Если провести разрез немного наклонно, получится эллипс.
Если угол разреза будет таким же, как у самого конуса, получится парабола.
Если посмотреть на плоскость разреза, то парабола выглядит как изящная симметричная кривая. Линия симметрии называется осью параболы.
В своем труде Архимед поставил перед собой задачу вычислить площадь сегмента параболы. Говоря современным языком, сегментом параболы называется криволинейная область, лежащая между параболой и пересекающей ее прямой.
Термином «квадратура» называется определение площади какой-либо фигуры (изначально – построение квадрата, равновеликого этой фигуре), то есть поиск способа выразить ее через более простые формы – квадрат, треугольник, прямоугольник и прочие прямолинейные фигуры.
Архимед использовал потрясающую стратегию. Он представил сегмент параболы как бесконечное множество треугольных черепков, склеенных вместе, словно осколки разбитого глиняного горшка.
Эти осколки образуют бесконечную иерархию размеров: один большой треугольник, два поменьше, четыре еще меньше и так далее. Ученый планировал найти их площади, а затем сложить их и вычислить интересующую его площадь. Требовался калейдоскопический скачок художественного воображения, чтобы представить плавный сегмент в виде мозаики из угловатых кусков. Если бы Архимед был художником, он стал бы первым кубистом.
Для реализации своей стратегии Архимеду требовалось вычислить площадь всех осколков. Но как точно определить эти осколки? Ведь параболический сегмент можно разбивать на куски бесконечным числом способов – так же как бесконечным числом способов можно разбить тарелку на части. Самый большой осколок может выглядеть вот так, или так, или вот так:
Ученому пришла в голову блестящая идея. Блестящая потому, что она создавала закономерность, которую можно было сохранять на всех уровнях иерархии. Он представил, как секущая линия в основании сегмента скользит вертикально, сохраняя свой наклон, пока не будет соприкасаться с параболой в единственной точке неподалеку от вершины.
Такая особая точка называется точкой касания. Она определяет третью вершину большого треугольника, где две другие – точки пересечения секущей и параболы.
Архимед использовал эту же тактику для определения треугольников на
Обратите внимание, что теперь роль наклонной линии, пересекавшей треугольник на предыдущем этапе, играют стороны большого треугольника.
Затем Архимед использовал известные геометрические факты о параболах и треугольниках, чтобы узнать, как площади треугольников одного уровня связаны с площадью треугольников предыдущего уровня. Он доказал, что площадь каждого нового треугольника составляет 1/8 площади породившего его треугольника. Таким образом, если считать, что площадь первого, самого крупного, треугольника 1 (пусть он будет нашей единицей площади), то площадь двух дочерних треугольников будет 1/8 + 1/8 = 1/4.
На каждом следующем этапе справедливо то же правило: дочерние треугольники всегда составляют в сумме четверть площади от родительского. Следовательно, общая площадь сегмента параболы, состоящая из всего бесконечного количества осколков, должна равняться
В этом бесконечном ряду каждый член вчетверо меньше предыдущего.
Существует простой способ вычислить сумму членов такого ряда, известного как геометрическая прогрессия. Хитрость состоит в том, чтобы избавиться от бесконечного числа слагаемых. Для этого умножим обе части уравнения на 4 и вычтем из получившегося равенства исходное. Смотрите: умножение всех членов ряда на 4 дает:
Чудо происходит между предпоследней и последней строками. В предпоследней строке, подобно фениксу, возродилось выражение для исходной площади:
4 ×
Вычитая из обеих частей величину
Рассуждение о сыре
Архимед не одобрил бы вышеприведенный трюк. Он получил тот же результат другим путем, используя рассуждение под названием
Принципиально важно здесь то, что Архимед устранил невозможное с помощью рассуждений, основанных на
Суть его аргументов легко понять, если представить их в виде повседневных терминов. Предположим, что три человека хотят поделить между собой четыре одинаковых ломтика сыра.
Самым здравым решением было бы дать каждому по кусочку, а оставшийся разрезать на три равные части. Это честно: каждый получит по 1 + 1/3 = 4/3 ломтика.
Но предположим, что эти трое оказались математиками, которые слоняются вокруг стола с едой перед семинаром, разглядывая последние четыре ломтика сыра. Самый сообразительный из троих, по совпадению носящий имя Архимед, может предложить такое решение: «Ребята, берем по одному куску, а оставшийся будем делить. Евклид, разрезай его на
Сколько всего сыра съест каждый из них, если процесс будет продолжаться бесконечно? После первого этапа каждый математик съест один ломтик. После второго, когда поделили четверть, у всех по 1 + 1/4 ломтика. После третьего этапа каждый съест по 1+ 1/4 + 1/16 ломтика. И так далее. Если дележ будет продолжаться вечно, каждому достанется 1+ 1/4 + 1/16 + … ломтиков сыра. А поскольку эта величина равна трети от исходного количества сыра, то 1+ 1/4 + 1/16 + … = 4/3.
В «Квадратуре параболы» Архимед дал очень близкое рассуждение, включая диаграмму с квадратами разного размера, но нигде не прибегал к бесконечности и не пользовался аналогами многоточия, чтобы показать бесконечную сумму. Наоборот, он рассуждал в терминах конечных сумм, так что его изложение было безупречно строгим. Его ключевое соображение заключалось в том, что крохотный квадратик в правом верхнем углу – текущий остаток, который еще предстоит разделить, – можно сделать меньше любого заданного числа после достаточно большого, но конечного числа этапов. И, согласно аналогичным рассуждениям, величину 1+ 1/4 + 1/16 + … + 1/4
В этот момент я начинаю испытывать настоящее расположение к Архимеду, поскольку в одном из своих сочинений[60] он делает то, на что решаются немногие гении: приглашает нас посмотреть, как он мыслит[61]. (Я использую здесь настоящее время, потому что этот труд воспринимается так, словно ученый говорит с нами сегодня). Он делится своей уязвимой интуицией и выражает надежду, что будущие математики станут использовать ее для решения задач, которые ускользнули от него. Сегодня этот секрет известен как
Архимед пишет о «Методе» в письме своему другу Эратосфену, библиотекарю в Александрии и единственному математику того времени, способному его понять. Он признается, что хотя его метод и не обеспечивает реальной демонстрации результатов[63], которые его интересуют, он помогает установить истину. Это наделяет его интуицией. Как он говорит, «если мы с помощью этого метода заранее получили какие-то знания по нужному вопросу, получить доказательство проще, чем находить его без предварительного знания». Другими словами, разминаясь, играя с методом, Архимед приобретает ощущение территории. И это приводит его к надежным доказательствам.
Вот такой честный отчет о том, что значит заниматься творческой математикой. Математики не придумывают доказательств сразу. Сначала срабатывает интуиция. Строгость приходит позднее. Эту решающую роль интуиции и воображения часто не учитывают в школьных курсах геометрии, однако она важна для всей творческой математики.
Архимед с надеждой заключает, что «среди нынешних и будущих поколений найдутся те, кто с помощью описанного здесь метода сможет найти другие теоремы, которые не выпали на нашу долю»[64]. От этих слов у меня на глаза наворачиваются слезы. Этот непревзойденный гений, ощущающий конечность своей жизни на фоне бесконечности математики, признает, что еще предстоит очень много сделать и что существуют «другие теоремы, которые не выпали на нашу долю». Все мы, математики, это понимаем. Наш предмет бесконечен. Он учит смирению даже самого Архимеда.
Первое упоминание о
Что же это за метод и что в нем такого личного, блестящего и трансгрессивного? Метод
Это еще более творческий подход, чем его кубистско-геометрическая техника осколков и треугольников, которую мы обсуждали ранее, поскольку в этом случае Архимед собирается построить для вычислений воображаемую доску-качалку, причем так, чтобы она соответствовала размерам параболы. В совокупности его идеи дадут ответ, который он ищет.
Он начинает с сегмента параболы и наклоняет его так, чтобы ось симметрии параболы была вертикальной.
Затем он строит качалку. Инструкция по эксплуатации гласит:
Теперь заключим наш сегмент в треугольник гораздо большего размера,
Верхняя сторона этого треугольника выбирается как касательная прямая к параболе в точке
Следующий этап – строительство остальной части качалки: доски, двух сидений и точки опоры. Доска – это линия, соединяющая два сиденья. Она начинается в точке
И вот тут появляется ошеломляющая идея, лежащая в основе всей концепции. Используя известные факты о параболах и треугольниках, Архимед доказывает, что можно уравновесить большой внешний треугольник относительно сегмента параболы, если представлять его
а длинное ребро – с верхней стороной внешнего треугольника.