Итого, согласно подсчётам Мичода, на изготовление одного iPhone нужно 34 килограмма руды, 100 литров воды и 20,5 граммов цианида в среднем по отрасли.
«Это шокирующие цифры!» – заключает он.
Глубоко в стволе шахты в Серро-Рико Мари, Джейсон и я пробираемся под полуразрушенными опорными балками, высматривая полезные ископаемые в каменных пластах, освещая налобными фонарями развилки туннеля, которые кажутся бесконечными. Вокруг нас кромешная темнота. Мы с Джейсоном оба высокого роста и худощавые. Порой туннель высотой немногим больше метра, поэтому нам приходится опускаться на корточки и ковылять по-утиному. Проходы такие узкие, что, кажется, стены сдавливают нас; здесь душно и дышится с трудом. Джейсон начинает понемногу паниковать, а следом за ним и я. Наша проводница открывает бутылку с самогоном – одну из тех, что мы принесли в подарок шахтёрам – и суёт нам под нос. Мы тут же приходим в себя, будто разбуженные от кошмара.
Секундой позже я тараню макушкой потолок, и мне на лицо осыпается грязь. Снимаю видео, делаю смазанные фото на свой iPhone. Пласты на стенах – по-моему, серные – завораживающе красивы.
Джейсон кажется бледным. Понять его нетрудно: ведь вся гора – геологическая бомба замедленного действия. Наверное, глупо пугаться подобных мыслей во время небольшой прогулки по туннелю, в котором ежедневно трудятся тысячи людей, но тем не менее нам жутко. Поспорю на что угодно – большинство владельцев iPhone скорее распрощались бы с ними, чем провели здесь, под землёй, больше двадцати минут. Джейсон предлагает вернуться назад.
Не успел я опомниться, как мы развернулись и снова нырнули во тьму – и вот за очередным поворотом показался такой приветливый кружок света.
Всё как я и говорил: мы не продержались больше получаса.
Ифран Манене, шахтёр-подросток, работающий гидом, выкладывает всё как есть, начистоту. Двое его друзей сейчас лежат в больнице. Отец болен. «Каждый год погибает более пятнадцати шахтёров», – рассказывает он, и это в одной только Серро-Рико. В его голосе ни капли испуга или жалобы, словно всё, о чём он говорит, повседневная обыденность. Сложно постигнуть, какую цену приходится платить этим людям, притом что за каждым из десятка веществ, скрытых в iPhone, стоит не одна, а несчётное количество таких вот историй, которые случаются почти на каждом континенте.
Неприятный факт, но нам следует осознать и переварить его: сырьё для наших устройств добывают шахтёры, работающие примитивными орудиями в опасных для жизни условиях. Большинство основных металлов для iPhone добывается таким образом, против которого взбунтовалась бы добрая половина его пользователей, и мало кто из них вытерпел бы в этих местах более пяти минут. Однако нищие финансово, но богатые ресурсами страны будут продолжать вкалывать в поте лица до тех пор, пока есть спрос на данные металлы: именно спрос будет подхлёстывать горнодобывающие компании и товарных брокеров находить различные пути их добычи. Государственные власти, такие как в Боливии, будут кое-как управляться с организацией процесса. И, насколько можно судить, в ближайшем будущем вряд ли что-то изменится: шахтёры всё так же будут заниматься каторжным, опасным для здоровья трудом, чтобы добыть нужные для iPhone ингредиенты.
Есть ещё один ключевой материал, о котором мы не говорили: вы прикасаетесь к нему всякий раз, как только берёте iPhone в руку, – химически упрочненный, устойчивый к царапинам стеклянный экран.
Глава 3
Защита от царапин
Думаю, всем знакомо то леденящее душу чувство, когда телефон выскальзывает из руки, а вы не успеваете перехватить его в полёте, – и вот он со зловещим хрустом падает на пол. Вы с тревогой и замирающим сердцем поднимаете его, – даже взглянуть страшно, чтобы проверить, уцелел ли экран. А потом, если каким-то чудом экран выжил, – как гора с плеч. Или же бешенство и отчаяние, когда всё сложилось не в вашу пользу. Однако если задуматься, сколько взаимодействий за день удаётся пережить вашему экрану: нелёгкое соседство в одном кармане со связкой ключей, трение о различные шероховатые поверхности или полёты со стола, – надо признать, что стекло, покрывающее дисплей, на удивление прочное. В удивительном месте оно и появилось.
Если ваши бабушки когда-нибудь подавали вам овощную запеканку с мясом в белой и с виду небьющейся кастрюльке из жаропрочного стекла с голубыми цветочками по бокам, значит, вы уже имели дело с материалом, который лёг в основу стекла, защищающего iPhone. Такая посуда сделана из «пирокерама»: гибрида стекла и керамики, созданного одной из крупнейших и старейших, а также новаторских стекольных компаний.
В начале пятидесятых годов один из изобретателей компании Corning, химик Дон Стуки, экспериментировал со светочувствительным стеклом в своей лаборатории в штаб-квартире компании, расположенной в северной части Нью-Йорка. Он поместил образец силиката лития в печь и установил температуру 600 °C – примерная температура печи для пиццы. Увы, неполадки в контроллере позволили температуре подняться до 900 °C – это близко к температуре лавы, когда она вытекает из глубин Земли наружу. Когда Стуки понял, что произошла ошибка, он открыл печную дверцу, ожидая увидеть неудавшийся эксперимент и поврежденное оборудование. Однако, к его величайшему удивлению, силикат преобразился в белую с желтоватым оттенком пластину. Когда он стал вынимать её из печи, пластина выскользнула из клещей и свалилась на пол. И удивительным образом она не разбилась, а лишь подскочила на полу.
Изобретатели к тому времени бились над ударопрочным стеклом уже полвека. В 1909 году французский химик и художник по имени Эдуард Бенедиктус забрался на лестницу в своей лаборатории и случайно уронил с полки стеклянную бутыль. Вопреки ожиданиям бутыль не разлетелась на сотни мелких осколков, а осталась целёхонькой, хоть и покрылась сетью трещин. С недоумением Бенедиктус принялся изучать треснувшее стекло и обнаружил, что внутри сосуда находился раствор нитрата целлюлозы, который испарился и покрыл стенки тонкой плёнкой. Именно она и удерживала осколки вместе, не давая им разлететься при падении бутыли.
Следующие сутки изобретатель провёл за экспериментами; он знал, что недавно появившиеся лобовые стёкла автомобилей очень опасны, так как легко разбиваются, но теперь он видел решение этой проблемы. Годом позже Бенедиктус оформил первый в мире патент на безопасное ударопрочное стекло. Но автопроизводители не заинтересовались значительно более высоким по стоимости стеклом, пусть и более безопасным. Так продолжалось до Первой мировой войны, когда изобретение Бенедиктуса стали использовать в противогазах для защиты глаз, а небьющееся стекло подешевело в производстве. С военной промышленностью всегда так происходит. И в 1919 году, спустя десятилетие после счастливого случая с бутылью Бенедиктуса, Генри Форд все-таки начал использовать этот материал для производства лобовых стекол своих автомобилей.
Но именно Дон Стуки первым додумался до синтетической стеклокерамики. В Corning решили назвать его изобретение «пирокерам» (тогда был конец шестидесятых и слова-гибриды встречались повсеместно). Материал был лёгким, прочнее стали и намного прочнее обычного стекла. Компания Corning продала задумку военным, где ей нашли применение в головках снарядов. Однако настоящий расцвет случился, когда Corning увидела возможность объединения стеклокерамики с ещё одной появившейся технологией: микроволнами. Серия посуды CorningWare прекрасно сочеталась с новой футуристической плитой для готовки, микроволновкой. Ее расхватывали, как горячие пирожки в морозный день.
В конце пятидесятых согласно известной среди сотрудников компании байке президент Corning Билл Декер как-то разговаривал с главой отдела исследований и разработок Уильямом Армистедом.
«Стёкло всё время бьется, – заметил Декер. – Почему вы до сих пор это не исправили?»
Посуда CorningWare не билась, но была непрозрачной. Учитывая популярность стеклокерамики, компания удвоила бюджет на исследования и разработки. И тогда Corning запустили проект, пафосно наречённый Project Muscle[16], главной целью которого стало создание более прочного и при этом прозрачного стекла. Команда исследователей изучила все способы усиления стекла, которые были известны на тот момент. Эти приемы делились на две категории: старая добрая термическая обработка, или укрепление стекла путём нагрева, и новая технология, связанная с наложением разных слоёв стекла, которые, подвергаясь тепловой обработке, по-разному расширялись. Исследователи надеялись, что, когда эти разнообразные слои остынут, их можно будет сжать, тем самым усилив конечный продукт. Опыты проекта «Силач», которые развернулись на полную в 1960–1961 годах, объединяли эти два вида обработки. Вскоре у Corning получилось новое, сверхпрочное, небьющееся – и устойчивое к царапинам – стекло.
«Прорыв случился, когда учёные компании доработали ранее открытый метод усиления стекла, который включал в себя его погружение в ванну с горячей калиевой солью, – объясняет Брайан Гардинер, репортёр, исследовавший в 2012 году отношения Corning с Apple. – Они открыли, что, если перед погружением стекла добавить в его состав оксид алюминия, то оно станет значительно прочнее». В основу такого инновационного химического способа усиления стекла лег новый метод, называемый ионообменным. Сперва песок – ключевой ингредиент большинства стекол – смешивается с химическими реагентами, и получается алюмосиликат натрия. Затем стекло погружается в калиевую соль и нагревается до 400 °C. В результате ионного обмена ионы натрия на поверхности исходного вещества замещаются более тяжелыми и крупными ионами калия, «создавая эффект сжатия», так объясняют в Corning. Они назвали новое стекло Chemcor. Оно было в разы прочнее обычного стекла, а главное – сквозь него всё было видно.
Chemcor был в пятнадцать раз крепче простого стекла: говорилось, что оно способно выдержать давление до 45 тонн на дюйм (6,45 см²). Конечно же, учёным нужно было знать наверняка, поэтому они устроили чудо-стеклу нагрузочный тест. Они швыряли стаканы, сделанные из Chemcor, с крыши исследовательского центра на железные пластины – всё было цело, ничего не разбилось. Поэтому они усложнили задачу: в одном из экспериментов они бросали в листы из свежеизобретённого стекла замороженных кур. Снова удача – Chemcor оказался устойчив к нападению замороженной птицы.
К 1962 году в Corning решили, что новое стекло готово к публичному показу. Однако они совершенно не представляли, каким образом вывести Chemcor на рынок – точнее, идей было слишком много. Так что руководство Corning устроило пресс-конференцию в центре Манхэттена, чтобы продемонстрировать возможности товара, и пусть рынок сам приходит с предложениями. Они били, гнули и сдавливали стекло, и ничто не могло его разбить. Выступление стало прекрасной рекламной кампанией: в Corning посыпались тысячи вопросов о новинке. Компания Bell Telephone задумалась над применением Chemcor для защиты телефонных будок от вандалов. Оптикам тоже понравилось изобретение. Сами же сотрудники Corning разработали порядка семидесяти вариантов потенциальной реализации продукта, включая крепкие окна для тюрем и, конечно же, небьющиеся лобовые стёкла для автомобилей.
Но, как и в случае с Бенедиктусом, в конечном итоге мало кто проявил интерес к задумке. Для автопроизводителей, которые уже давно облюбовали технику нашего французского друга, Chemcor оказался слишком прочным. Когда автопроизводители провели краш-тест с новым стеклом, оказалось, что «человеческий череп не переживет столкновения с ним», рассказывает Гардинер. В случае аварии ветровые стёкла просто обязаны разбиваться, чтобы у человека оставался шанс выжить. Chemcor облюбовала автомобильная корпорация AMC для своих «пони-автомобилей» Javelin, но их очень скоро сняли с производства.
К 1969 году в Chemcor инвестировали сорок два миллиона долларов, и он был готов остеклить весь мир. Однако рынок диктовал свои условия: никто не нуждался в суперпрочном дорогостоящем стекле. Слишком уж оно дорогое и слишком уж специфичное. В 1971 году Chemcor и проект «Силач» ушли в отставку.
Тридцать пять лет спустя, в сентябре 2006 года, всего за четыре месяца до решения Стива Джобса презентовать миру iPhone, раздражённый глава Apple ворвался в штаб-квартиру.
– Ты только взгляни, – бросил он руководителю отдела, показывая прототип iPhone с усеянным царапинами дисплеем – жертву сожительства в одном кармане с ключами. – Нет, ты только посмотри, во что превратился экран!
– Стив, у нас есть стеклянный прототип, – ответил тот, – но тесты показывают, что в сотне из ста случаев при падении с метровой высоты он разбивается…
Джобс оборвал его.
– Меня интересует только одно: вы собираетесь заставить эту грёбаную вещь нормально работать или нет?
Диалог можно считать примечательной зарисовкой ультраджобсонутости, но тем не менее он дал толчок дальнейшим исследованиям.
«Мы перешли с пластика на стекло в самую последнюю минуту – оно нам просто свалилось как снег на голову, – смеясь, рассказывает Тони Фаделл, глава первой команды разработчиков, трудившихся над iPhone. – И такие неожиданности случались постоянно».
Изначально iPhone планировали выпустить с плексигласовым дисплеем, как у iPod. Встряска, устроенная Джобсом, оставила команде iPhone минимум времени, чтобы найти замену, которая сможет пережить проверку падением. Проблема заключалась в том, что на рынке стекол не было ничего, что удовлетворяло бы их запросам: предлагаемые стёкла, как правило, были либо слишком хрупкие и ненадёжные, либо слишком толстые и некрасивые. Так что сначала Apple попробовали упрочнить стёкло собственными силами. Все записи об исследованиях в данной области слишком расплывчаты, чтобы понять, насколько серьёзно компания подошла к вопросу и как долго продлились разработки, но в середине нулевых отдел материаловедения Apple был довольно скромным, и от проекта в итоге отказались.
Друг Джобса посоветовал ему связаться с человеком по имени Уэнделл Уикс, главой нью-йоркской стекольной компании Corning. После изобретения устойчивой к микроволнам керамики, лаборатории Corning продолжали работать над улучшениями: помимо «пирокерама» их учёные придумали в 1970 году оптоволокно с низкими потерями, которое помогло провести интернет. В 2005 году, когда на рынке появились раскладные телефоны вроде Motorola Razr, Corning вернулись к задвинутому в дальний ящик Chemcor, чтобы посмотреть, сможет ли пригодиться сотовым телефонам крепкое доступное по цене небьющееся стекло. Они назвали проект Gorilla Glass в честь «силы, стойкости и изящества» самых известных и популярных обезьян.
Так что, когда глава Apple отправился на встречу с руководителем Corning в северную часть Нью-Йорка, Уикс только-только вдохнул новую жизнь в исследование полувековой давности, которое теперь буйно процветало. Джобс объяснил Уиксу, что он ищет, и тот рассказал ему о Gorilla Glass.
Знаменитый диалог был хорошо описан Уолтером Айзексоном в биографии Стива Джобса: Джобс выразил сомнения в том, что Gorilla Glass достаточно надёжно, и начал объяснять руководителю одной из лидирующих стекольных компаний страны, как делается стекло. «Прошу вас, заткнитесь ненадолго, – оборвал его Уикс, – и послушайте, что говорит наука». То был один из редких случаев, когда Джобса осадили, и он отступил, молча выслушав другую сторону. Уикс же подошел к белой доске и принялся разъяснять, что именно делает их стекло самым надёжным. Джобс так проникся объяснениями, что со свойственным ему, джобсовским, размахом заказал столько Gorilla Glass, сколько Corning только сможет произвести… за несколько месяцев.
«У нас нет производственных мощностей, – ответил Уикс. – Наши заводы сейчас не делают стекло». Он объяснил, что столь крупный заказ пока невозможен.
«Не бойтесь, – убеждал его Джобс. – Поразмыслите хорошенько – всё вы можете». Согласно записям Айзексона, Уикс с удивлением тряс головой, припоминая ту историю. «Мы справились за шесть месяцев, – говорил он. – Мы производили стекло, которое ещё никто никогда не делал».
Corning выпустили прототип ещё пятьдесят лет назад, однако до тех пор компания ещё никогда не производила материал в таких огромных количествах. В течение года Gorilla Glass покрыло дисплей почти каждого выходящего на рынок смартфона.
Gorilla Glass производится благодаря процессу, называемому расплавленным натяжением. Как объясняют в Corning, «жидкое стекло заливают в желоб под названием „изотруба“, оно заполняет его и начинает стекать с одного и другого края. В нижней части желоба потоки стекла встречаются и стекают вниз, формируя сплошной лист стекла, такой тонкий, что измеряется он в микронах»[17]. Примерно такая же толщина у алюминиевой фольги. Далее роботизированные руки выравнивают поток и перемещают его в калиевые ванны и на ионный обмен, который придает ему прочность.
Gorilla Glass от Corning изготавливается на заводе, расположенном между холмистыми табачными полями и просторными животноводческими фермами Харродсберга в штате Кентукки (население города 8000 человек). На заводе работают сотни профсоюзных рабочих и около ста инженеров.
«Почему у нас появляются компании вроде Corning, понять очень просто: им нужны работники, выросшие на фермах и привыкшие к труду, – рассказал радиостанции NPR в 2013 году местный фермер Зак Ипсон. – Наши ребята знают, как работать». На окраине тихого беззаботного городка, известного своими плодородными урожаями табака, стоит оснащённый по последнему слову техники стеклозавод, где выплавляется основной компонент одного из самых продаваемых устройств в мире. Это лишь одна из немногих частей iPhone, которая изготавливается в США. «Когда я рассказываю кому-нибудь, где живу и работаю, всех неизменно удивляет, что в нашем зелёном крае, известном бурбоном, лошадьми и фермерским хозяйством, существует такое высокотехнологичное производство», – сказал инженер Шон Маркам.
Gorilla Glass сейчас является одним из важнейших материалов в индустрии бытовой электротехники. Оно защищает наши телефоны и планшеты, и, возможно, скоро мы увидим его повсюду. В Corning строят далеко идущие планы: они мечтают об умных экранах – сделанных, конечно же, из «обезьяньего» стекла, – покрывающих каждую поверхность становящихся всё более «умными» домов. Возможно, Gorilla Glass доберётся наконец и до лобовых стекол автомобилей после своей неудачи полувековой давности.
Контракт с Apple помог компании расцвести – и не только из-за популярности iPhone. Samsung, Motorola, LG и почти все прочие производители мобильных телефонов, видя успех iPhone, включились в гонку смартфонов и обратились к Corning.
iPhone раскрыл потенциал технологии, но сам по себе проект «Силач» существовал уже давно: несколько десятилетий он ждал своего часа в закрытой исследовательской лаборатории, чтобы наконец выйти в свет и защитить от царапин современный мир.
Мир, который всё больше и больше зависит от сенсорных экранов.
Глава 4
Мультитач
Самая большая в мире лаборатория физики элементарных частиц расположилась на франко-швейцарской границе как хаотично выросший пригород. Гигантские извилистые бизнес-парки и мощные здания делают Европейскую организацию по ядерным исследованиям, более известную как ЦЕРН, головокружительным и запутанным местом даже для тех, кто здесь работает.
«Постоянно тут теряюсь», – говорит Дэвид Мазур, юрист ЦЕРН по обмену информацией и участник нашей незадачливой экскурсионной группы, в которую, кроме него, вошли ваш покорный слуга, пресс-секретарь ЦЕРН, а также инженер Бент Стамп. Блуждая по бесконечным коридорам, мы успели несколько раз свернуть не туда. «В нумерации зданий никакой логики, – комментирует Мазур. Мы проходим мимо здания под номером 1, но дальше нас встречает здание под номером 50. – Поэтому в итоге кто-то написал приложение под iPhone, которое помогает людям найти нужную дорогу. Я им постоянно пользуюсь».
Более всего ЦЕРН известен своим Большим адронным коллайдером – ускорителем частиц, который расположен под землёй и представляет собой замкнутый тоннель длиной 27 километров. Здесь же учёные обнаружили бозон Хиггса, также называемый «частицей бога». Вот уже десятки лет ЦЕРН является местом плодотворного сотрудничества более двадцати стран, прибежищем, где во главе угла стоят не геополитические трения, а научное сотрудничество. Основные открытия, помогающие нам понять устройство Вселенной, сделаны именно здесь. В качестве побочных продуктов тут появились важные достижения в более обыденных сферах, вроде инженерии и информатики.
Мы все идем по лестницам то вверх, то вниз, кивком здороваясь со студентами и академиками и глазея на физиков, получивших Нобелевскую премию. На одном из лестничных пролётов мы проходим мимо девяностопятилетнего Джека Стейнбергера, в 1988 году получившего премию за открытие мюонного нейтрино; Мазур нам рассказывает, что тот частенько сюда заглядывает. Всё же мы прекрасно проводим время, хоть и заблудились в поисках места рождения частички технологии, о которой история почти забыла: мы ищем созданный ещё в начале семидесятых годов сенсорный экран, который, по словам его изобретателя, поддерживал мультитач.
Мультитач – та самая технология, за которую ухватилась команда Apple ИНСВ, когда решила переосмыслить язык общения человека и компьютера.
«Мы изобрели новую технологию, называемую мультитач, и она ни с чем не сравнима, – возвестил Стив Джобс, озвучивая ключевые тезисы по iPhone. – Работает как по волшебству. Вам не нужен стилус. Ваши касания считываются намного точнее, чем на любых других сенсорных дисплеях. Непреднамеренные касания игнорируются; всё очень продуманно. Вы можете отдавать команды с помощью комбинации прикосновений. И это нами запатентовано». Толпа взревела.
Но сколько правды в его словах?
Ясное дело, почему Джобс так яростно хотел присвоить разработку мультитача: сравнение iPhone с другими телефонами тогда превратилось бы в сравнение неба и земли. Однако если под мультитачем вы подразумеваете наличие поверхности, способной уловить два или более одновременных касания, то такая технология уже существовала в различных видах ещё за десятки лет до презентации iPhone. Вот только история о них умалчивает, а её изобретатели забыты или же не признаны.
Тут самое время вспомнить о Бенте Стампе. Этот датский инженер разработал по запросу ЦЕРН технологию сенсорных экранов для пульта управления протонного суперсинхротрона (SPS), ускорителя частиц. И он предложил устроить мне экскурсию по ЦЕРН, чтобы показать «места, где родился ёмкостный сенсорный экран». Как видите, Стамп верит, что экран iPhone является прямым потомком его сенсорного экрана. Грань «между похожим и идентичным» настолько тонка, что патенты Apple могут потерять свою силу, так как они не ссылаются на работу Стампа.
«Самая первая разработка была выполнена в 1972 году для центра управления ускорителя SPS, а принцип работы устройства был опубликован в 1972 году в издании ЦЕРН, – рассказывает мне Стамп. – Тот экран действительно был прозрачным ёмкостным экраном с мультитачем».
Осенним утром Стамп забрал меня из арендованной в Женеве квартиры. Это был бойкий пожилой человек семидесяти восьми лет: короткие седые волосы, на лице всегда играет озорная улыбка – так в общих чертах можно его описать. А ещё в глазах Стампа мерцает неутомимый огонёк любознательности (как и у Фрэнка Кановы; назовём такой огонёк искрой непризнанного гения-изобретателя). Пока мы ехали до ЦЕРН, он завёл дружескую беседу и начал показывать местные достопримечательности.
Перед нами вырос купол в бруталистском стиле – «Сфера науки и инноваций», а рядом с ним показалась пятнадцатитонная стальная скульптура в виде ленты, названная «Странствием по неизмеримому»[18], что, кстати, в точности описывает тот наш день.
Прежде чем повести речь о сенсорном экране Стампа, мы задержимся в одном офисном помещении, которое сыграло важную роль в эпохе мобильных и вообще современных вычислений: это – место рождения Всемирной компьютерной сети. В конце концов, без неё не было бы никаких страстей по «интернет-коммуникатору».
Точка, в которой начал свой жизненный путь интернет, представляет собой… самый обычный, ничем не примечательный кабинет. Если не считать мемориальной доски, его не отличить от прочих кабинетов исследовательского центра: практичный и местами захламлённый. В самом деле, обратите внимание, не в хрустальных дворцах куётся будущее. Оно было создано здесь в 1980-х, когда Тим Бернерс-Ли разработал то, что мы называем Всемирной компьютерной сетью. Пытаясь наладить обмен данными между бесчисленным количеством физиков ЦЕРН, он придумал систему, которая объединяла страницы с информацией между собой при помощи гипертекста.
Его история давно и прочно вошла в анналы технологии. Менее известный рывок в эволюции современной вычислительной техники, принадлежавший Бенту Стампу, случился в нескольких сотнях метров отсюда, в безжизненном бараке, откуда рукой подать до рабочего места Бернерса-Ли. Да, одно из ранних устройств, способных поддерживать мультитач, было разработано в той же обстановке – в том же институте, в тех же условиях, – что и Всемирная компьютерная сеть, но десятилетием раньше. Главной особенностью iPhone стало то, что он дал нам возможность управляться с богатствами интернета простым и приятным способом. Однако мемориальной доски или наград за сенсорный экран вы не найдете – их не видно ни здесь, ни в любом другом месте. Экран Стампа – всего лишь небольшая сноска, которая настолько мала, что даже историкам в области технологий приходится поднапрячь зрение, чтобы заметить её.
Как уже говорилось, большинство изобретателей сенсорного экрана упоминаются лишь вскользь. А ведь тут есть бездна интересных историй и фактов, поскольку идеям из совершенно разных отраслей и дисциплин довелось слиться воедино, чтобы дать жизнь этому устройству. Одними из самых первых исследователей технологии касания были музыканты, которые искали способы перевести свои идеи в форму музыки. Другими первопроходцами были техники, искавшие более практичные способы управления потоками данных. А один глядевший в будущее искатель чувствовал, что касание – это ключ к виртуальному обучению. Позже кое-кто понял, что управление касанием намного полезнее для здоровья рук, чем клавиатура. Полувековые попытки облегчить творческий процесс и образование, улучшить работоспособность и эргономику были объединены, чтобы интегрировать касание – а в итоге и мультитач – в iPhone и сделать его популярным среди потребителей.
После тезисов Стива Джобса, прозвучавших на презентации 2007 года, в которых он утверждал, что он и Apple изобрели мультитач, на почту Биллу Бакстону хлынул поток писем: «Разве это правда?» «Разве у вас не было чего-то подобного много лет назад?».
Если и есть общепризнанный крёстный отец мультитача, то это, вероятно, Бакстон, чьё исследование вывело его на авансцену интерактивного дизайна.
Бакстон работал в знаменитом Xerox PARC в Кремниевой долине и вместе с Бобом Мугом экспериментировал над музыкальными технологиями, а в 1984 году его команда разработала похожее на планшет устройство, которое умело распознавать продолжительные множественные касания. «Мультисенсорный трёхмерный восприимчивый к касанию планшет» – так назывался документ, который Бакстон написал в соавторстве в Университете Торонто в 1985 году, и в нём содержится одно из первых упоминаний термина «мультитач».
Вместо того чтобы индивидуально отвечать на каждый вопрос, который пришёл на почту, Бакстон объединил все ответы в общий документ и выложил его в интернет. «У технологии мультитач длинная история, – объясняет Бакстон. – Если взглянуть на картину в целом, то получается, что моя команда в Университете Торонто работала над мультитачем в 1984 году, тогда же, когда вышел в свет первый Macintosh, но и мы не первопроходцы в этой области».
Кто же тогда? «Скорее всего, Боб Бои из „Лабораторий Белла“, именно он придумал первую рабочую систему мультитача, какую мне доводилось видеть, – рассказывает мне Бакстон, – и о ней почти никто не знает. Он не запатентовал её». Очень многих изобретателей постигла подобная участь: компании, где они работали, так и не смогли решить, что же им делать с новоиспечённым изобретением.
Но прежде, чем перейти к мультисенсорным прототипам, говорит Бакстон, если нам и правда хочется увидеть истоки технологии касания, мы должны обратиться к электронной музыке.
«Из всех возможных профессиональных областей, пожалуй, именно у музыкантов самый богатый опыт по части выражения гениальных творческих задумок через технических посредников, – говорит Бакстон. – Некоторые люди высказались бы в пользу оружия, но, скорее всего, они просто менее креативны». Помните Элишу Грея, одного из соперников Грэхема Белла за патент на первый телефон? Его называют отцом синтезатора. Это случилось на заре XX века. «История синтезатора уходит далеко в прошлое, – рассказывает Бакстон, – и корни её ветвятся в разных направлениях, поэтому сложно сказать, кто что на самом деле изобрёл». По его словам, использовались различные приемы, изменяющие громкость, давление, ёмкостное сопротивление. «То же самое верно и для сенсорных экранов», – добавляет он.
«Совершенно очевидно, что касание как способ взаимодействия, – как и любые манипуляции при помощи пальцев – всегда имело отношение к музыкальным инструментам: как вы берете ту или иную ноту, как вы делаете вибрато на струне скрипки и так далее, – говорит Бакстон. – Люди начали работать над устройствами, которые могли бы уловить такого рода нюансы. Не просто „коснулся я инструмента или нет?“, а „насколько сильным было касание?“ и „если я сделаю пальцами вот так, станет ли звук громче?“».
Одним из первых экспериментаторов с электронной, основанной на жестах, музыкой был Лев Термен. Инструмент русского эмигранта – терменвокс – был запатентован в 1928 году и состоял из двух антенн: одна контролировала высоту звука, а другая – громкость. Играть на нём сложно, звук напоминает психоделические рок-мотивы, и, скорее всего, инструмент вам известен как генератор жутковатых звуков в старых научно-фантастических фильмах. Однако в те дни к нему относились довольно серьёзно, по крайней мере, когда он попадал в руки выдающейся исполнительницы и виртуоза Клары Рокмор, исполнявшей на терменвоксе произведения мировых классиков, таких как Сергей Рахманинов.
Терменвокс вдохновил Роберта Муга, который пошёл дальше и создал самый известный в поп-музыке синтезатор. Вдобавок, чтобы выявить критерий того, как техника сможет интерпретировать тот или иной нюанс движения, когда ее касается человеческая рука, Муг разработал форму для сенсорных панелей. «Тогда же Боб начал делать восприимчивые к прикосновению сенсорные панели для новых синтезаторов, – рассказывает Бакстон. Конечно же, его нельзя назвать первым – его коллега, канадский академик Хью Ле Кейн изготовил ёмкостные датчики касания. (Напомню, что это более сложный вид сенсорных экранов, которые работают путём определения того момента, когда человеческий палец вносит изменение в ёмкость.) Затем был Дон Букла, техно-хиппи из Беркли, который оснастил автобус Кена Кизи для путешествия „Весёлых проказников“ и изобрёл синтезатор, однако он собирал инструмент только для достойных, по его мнению, людей. Экспериментируя с акустикой, все они, включая Бакстона, прокладывали путь ёмкостно-сенсорной технологии».
Изобретение первого устройства, более всего похожего на современный сенсорный экран, приписывают Эрику Артуру Джонсону, инженеру Научно-исследовательского центра радиолокации Великобритании, который разработал его в 1965 году. Устройство создавалось для облегчения работы авиадиспетчерской службы.
Во времена Джонсона, когда пилот уведомлял штаб об изменении полётного плана, авиадиспетчеру приходилось печатать позывной из пяти-семи символов на телетайпе, чтобы вывести его на электронный дисплей параметров полёта. На эту процедуру уходило немало времени, к тому же диспетчер мог и ошибиться.
Сенсорная система управления воздушным движением, которую придумал Джонсон, позволила диспетчерам вносить изменения в полётные планы судов намного быстрее и надежнее.
Изначально для создания сенсорного экрана Джонсон решил обмотать медными проводами поверхность электронно-лучевой трубки, по сути, создавая сенсорный телевизор. Хотя система могла распознавать только одно касание, в ней уже таилась базовая задумка современного сенсорного экрана, да к тому же с самого начала она была ёмкостной, то есть принадлежала к более сложному виду сенсорных экранов, которые чувствуют, когда палец изменяет ёмкость при касании.
Сенсорный экран соединялся с базой данных, где содержались все позывные самолетов в определённом секторе. На экране должны были отображаться позывные, «по одному на каждый провод». Когда воздушное судно называло себя, диспетчеру лишь надо было бы коснуться провода, соответствующего определённому позывному. Затем система предлагала ввести лишь доступные для этого конкретного полётного плана изменения. Такой продуманный подход позволил в разы сократить время отклика в той сфере, где на счету каждая секунда и где небольшая ошибка в символах может привести к катастрофе.
«Конечно, существуют и другие способы применения экрана», – писал Джонсон. Например, если кому-то захочется открыть приложение на домашнем экране. Или управлять ускорителем частиц.
Несмотря на то, что этот человек совершил такой важный вклад в развитие технологии, об Эрике Джонсоне почти не осталось никаких записей. Поэтому приходится только гадать, что привело его к созданию сенсорных экранов. Известно лишь, что Джонсон в своём патенте ссылался на два патента компании Otis Elevator[19] как предшественников его задумки: один описывал ёмкостную систему распознавания приближения объекта (технологию, которая удерживает двери лифта открытыми, когда в проходе находятся пассажиры), а второй – основанные на касании лифтовые системы управления. Также Джонсон упомянул патенты General Electric, IBM, вооружённых сил США и компании American Mach and Foundry. Все шесть были зарегистрированы в середине шестидесятых годов; идея сенсорного управления «витала в воздухе», даже если пока не использовалась в компьютерных системах.
В заключение Джонсон упоминает патент на «печатную телеграфную систему» 1918 года. Её изобрёл Фредерик Гио, молодой итальянский иммигрант, живший в Коннектикуте. Устройство представляло собой плоскую гладкую пишущую машинку размером с планшет, где каждую клавишу можно было подключить (с помощью провода) к сенсорной системе – похоже на аналоговую версию клавиатуры на вашем смартфоне. Она могла автоматически передавать сообщения, основанные на буквах, цифрах и вводимых данных, – сенсорно-печатный телеграф по сути являлся прародителем мессенджера AIM. Стало быть, сенсорные экраны изначально были плотно переплетены с телекоммуникациями, да и без помощи лифтов их бы, скорее всего, не придумали.
Британские авиадиспетчеры и в самом деле перешли на сенсорный экран Джонсона и пользовались системой до 1990-х годов. Затем на смену ему пришел резистивный экран, разработанный командой американского учёного-атомщика Джорджа Сэмюэла Херста как вспомогательное устройство для проведения научных исследований. Основанные на надавливании устройства были дешёвыми, но при этом неточными, грубыми и даже раздражающими – благодаря им следующие двадцать лет репутация сенсорной техники была основательно подпорчена.
Мы снова идём по ЦЕРН, проходим широкий открытый зал, заполненный людьми – тут идет какая-то конференция и повсюду сидят учёные, – и попадаем в пустую комнату для совещаний. Стамп достаёт толстую папку, за ней ещё одну, а затем – настоящий прототип сенсорного экрана 1970-х годов.
Обстановка внезапно накаляется, и до меня доходит: если цель Стампа – продемонстрировать, что его разработка могла бы обернуться iPhone, то цель Мазура – дать мне понять, что заявление Стампа не является официальной позицией ЦЕРН. Они вежливо спорят о деталях, когда Стамп начинает рассказывать мне о том, как он пришёл к мультитачу.
Стамп родился в Копенгагене в 1938 году. После школы он пошёл в армию, в датские военно-воздушные войска, где изучал радиоинженерию и радиолокационную технику. После службы он работал в исследовательской лаборатории телевизионного завода и возился с новыми устройствами отображения и прототипами будущей продукции. В 1961 году его взяли на работу в ЦЕРН. Когда в ЦЕРН собрались обновить первый ускоритель частиц, ПС (протонный синхротрон), до Супер-ПС, им понадобился способ управления новой гигантской машиной. ПС был довольно мал, и каждая часть его оборудования, используемая для управления, могла регулироваться отдельно. Он занимал тоннель длиной полкилометра – СПС же требовалось почти семь километров.
«При таких габаритах, понятное дело, непрактично, да и вовсе невозможно работать по-старому: проводить кабели напрямую от аппаратов к пульту управления», – говорит Стамп. Его коллеге Фрэнку Беку поручили разработку системы управления для нового ускорителя. Бек уже был наслышан о зарождающейся технологии сенсорного экрана и решил, что она вполне подойдёт для СПС, поэтому он зашёл к Стампу и спросил, может ли тот что-нибудь придумать.
«Мне вспомнился один эксперимент, который я проводил в 1960 году, когда ещё работал в телевизионной лаборатории, – рассказывает Стамп. – Я смотрел, сколько времени требуется работницам, чтобы сделать крохотные обмотки для телевизора, которые потом помещались на телевизионную печатную плату, и тогда мне пришло в голову, что, наверное, можно было бы впечатать эти обмотки непосредственно в плату и в итоге существенно сэкономить на расходах». Он решил, что эта идея сработает и здесь. «Я подумал, что если можно впечатать обмотку, то можно впечатать и конденсатор с очень тонкими линиями, теперь уже на прозрачную поверхность…» – такую, как стекло – «…и сделать конденсатор частью электронной схемы, позволив ему отслеживать изменение в ёмкости, когда до стеклянного экрана дотрагиваются пальцем… Не лукавя, можно сказать, что сенсорная технология iPhone зародилась в 1960 году».
В марте 1972 года в рукописном документе он изложил своё видение ёмкостного сенсорного экрана с фиксированным количеством программируемых кнопок. Общими усилиями Бек и Стамп набросали черновой план своего предложения для рассмотрения командой ЦЕРН. В конце 1972 года они анонсировали дизайн новой системы, основанной на сенсорном экране и мини-компьютерах. «Выдавая опции выбора, которые основываются на предыдущих решениях, сенсорный экран даст возможность оператору в одиночку с помощью всего нескольких кнопок получить доступ к обширной поисковой таблице пульта управления», – написал Стамп. Экраны должны были сделать на электронно-лучевых трубках, как телевизоры.
ЦЕРН одобрила его предложение. СПС ещё не построили, но работу уже пора было начинать, поэтому администрация выделила Стампу так называемый «Норвежский барак»: небольшую мастерскую, сооружённую в открытом поле, прямо на траве. Площадь её была около двадцати квадратных метров. С общим концептом на руках Стампу потребовались немалые ресурсы ЦЕРН на сборку прототипа. Другой его коллега овладел новой технологией, известной как ионное распыление, которое позволяло оставлять слой меди на чистой и эластичной майларовой плёнке. «Чтобы создать первые базовые материалы, мы работали сообща, – говорит Стамп. – Эксперимент привёл нас к первому прозрачному сенсорному конденсатору, встроенному в прозрачную поверхность».
Его шестнадцатикнопочный пульт управления с сенсорным экраном заработал в 1976 году, когда запустили СПС. Стамп же не останавливался на достигнутом, продолжая совершенствовать технологию касания; в итоге он придумал усовершенствованную версию экрана, который мог регистрировать касания более точно, к тому же провода стали располагаться по осям