всего семь символов, а при помощи всего десяти разных символов (0, 1, 2, … 9) можно записать сколь угодно большое число. Все дело в
Первой этот шорткат нашла цивилизация, соперничавшая с египетской, – вавилоняне. Интересно отметить, что в основе системы счисления их культуры лежали не степени десяти, как у египтян или в нашей нынешней системе. Они работали со степенями шестидесяти. У них были свои обозначения для всех чисел до 59, и только после этого, как они считали, требовалась перегруппировка. Числа от 1 до 59 они записывали с помощью всего двух символов: символа
На первый взгляд такая система кажется далеко не рациональной. Но в выборе числа 60 скрывается шорткат совсем другого рода. Все дело в делимости этого числа. Число 60 можно представить в виде произведения стольких разных делителей – как 2 × 30, как 3 × 20, как 4 × 15, как 5 × 12 или как 6 × 10, – что у торговцев, которые брали на вооружение эту систему, было множество возможностей по-разному делить свои товары. Именно из-за высокой делимости числа 60 мы до сих пор используем его для отсчета времени. Час из шестидесяти минут и минута из шестидесяти секунд происходят из древнего Вавилона.
Однако по-настоящему революционным изобретением вавилонян была система представления чисел, больших 59. Можно было поступить как египтяне – то есть начать создавать новые символы. Но у вавилонян появилась другая идея: что значение символа может изменяться в зависимости от его положения относительно других символов. В нашей нынешней системе в числе 111 повторяется три раза один и тот же символ, и прелесть этого обозначения состоит в том, что, если читать это число справа налево, первый символ 1 обозначает единицу, второй – десяток, а третий – сотню. Каждый раз, когда мы добавляем слева еще один символ, его значение увеличивается в десять раз.
Однако система счисления вавилонян была не десятичной, а шестидесятеричной. Поэтому при каждом смещении на шаг влево значение увеличивалось на число, кратное 60. Например, число 111 в вавилонской системе было бы равно 1 × 602 + 1 × 60 + 1 = 3661. Этот шорткат был исключительно полезным. При помощи всего двух символов,
Этот шорткат к записи больших чисел открыли и майя. У них уже был символ для обозначения числа 5. Линия. Три линии могли обозначать 15. Три линии и четыре точки – 19. Но затем майя решили, что записи становятся слишком громоздкими. Поэтому символы, стоящие у них в следующих позициях, стали обозначать степени двадцати. Так, число 111 в системе счисления майя обозначает 1 × 202 + 1 × 20 + 1 = 421. Вскоре и они поняли, что в некоторых местах требуется символ, обозначающий пустое место, и выбрали для этого изображение ракушки.
Майя были великими астрономами и регистрировали огромные промежутки времени. Рациональная система счисления, основанная на положении символов, позволила им оперировать астрономически большими числами, не создавая огромных списков символов.
Однако в обеих системах, и у вавилонян, и у майя, не хватало одного элемента – символа, обозначающего ничто. Этот революционный шаг сделала третья культура, изобретшая позиционную систему счисления, – индийцы.
Цифры, которые служат нам сегодня, мы часто называем арабскими, но это название ошибочно. Во всяком случае, оно не рассказывает всей их истории. Арабы, привезшие эту систему в Европу, научились ей у индийских писцов. На самом деле цифры следовало бы называть индо-арабскими. Индийская система счисления использует символы от 1 до 9, причем при каждом шаге влево значение цифры увеличивается в 10 раз. В этой системе есть и символ, обозначающий ничто. Ноль.
Когда европейцев познакомили с этой идеей, они ее не поняли. Зачем нужен символ, если нечего считать? Но для индийцев ничто, пустота – важная философская концепция, и они были готовы дать ей название и исчисление.
В Европе все еще использовали римские цифры, а вычисления производили на абаках. Но работа с абаком требует особых умений и навыков. Поэтому простым людям вычисления были недоступны. Вычисления позволяли власть имущим сохранять власть. От расчетов на абаке не остается записей. Есть только результат. Такой системой было удобно злоупотреблять.
Поэтому правящие круги пытались остановить распространение системы счисления, завезенной с Востока. Она дала бы простому человеку доступ к вычислениям и возможность записывать эти вычисления. Внедрение этого шортката к работе с числами было, вероятно, не менее важно, чем изобретение печатного станка. Оно открыло математику народу.
Черная магия математики
Сегодня наш шорткат к вычислениям – это компьютеры и калькуляторы. Но те, кому сейчас за пятьдесят, помнят, как их учили работать еще с одним шорткатом, помогавшим выполнять сложные арифметические вычисления: это были таблицы логарифмов. На протяжении целых столетий они были основным шорткатом для любого торговца, штурмана, банкира или инженера. Этот инструмент давал им преимущество перед любым конкурентом, пытавшимся выполнять расчеты «в лоб».
Могущество логарифмов поставил нам на службу шотландский математик Джон Непер. Мне очень хотелось бы познакомиться с Непером – не только потому, что он придумал этот удобный шорткат к вычислениям, но и потому, что он, судя по всему, был человеком безумно необычным. Непер, родившийся в 1550 году, увлекался теологией и оккультизмом. Он разгуливал по своему имению в сопровождении черного паука, которого держал в маленькой клетке. Соседи считали, что он якшается с дьяволом. Когда он пригрозил одному из них, что переловит его голубей, клевавших его зерно, сосед решил, что Непер блефует, так как поймать птиц невозможно. На следующее же утро он был поражен, увидев, как Непер ходит по полю, собирая неподвижно сидящих там голубей в мешок. Неужели их заколдовали? Как выяснилось, голуби просто опьянели, наклевавшись гороха, который Непер вымочил в бренди.
Непер активно эксплуатировал веру местных жителей в его колдовские способности. Когда ему нужно было выяснить, кто из его слуг ворует, он сказал им, что вора назовет его черный петух. Каждый из слуг по очереди должен был войти в комнату и прикоснуться к петуху. Непер утверждал, что при прикосновении преступника петух закричит. Когда все слуги побывали в комнате с петухом, Непер велел им показать руки. У всех кроме одного на руках была сажа. Непер вымазал ею петуха, зная, что только вор побоится прикоснуться к птице.
Помимо теологических изысканий Непера увлекала и математика. Но его интерес к числам был всего лишь хобби, и он сетовал на то, что все его богословские занятия не оставляют достаточно времени для выполнения вычислений. Затем, однако, он разработал хитроумную стратегию, позволяющую обойти те долгие вычисления, через которые он пытался продираться.
Вот что он писал в книге, посвященной этому шорткату:
Видя, что ничто, о любезные исследователи математики, не мешает математическим занятиям, а также не досаждает и не стесняет вычислителей более, нежели операции умножения, деления и извлечения квадратов и кубов больших чисел, кои не только отнимают непомерное время, но и бывают по большей части подвержены многим коварным ошибкам, начал я рассуждать в уме своем о том, какими надежными и удобными средствами смог бы я устранить такие затруднения.
В результате Непер открыл способ, превращающий трудную задачу перемножения двух больших чисел в гораздо более простую операцию сложения. Какую из следующих операций вы выполнили бы вручную быстрее:
379 472 × 565 331
или
5,579179 + 5,752303?
Секрет этого волшебного превращения заключается в логарифмической функции. Функция подобна маленькой математической машине, которая берет одно число, а затем преобразует его в соответствии с внутренними правилами этой функции и выдает на выходе другое. Логарифмическая функция берет число и выводит то число, в степень которого нужно возвести 10, чтобы получить исходное[25]. Например, если ввести в логарифмическую функцию число 100, на выходе получим 2, потому что при возведении 10 в степень 2 получается 100. Если ввести в логарифмическую функцию миллион, на выходе получится 6, потому что миллион – это 10 в 6-й степени.
Использовать логарифмическую функцию становится несколько сложнее, когда в нее вводишь числа, отличные от явных степеней 10. Например, чтобы получить число 379 472, нужно возвести 10 в степень 5,579179. Чтобы получить число 565 331, 10 возводят в степень 5,752303. Таким образом, как и в случае многих других шорткатов, для использования этого нужно проделать большую предварительную работу. Непер потратил много часов на подготовку таблиц, в которых можно найти логарифмы разных чисел, но, когда эти таблицы были готовы, шорткат заработал в полную силу.
Потому что, если у вас есть два числа, выраженные в виде степеней 10, например, 10
Идея применения вычислительных таблиц для ускорения арифметических операций была не нова. Кажется даже, что некоторые из клинописных табличек древних вавилонян применялись именно для этого. В них для перемножения больших чисел была задействована другая формула. Если взять два больших числа
заменяет умножение вычитанием двух квадратов. Хотя такие алгебраические обозначения появились только в IX веке, вавилоняне понимали связь между квадратами и произведениями, которая позволяла им пользоваться шорткатом к вычислению произведения
Непер описал найденный им шорткат в книге под названием «Описание чудодейственной таблицы логарифмов» (Mirifici logarithmorum canonis descriptio, 1614). Читателям этой книги те идеи, которые она распространяла, и впрямь казались настоящим чудом. Оксфордский математик Генри Бригс, бывший первым профессором престижной кафедры геометрии, учрежденной Генри Савилем в Новом колледже, в котором профессорствую и я, был настолько поражен могуществом логарифмов Непера, что предпринял четырехдневное путешествие к Неперу в Шотландию. Он писал: «Я никогда не видел книги, которая доставила бы мне большее удовольствие или большее удивление».
На протяжении многих столетий эти таблицы давали естествоиспытателям и математикам шорткаты к сложным вычислениям. 200 лет спустя великий французский математик и астроном Пьер-Симон Лаплас заявил, что логарифмы «сокращают тяжелые труды, удваивая жизнь астронома и избавляя его от ошибок и отвращения, неотделимых от долгих вычислений».