Ответ оказался поразительным и невероятным и сразу же разделил физическое сообщество пополам. Макс Борн в статье 1926 г. написал, что
Эта идея произвела эффект разорвавшейся бомбы. Она означала, что точно предсказать будущее нельзя. Можно предсказать только шансы на то, что определенные вещи произойдут. Но отрицать успехи квантовой теории было невозможно. Эйнштейн писал: «Чем более успешной становится квантовая теория, тем глупее она выглядит». Даже Шрёдингер, первым предложивший концепцию электрона как волны, отверг вероятностную интерпретацию своих собственных уравнений. И сегодня физики продолжают спорить о философских следствиях волновой теории. Разве можно находиться в двух местах одновременно? Нобелевский лауреат Ричард Фейнман однажды сказал: «Мне кажется, можно с уверенностью сказать, что квантовую механику не понимает никто»[23].
Еще со времен Ньютона физики придерживались во взглядах так называемого детерминизма – философии, согласно которой все будущие события можно точно предсказать. Законы природы определяют движение всех объектов во Вселенной, делая его упорядоченным и предсказуемым. Для Ньютона Вселенная была подобна часовому механизму, тикающему точно предсказуемым образом. Если бы были известны координаты и скорости всех частиц во Вселенной, то из этих данных можно было бы вывести все будущие события.
Конечно, смертные всегда были одержимы предсказанием будущего. Шекспир в «Макбете» писал:
Согласно Ньютоновой физике, можно заранее предсказать, какое зерно прорастет, а какое нет. Эта точка зрения преобладала среди физиков на протяжении нескольких столетий. Так что неопределенность была ересью и потрясла современную физику до основания.
По одну сторону этого спора были Эйнштейн и Шрёдингер, принимавшие в свое время участие в запуске квантовой революции. По другую сторону – Нильс Бор и Вернер Гейзенберг, создатели новой квантовой теории. Кульминацией схватки стал исторический Шестой Сольвеевский конгресс в 1930 г. в Брюсселе. Именно там прошли главные дебаты эпохи, в ходе которых гиганты физики сошлись лицом к лицу в схватке за смысл самой реальности.
Пауль Эренфест позже писал об этом: «Я никогда не забуду, как на моих глазах два оппонента покидали университетский клуб. Эйнштейн являл собой величественную фигуру и шел спокойно со слабой ироничной улыбкой, а Бор, ужасно расстроенный, семенил рядом с ним»[25]. В холле можно было услышать, как Бор отрешенно бормотал себе под нос одно только слово: «Эйнштейн… Эйнштейн… Эйнштейн».
Эйнштейн начал атаку, выдвигая против квантовой теории возражение за возражением и пытаясь наглядно продемонстрировать всю ее абсурдность. Но Бор успешно отражал критические замечания Эйнштейна одно за другим. Когда Эйнштейн очередной раз повторил, что Бог не играет в кости со Вселенной, Бор, как говорят, ответил: «Перестаньте указывать Богу, что делать».
Физик из Принстона Джон Уилер сказал: «Это были величайшие дебаты из всех мне известных в нашей интеллектуальной истории. За тридцать лет я ни разу не слышал о публичном споре двух более великих людей, который продлился бы дольше и был бы посвящен более глубокому вопросу с более глубокими последствиями для понимания этого нашего странного мира»[26].
Историки в основном сходятся во мнении, что спор этот выиграли Бор и квантовые бунтари.
И все же Эйнштейну удалось вскрыть и продемонстрировать всем трещины в фундаменте квантовой механики. Он показал, что этот великан стоит на глиняных философских ногах. Высказанные им тогда критические замечания можно услышать даже сегодня, и в центре их находится один интересный кот.
Шрёдингер придумал простой мысленный эксперимент, в котором наглядно проявилась суть проблемы. Поместите кота в запечатанный ящик. Положите туда же кусок урана. Когда из урана вылетит элементарная частица, сработает счетчик Гейгера, приводящий в действие пистолет, который выпустит пулю в кота. Вопрос при этом ставится так: кот жив или мертв?
Поскольку распад атома урана – чисто квантовое событие, то и кота вам придется описывать с точки зрения квантовой механики. Для Гейзенберга, пока вы не открыли ящик, кот существует в виде сочетания различных квантовых состояний, то есть представляет собой сумму двух волн. Одна из этих волн описывает мертвого кота, другая – живого. Кот при этом не жив и не мертв, но представляет собой сочетание этих двух состояний. Единственный способ сказать, мертв кот или жив, – открыть ящик и произвести наблюдение; тогда волновая функция схлопнется в мертвого или живого кота. Иными словами,
Для Эйнштейна все это было нелепостью и напоминало философию епископа Беркли, который задавал вопрос: если дерево падает в лесу и вокруг нет никого, кто мог бы это услышать, то производит ли его падение звук? Солипсисты сказали бы, что нет. Но квантовая теория поступила еще хуже. Она объявила, что если в лесу имеется дерево, рядом с которым никого нет, то это дерево существует как сумма множества различных состояний: например, сгоревшего дерева, молодого ростка, бревна, листа фанеры. Только когда вы смотрите на это дерево, его волновая функция волшебным образом схлопывается в обычное дерево.
Когда к Эйнштейну домой приходили гости, он, бывало, спрашивал: «Существует ли луна только потому, что на нее смотрит мышь?» Но какой бы нелепой ни казалась квантовая теория, как бы сильно она ни противоречила здравому смыслу, у нее имелось одно серьезное достоинство: она была экспериментально верна. Предсказания квантовой теории проверены до одиннадцати цифр после запятой, что делает ее самой точной теорией всех времен.
Эйнштейн, однако, готов был признать, что квантовая теория
Даже сегодня среди физиков не существует единого мнения по проблеме кота. (Старая копенгагенская интерпретация Нильса Бора, в которой истинный кот появляется только потому, что наблюдение вызывает схлопывание его волновой функции, вышла из моды, поскольку сегодня при помощи нанотехнологий мы можем манипулировать отдельными атомами и проводить подобные эксперименты. Более популярной стала многомировая интерпретация, где вселенная расщепляется надвое, причем в одной половине кот мертв, а в другой – жив.)[27]
Успех квантовой теории позволил физикам в 1930-е гг. обратить взгляды на другую задачу и нацелиться на новый приз. Они вознамерились ответить на извечный вопрос: почему светит Солнце?
С незапамятных времен многие религии мира обожествляли солнце, помещая его в самый центр своей мифологии. Солнце было одним из самых могущественных богов, правивших небесами. Для греков это был Гелиос, каждый день величественно проезжавший на своей сверкающей колеснице по небу, освещая наш мир и даруя жизнь. У ацтеков, египтян и древних индусов были свои версии солнечного бога.
Но в эпоху Возрождения некоторые ученые попытались исследовать солнце через призму физики. Если бы наше светило было сделано из дерева или масла, все его топливо давно выгорело бы. А если в громадных пространствах открытого космоса нет воздуха, то и пламя солнца давно бы потухло. Так что вечная энергия солнца оставалась загадкой.
В 1835 г. ученым всего мира был брошен вызов. Французский философ Огюст Конт, основатель философии позитивизма, объявил, что наука, конечно, мощный инструмент и раскрывает многие тайны Вселенной, но одно навсегда останется неподвластным ей. Даже величайшим ученым никогда не удастся ответить на вопрос, из чего сделаны планеты и Солнце.
Это был разумный вызов, ведь краеугольным камнем науки является проверяемость. Все научные открытия должны быть воспроизводимыми и проверяться в лаборатории, но набрать солнечный материал в бутылку и доставить его на Землю было со всей очевидностью невозможно. Следовательно, и ответ на этот вопрос должен был навсегда остаться для нас загадкой.
По иронии судьбы, всего через несколько лет после того, как Конт сделал свое заявление в книге «Позитивная философия», физики сумели достойно ответить на его вызов. Они выяснили, что Солнце состоит в основном из водорода[28].
Конт в своих рассуждениях допустил небольшую, но критически важную ошибку. Да, наука всегда должна быть проверяемой, но, как мы уже установили, большая часть научных исследований проводится косвенным образом, опосредованно.
В начале XIX века Йозеф фон Фраунгофер разработал самые точные спектрографы своего времени. (В спектрографе свет проходит через призму или другой диспергирующий элемент и дает на экране радугу, показывающую, сколько в световом пучке лучей с разной длиной волны. При пропускании через спектрограф солнечного света на фоне привычной радуги наблюдаются узкие темные полоски. Эти линии возникают потому, что электроны совершают квантовые скачки с орбиты на орбиту, высвобождая или поглощая при этом определенные количества энергии. Поскольку каждый химический элемент дает собственные, характерные только для него линии, каждая спектральная линия подобна отпечатку пальца и позволяет наблюдателю определить, из чего состоит исследуемое вещество. Помимо всего прочего, спектрографы помогли разгадать множество преступлений, поскольку они позволяют установить, откуда пришел преступник, по оставленной его ботинками грязи, природу токсинов в составе яда и принадлежность микроскопических волокон и волос. Спектрографы дают возможность воссоздать картину преступления, определив химический состав всех присутствующих веществ.)
Именно анализ спектральных линий солнечного света позволил ученым определить, что Солнце состоит преимущественно из водорода. (Больше того, физики обнаружили на Солнце и новое неизвестное вещество. Они назвали его гелием, что означает «солнечный». Таким образом, гелий впервые был обнаружен на Солнце, а не на Земле.)
Вскоре после исследований Фраунгофера астрономы сделали еще одно важное открытие. Проанализировав свет звезд, они обнаружили, что эти светила тоже состоят из веществ, которые обычны на Земле. Это было очень важное открытие, ведь оно указывало, что законы физики одинаковы не только у нас, в Солнечной системе, но и во всей Вселенной.
Как только теории Эйнштейна получили признание, физики, такие как Артур Эддингтон и Ханс Бете, собрали все данные воедино и определили, какое топливо служит источником энергии Солнца. Гравитационное поле Солнца способно сжать водород так, что протоны начинают сливаться друг с другом с образованием гелия, а затем и более тяжелых элементов. Поскольку гелий весит чуть меньше, чем весят суммарно ядра водорода, при слиянии которых он образуется, это означает, что пропавшая масса превращается в энергию согласно формуле Эйнштейна
Пока физики спорили об ошеломляющих парадоксах квантовой теории, на горизонте собирались грозовые тучи войны. Адольф Гитлер захватил власть в Германии в 1933 г., и физики были вынуждены массово бежать из страны, спасаясь от ареста или худшей участи.
Однажды на улице Шрёдингер стал свидетелем того, как нацисты в коричневых рубашках травили ни в чем не повинных евреев – обычных прохожих и лавочников. Он попытался остановить их, они набросились на него и стали бить. Избиение прекратилось только тогда, когда один из коричневорубашечников узнал ученого и сказал остальным, что человек, которого они бьют, – лауреат Нобелевской премии по физике. Потрясенный Шрёдингер вскоре покинул Австрию. Лучшие представители немецкой науки, встревоженные ежедневными сообщениями о репрессиях, уезжали из своей страны.
Всегда дипломатичный Планк, отец квантовой теории, лично умолял Гитлера остановить массовый исход немецких ученых, в результате которого страна могла лишиться лучших умов. Но Гитлер просто наорал на него, обвинив во всем евреев. Позже Планк написал, что «говорить с таким человеком было невозможно». (Печально, но собственный сын Планка входил в группу заговорщиков, пытавшихся убить Гитлера, за что был подвергнут жестоким пыткам и затем казнен.)
На протяжении нескольких десятилетий Эйнштейну задавали вопрос о том, может ли его уравнение помочь высвободить сказочные количества энергии, запертые внутри атома. Эйнштейн всегда отвечал «нет»: энергия, высвобожденная одним атомом, слишком мала, чтобы ее практически использовать.
Гитлер, однако, хотел использовать научное превосходство Германии в целях создания мощного, невиданного прежде оружия, оружия террора, такого как ракеты Фау-1 и Фау-2 и атомная бомба. В конце концов, если Солнце питается ядерной энергией, то можно, наверное, создать и супероружие на том же источнике энергии.
Ключевую идею о том, как практически использовать уравнение Эйнштейна, высказал физик Лео Силард. Еще до него немецкие физики показали, что ядро урана при бомбардировке нейтронами может распадаться на части с высвобождением дополнительных нейтронов. Энергия, высвобождаемая при расщеплении одного ядра, чрезвычайно мала, но Силард понял, что ядерную мощь урана можно многократно усилить в результате цепной реакции: при расщеплении одного ядра урана высвобождается два нейтрона. Эти нейтроны затем могут расщепить еще два ядра урана, которые испустят четыре нейтрона. Затем вы получите восемь, шестнадцать, тридцать два, шестьдесят четыре и т. д. нейтронов, то есть число расщепленных ядер урана будет расти экспоненциально, а энергии выделится столько, что можно будет сровнять с землей крупный город.
Внезапно отвлеченные дискуссии, разделившие физическое сообщество на Сольвеевском конгрессе, стали вопросом жизни и смерти, где на карту была поставлена судьба народов, стран и в конечном итоге – всей человеческой цивилизации.
Эйнштейн пришел в ужас, когда узнал, что в Богемии нацисты закрывают доступ в шахты по добыче урановой смолки и засекречивают их работу. Эйнштейн, хотя и был пацифистом, счел себя обязанным написать судьбоносное письмо президенту США Франклину Рузвельту, в котором призывал США создать атомную бомбу. Получив письмо, Рузвельт дал добро на крупнейший научный проект в истории – Манхэттенский проект.
В Германии же нацисты назначили главой атомного проекта Вернера Гейзенберга, которого многие считали лучшим квантовым физиком планеты. По мнению некоторых историков, страх, что Гейзенберг сумеет опередить союзников в создании атомной бомбы, был так велик, что Управление стратегических служб – предшественник ЦРУ – разработало план его убийства. В 1944 г. это задание было поручено Мо Бергу, бывшему профессиональному бейсболисту-кетчеру команды «Бруклин Доджерс». Берг пришел на лекцию, которую Гейзенберг читал в Цюрихе, с приказом убить физика, если ему, Бергу, покажется, что германский проект создания атомной бомбы близок к завершению. (Эта история подробно рассказана в книге Николаса Давидоффа «Этот кетчер был шпионом».)
К счастью, нацистский атомный проект значительно отставал от союзнического. Он плохо финансировался и постоянно сдвигался по срокам; кроме того, его базу бомбили союзники. А главное, Гейзенберг еще не решил тогда принципиальную для создания атомной бомбы задачу – не определил количество обогащенного урана или плутония, необходимое для запуска цепной реакции, то, что называют критической массой. (На самом деле требовалось примерно 10 кг урана-235, иначе говоря, такое количество урана, которое может поместиться в пригоршне.) После войны мир начал понимать, что мудреные, непонятные уравнения квантовой теории являются ключом не только к атомной физике, но и, возможно, к судьбе рода человеческого.
Физики, однако, постепенно возвращались к вопросу, который перед войной ставил их в тупик: как создать полную квантовую теорию вещества.
4
Теория почти всего
После войны Эйнштейн – величественный гений, раскрывший перед человечеством космическую взаимосвязь вещества и энергии и разгадавший тайну звезд, – оказался в одиночестве и изоляции.
Почти все последние успехи в физике были связаны с квантовой теорией, а не с единой теорией поля. Мало того, Эйнштейн жаловался, что другие физики смотрят на него как на реликт прежней эпохи. Его цель – создать единую теорию поля – большинство физиков считало слишком сложной, особенно с учетом того, что ядерное взаимодействие оставалось пока полной загадкой.
Эйнштейн отмечал: «Большинство смотрит на меня как на какую-то окаменелость, ослепшую и оглохшую от старости. Мне эта роль представляется не слишком неприятной, поскольку довольно хорошо соответствует моему темпераменту».
В прошлом работа Эйнштейна всегда опиралась на некий фундаментальный принцип. В специальной теории относительности уравнения должны были оставаться неизменными при замене
Он так и не нашел этот принцип. Однажды Эйнштейн храбро сказал, что «Бог изощрен, но не злонамерен». В последние годы жизни он разочаровался и заключил: «Я передумал. Возможно, Бог все же злонамерен».
Хотя большинство физиков игнорировало поиск единой теории поля, время от времени кто-нибудь решался попытать счастья и предлагал на суд коллег свою версию такой теории.
Даже Эрвин Шрёдингер не остался в стороне. Он скромно написал Эйнштейну: «Вы охотитесь на льва, тогда как я говорю о кроликах»[29]. Тем не менее в 1947 г. Шрёдингер провел пресс-конференцию и рассказал о своем варианте единой теории поля. На пресс-конференции появился даже премьер-министр Ирландии Имон де Валера. Шрёдингер сказал: «Мне кажется, я прав. В противном случае я буду выглядеть чертовски глупо»[30]. Эйнштейн позже сказал Шрёдингеру, что сам он тоже рассматривал такую теорию и нашел ее ошибочной. К тому же эта теория не могла объяснить природу электронов и атома.
Вернер Гейзенберг и Вольфганг Паули тоже заметили ошибку и предложили свой вариант единой теории поля. Паули был известнейшим циником в физике и критиком программы Эйнштейна. Известен его комментарий на эту тему: «Что Бог разорвал, человек да не соединит», иными словами, если Бог счел нужным разделить взаимодействия во Вселенной, то кто мы такие, чтобы пытаться вновь соединить их?
В 1958 г. Паули прочел в Колумбийском университете лекцию, в которой изложил единую теорию поля Гейзенберга – Паули. В аудитории присутствовал Бор. После лекции он встал и сказал: «Мы на галерке убеждены, что ваша теория безумна. Однако мы разошлись во мнениях о том, достаточно ли она безумна»[31].
Это замечание послужило поводом для горячей дискуссии, в которой Паули утверждал, что его теория достаточно безумна, чтобы быть верной, а остальные говорили, что безумия в ней недостает. Физик Джереми Бернштейн, участник тех событий, вспоминал: «Это было страшное столкновение двух гигантов современной физики. Меня мучил вопрос, что подумал бы обо всем этом случайный посетитель-нефизик»[32].
Бор оказался прав: позже было показано, что теория, представленная Паули, неверна.
Однако Бор тогда высказал одну важную мысль. Все простые, очевидные теории Эйнштейн с коллегами уже опробовал, и все они не оправдали надежд. Следовательно, истинная единая теория поля должна радикально отличаться от всех предыдущих подходов. Нужно нечто «достаточно безумное», чтобы претендовать на роль единой теории всего.
Реальный прогресс в послевоенную эпоху был достигнут в создании полной квантовой теории света и электронов, получившей название квантовой электродинамики, или КЭД. Цель заключалась в объединении теории электрона Дирака с теорией света Максвелла и формулировании теории света и электронов, соответствующей канонам квантовой механики и специальной теории относительности. (Однако теория, которая объединила бы электроны Дирака с общей теорией относительности, считалась слишком сложной и в качестве цели не рассматривалась.)
Еще в 1930 г. Роберт Оппенгеймер (возглавивший позже проект по созданию атомной бомбы) заметил один глубоко тревожный факт. Всякая попытка описать квантовую теорию взаимодействия электрона и фотона приводила к тому, что квантовые поправки, вопреки ожиданиям, расходились, выдавая бесполезные бесконечные результаты. Предполагалось, что квантовые поправки должны быть маленькими, – таким принципом физики руководствовались не один десяток лет. Получалось, что попытка просто объединить уравнение электронов Дирака и теорию фотонов Максвелла несла в себе какой-то принципиально важный порок. Это мучило физиков на протяжении почти двух десятилетий. Многие работали над этой проблемой, но успеха не достигли.
Наконец в 1949 г. трое работавших независимо молодых физиков – Ричард Фейнман и Джулиан Швингер в США и Синъитиро Томонага в Японии – сумели решить эту давнюю задачу.
Успех, достигнутый ими, был несомненен: ученые получили возможность рассчитывать такие вещи, как магнитные свойства электрона, с огромной точностью. Но способ, которым они этого добились, был противоречив и до сих пор, даже сегодня, вызывает у физиков некоторую неловкость и смятение.
Начали они с уравнений Дирака и Максвелла, где задаются начальные значения массе и заряду электрона (называемые «затравочной массой» и «затравочным зарядом»). Затем они рассчитали квантовые поправки к затравочным массе и заряду. Эти квантовые поправки получились расходящимися. Собственно, именно эту проблему ранее обнаружил Оппенгеймер.
Но дальше начинается волшебство. Если мы будем считать, что первоначальные затравочные масса и заряд с самого начала были бесконечными, а затем рассчитаем для них бесконечные квантовые поправки, то обнаружим, что эти два бесконечных числа компенсируют друг друга, оставляя нам конечный результат! Иными словами,
Идея была безумна, но она сработала. При помощи КЭД напряженность магнитного поля электрона можно рассчитать с астрономической точностью – до одной стомиллиардной доли.
«Численное согласование теории и эксперимента здесь, возможно, самое впечатляющее во всей науке»[33], – отметил Стивен Вайнберг. Это как рассчитать расстояние от Лос-Анджелеса до Нью-Йорка с точностью до толщины волоса. Швингер так гордился этим, что велел высечь символ этого результата на своем памятнике.
Этот метод называется теорией перенормировки. Процедура эта, однако, трудоемкая, сложная и очень нудная. Буквально тысячи слагаемых необходимо вычислить с высокой точностью, и все они должны столь же точно взаимно уничтожиться. Даже крохотная ошибка в этой толстой книге уравнений может испортить весь расчет. (Не будет преувеличением сказать, что некоторые физики всю свою профессиональную жизнь проводят за вычислением при помощи теории перенормировки квантовых поправок для следующей значащей цифры.)
Из-за своей сложности процесс перенормировки не понравился даже Дираку, который с самого начала участвовал в создании КЭД. Дирак считал, что этот метод выглядит совершенно искусственным и напоминает заметание сора под ковер. Однажды он сказал: «Просто это не разумная математика. В разумной математике величиной пренебрегают, если она оказывается маленькой, а вовсе не потому, что она бесконечно велика и мешает вам!»[34]
Теория перенормировки, способная объединить специальную теорию относительности с электромагнетизмом Максвелла, в самом деле крайне неуклюжа. Чтобы скомпенсировать тысячи слагаемых, нужно овладеть целой энциклопедией математических фокусов. Но с результатами не поспоришь.
Это, в свою очередь, проложило путь к замечательной группе открытий, которым суждено было дать толчок третьей великой революции в истории – революции высоких технологий, включая транзисторы и лазеры, – и таким образом внести вклад в определение облика современного мира.
Возьмем транзистор, пожалуй важнейшее изобретение за последние сто лет. Он привел к информационной революции с ее телекоммуникационными системами, компьютерами и интернетом. По существу, транзистор – это вентиль, управляющий потоком электронов. Представьте себе водопроводный кран. При помощи небольшого поворота маховичка мы можем управлять потоком воды в трубе. Точно так же транзистор, как крохотный электронный вентиль, позволяет слабому электрическому сигналу управлять гораздо более мощным потоком электронов в проводнике. Это дает возможность усиливать слабый сигнал.
Аналогично лазер – одно из самых универсальных оптических устройств в истории – это еще один побочный продукт квантовой теории. Для создания газового лазера берут трубку с неким газом или газовой смесью. Затем накачивают ее энергией (прикладывая электрический ток). Внезапный приток энергии заставляет триллионы электронов в газе перейти на более высокий энергетический уровень. Однако этот массив возбужденных атомов нестабилен. Когда один из электронов возвращается на более низкий уровень, он испускает фотон света, который взаимодействует с соседним накачанным энергией атомом. Это заставляет второй атом тоже вернуться на более низкий уровень и испустить фотон. Квантовая механика предсказывает, что второй фотон будет колебаться в унисон с первым. В обоих концах трубки можно поставить зеркала, усиливающие поток фотонов. В конечном итоге этот процесс порождает гигантскую лавину фотонов, которые многократно проходят через газ между зеркалами, создавая лазерный луч.
Сегодня лазеры можно встретить где угодно: в кассовых аппаратах супермаркетов, в больницах, в компьютерах, на рок-концертах, в искусственных спутниках и т. п. Лазерный луч способен переносить не только громадные объемы информации, но и колоссальное количество энергии, достаточное, чтобы прожечь насквозь большинство материалов. (Судя по всему, единственными факторами, ограничивающими энергию лазерного луча, являются стабильность активного вещества лазера и энергия, питающая лазер. Так что, имея подходящее активное вещество и достаточно мощный источник энергии, можно, в принципе, получить луч, похожий на те, что показывают в научно-фантастических фильмах.)
Эрвин Шрёдингер был одним из основоположников квантовой механики. Однако его интересовала и другая научная проблема, не одно столетие занимавшая ученых и ставившая их в тупик. Что такое жизнь? Может ли квантовая механика разгадать эту давнюю загадку? Он считал, что одним из побочных результатов квантовой революции должен стать ключ к пониманию происхождения жизни.
На протяжении всей истории науки естествоиспытатели и философы верили в существование некой жизненной силы, которая делала возможным появление живых существ. Когда в тело вселялось нечто таинственное, называемое душой, оно внезапно оживало и вело себя как человек. Многие верили в так называемый дуализм, в котором материальное тело сосуществовало с бесплотной душой.
Шрёдингер, однако, считал, что код жизни заключен в некоей основополагающей молекуле, которая подчиняется законам квантовой механики. Эйнштейн, например, изгнал из физики эфир. Подобно ему, Шрёдингер хотел изгнать из биологии жизненную силу. В 1944 г. он написал новаторскую книгу «Что такое жизнь?», которая произвела глубокое впечатление на новое поколение послевоенных ученых. Шрёдингер предложил использовать квантовую механику для получения ответа на самый древний вопрос о жизни. В книге он отмечал, что генетический код каким-то образом передается от одного поколения живых организмов следующему. Он был убежден, что код этот находится не в душе, а в каком-то наборе молекул в наших клетках. Опираясь на квантовую механику, Шрёдингер рассуждал о том, какой могла бы быть эта загадочная основополагающая молекула. Однако в 1940-е гг. наши знания в сфере молекулярной биологии были недостаточны, чтобы предметно ответить на этот вопрос.
Но двое ученых, Джеймс Уотсон и Фрэнсис Крик, прочитав эту книгу, увлеклись поиском основополагающей молекулы. Они понимали, что из-за ничтожных размеров молекул увидеть одну из них или манипулировать ею невозможно. Дело в том, что длина волны видимого света намного превышает размер молекулы. Но у них имелся еще один квантовый инструмент – рентгеновская кристаллография. Длина волны рентгеновского излучения сравнима с размерами молекул, поэтому при попадании рентгеновских лучей на кристалл органического вещества они должны рассеиваться. Но картина рассеяния содержит информацию об атомной структуре кристалла. Разные молекулы дают разные рентгеновские узоры, или рентгенограммы. Квалифицированный специалист по квантовой физике, взглянув на рентгенограмму, может сделать вывод о структуре молекулы. Так что, хотя саму молекулу увидеть невозможно, расшифровать ее структуру ученым вполне по силам.
Квантовая механика настолько мощный инструмент, что можно даже определить, под каким углом расположены атомы, образующие молекулы. Затем, подобно ребенку, играющему с конструктором вроде «тинкертой» или «лего», можно составить, атом за атомом, нужные цепочки, правильно соединить их и воспроизвести реальную структуру сложной молекулы. Уотсон и Крик поняли, что одним из главных компонентов ядра клетки является молекула ДНК, так что именно эта молекула стала их главной целью. Проанализировав рентгенограммы, сделанные Розалиндой Франклин, они пришли к выводу, что структура молекулы ДНК представляет собой двойную спираль.
В одной из важнейших работ, опубликованных в XX веке, Уотсон и Крик полностью расшифровали при помощи квантовой механики структуру молекулы ДНК. Это был шедевр. Они убедительно продемонстрировали, что фундаментальный процесс, присущий всему живому, – размножение – может быть воспроизведен на молекулярном уровне. Оказалось, что жизнь зашифрована в нитях ДНК, которые можно обнаружить в любой клетке.
Этот прорыв дал ученым шанс реализовать сокровенную мечту биологии – проект «Геном человека», результатом которого стала возможность получить полное атомное описание ДНК любого человека.
Как предсказывал в XIX веке Чарльз Дарвин, теперь ученые получили возможность построить древо жизни на Земле, где каждое живое существо и каждая окаменелость должны занять свое место на одной из ветвей. И все это при помощи квантовой механики.
Таким образом, объединение законов квантовой физики помогло не только раскрыть тайны Вселенной, но и построить единое древо жизни.
Как мы знаем, Эйнштейн не сумел завершить свою единую теорию поля отчасти потому, что в его арсенале отсутствовала громадная часть головоломки – ядерное взаимодействие. Тогда, в 1920-е и 1930-е гг., о нем почти ничего не было известно.
Но в послевоенную эпоху физики, опираясь на головокружительный успех квантовой электродинамики, обратили свое внимание на следующую насущную проблему – применение квантовой теории к ядерным взаимодействиям. Это была сложная и трудоемкая задача, поскольку начинать приходилось с самого начала; кроме того, для успешного продвижения по неизвестной территории требовались совершенно новые инструменты.
Существует два типа ядерных взаимодействий – сильное и слабое. Поскольку протон положительно заряжен, а положительные заряды отталкиваются друг от друга, ядро атома, по идее, должно было бы разлететься на кусочки. Ядерные взаимодействия – это и есть те силы, которые удерживают компоненты ядра в связанном состоянии и противостоят электростатическому отталкиванию. Без них весь наш мир распался бы, превратившись в облако элементарных частиц[35].
Сильного ядерного взаимодействия достаточно, чтобы ядра многих химических элементов могли оставаться стабильными вечно. Многие из них стабильны с начала времен – по сути, с момента возникновения Вселенной, особенно если число протонов и нейтронов в них сбалансировано. Однако некоторые ядра нестабильны, в частности те, в которых слишком много протонов или нейтронов. Если в ядре слишком много протонов, его может разорвать сила электрического отталкивания. Если в нем слишком много нейтронов, к распаду может привести их нестабильность. Слабого ядерного взаимодействия недостаточно, чтобы удерживать нейтрон в целости вечно, так что со временем он распадается. Так, половина любого набора свободных нейтронов распадется в течение четырнадцати минут. При распаде остается три частицы: протон, электрон и еще одна загадочная новая частица – антинейтрино, о которой мы поговорим позже.
Изучать ядерное взаимодействие чрезвычайно трудно, поскольку атомное ядро примерно в сто тысяч раз меньше самого атома. Чтобы прозондировать внутреннее строение протона, физикам понадобился новый инструмент – ускоритель частиц. Мы уже видели, как много лет назад Эрнест Резерфорд, чтобы открыть атомное ядро, использовал излучение радия, помещенного в свинцовую коробочку. Для проникновения глубже внутрь ядра физикам требовались еще более мощные источники излучения.
В 1929 г. Эрнест Лоуренс изобрел циклотрон – предтечу сегодняшних гигантских ускорителей частиц. Базовый принцип работы циклотрона прост. Магнитное поле заставляет протоны двигаться по кольцевой траектории. На каждом обороте протоны получают небольшой энергетический толчок под действием электрического поля. В конечном итоге после множества оборотов пучок протонов может набрать энергию в несколько миллионов и даже миллиардов электронвольт. (Базовые принципы работы ускорителя частиц настолько просты, что я в старших классах школы самостоятельно построил бетатрон – ускоритель электронов.)
Затем этот пучок направляют в мишень, где составляющие его протоны сталкиваются с другими протонами. Тщательно просеивая громадное количество фрагментов, получающихся при столкновении, ученые смогли идентифицировать новые, неизвестные прежде частицы. (Процесс бомбардировки мишени пучками частиц с тем, чтобы разбить протоны, – весьма неуклюжая и неточная операция. Иногда приводят такое сравнение: это все равно что выбросить пианино в окно, а затем попытаться определить все его свойства, анализируя звук падения. Но, каким бы неуклюжим ни был этот процесс, он один из немногих имеющихся у нас способов зондирования внутренней структуры протона.)
Когда физики в 1950-е гг. впервые сумели столкнуть протоны в ускорителе, они, к собственному удивлению, обнаружили целый зоопарк неожиданных частиц.
У них буквально разбежались глаза. Считалось, что чем глубже вы проникаете в ядро, тем проще – а не сложнее – становится природа. При виде такого богатства частиц квантовый физик мог подумать, что природа и правда злонамеренна.
Обескураженный бесконечным потоком новых частиц, Роберт Оппенгеймер заявил, что Нобелевскую премию по физике следует присудить тому физику, который за год не откроет ни одной новой частицы. Энрико Ферми объявил, что если бы знал, «что будет так много частиц с греческими названиями, то стал бы ботаником, а не физиком»[36].
Исследователи буквально тонули в элементарных частицах. Из-за возникшей путаницы некоторые физики заявляли, что человеческий разум, возможно, недостаточно проницателен, чтобы разобраться в субатомном царстве. В конце концов, говорили они, невозможно научить собаку дифференциальному исчислению, не исключено, что возможностей человеческого разума просто не хватит для понимания происходящего в ядре атома.
Однако путаница начала немного проясняться с появлением работ Марри Гелл-Манна и его коллег по Калифорнийскому технологическому институту (Калтеху), которые заявили, что протон и нейтрон состоят из трех еще более мелких частиц, называемых кварками.
Эта простая модель прекрасно справилась с задачей классификации частиц по группам. Как до него Менделеев, Гелл-Манн, глядя на пробелы в своей теории, смог предсказать свойства новых сильно взаимодействующих частиц. В 1964 г. еще одна частица, предсказанная кварковой моделью и получившая название «омега-минус», была обнаружена в реальности, что подтвердило общую верность этой теории, за которую Гелл-Манн получил Нобелевскую премию.
Кварковая модель смогла объединить так много частиц, потому что была основана на симметрии. Эйнштейн, как мы помним, ввел четырехмерную симметрию, превращающую пространство во время и наоборот. Гелл-Манн ввел уравнения, содержащие три кварка; если поменять их местами внутри уравнения, само уравнение не изменится. Эта новая симметрия описывала перестановку трех кварков.