Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Уродливая Вселенная. Как поиски красоты заводят физиков в тупик - Сабина Хоссенфельдер на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

«Почему SUSY продолжает привлекать так много внимания?» – задаю я Ниме вопрос, когда он возвращается.

Прихлебывая кофе, он отвечает: «Если суперсимметрия прячется где-то недалеко [от энергий, тестируемых на Большом адронном коллайдере], этот факт интересным образом мгновенно накладывает неимоверно жесткие ограничения на то, что последует дальше. Если существует четвертое поколение [фермионов], мне это ни о чем не говорит. Так что есть некоторые открытия, которые служат интеллектуальными тупиками».

«Хорошо ли, – сомневаюсь я, – что теоретики предпочитают не изучать то, что может оказаться таким интеллектуальным тупиком? Что не так с другими идеями, кроме того, что они не нравятся теоретикам?»

«А кого волнует, что вам нравится или не нравится? – спрашивает Нима. – Природу это не заботит, и мы все с этим согласны. Причина, по которой суперсимметрия была столь популярна, крылась не только в социологии. Решающее значение имело то, что [с суперсимметрией] вы могли справиться с задачами, с которыми не справились бы никак иначе. Заботят ли природу эти задачи – другой вопрос. Без SUSY есть трудности с естественностью. Подобная трудность уже возникала раньше раза три, и всякий раз мы находили решение».

Где у чисел нет имен

Сегодня мы называем теорию естественной, если она не содержит ни очень больших чисел, ни очень маленьких. Считается, что любая теория, содержащая неестественные числа, не может быть фундаментальной. Это трещина в фундаменте, стоящая того, чтобы ее расковыривать.

У идеи, согласно которой законы природы должны обладать такого рода естественностью, долгая история. Зародилась она в качестве эстетического критерия, а сейчас стала математически формализованной как «техническая естественность». И, продвигая эстетический критерий до математического рецепта, все довольно основательно позабыли о ненаучном происхождении понятия естественности.

Вероятно, первой отсылкой к естественности было отвержение гелиоцентрической (Солнце в центре) системы мира на том основании, что звезды выглядят неподвижными. Если Земля вращается вокруг Солнца, то видимые положения звезд должны в течение года меняться. Величина такого изменения, называемая «параллакс», зависит от расстояния до звезды: чем дальше звезда, тем меньше изменение ее видимого положения. Похожий эффект вы можете наблюдать, когда едете в поезде и смотрите, как убегает назад пейзаж за окном: ближние деревья в вашем поле зрения проносятся мимо гораздо быстрее, чем очертания далекого города.

В те времена астрономы думали, что звезды закреплены на небесной сфере, содержащей всю Вселенную. В таком случае, если мы не в центре сферы, относительные положения звезд должны были бы меняться в течение года, потому что иногда мы бы оказывались ближе к одной половине сферы, чем к другой. Астрономы подобных изменений не наблюдали и потому заключили, что Земля находится в центре Вселенной.

Звезды действительно чуточку меняют свое положение в течение года, но это изменение настолько крошечное, что астрономы не могли измерить его вплоть до XIX века. Самое большее, на что они были способны, – рассудить, что отсутствие наблюдаемых параллаксов означает одно из двух: либо сама Земля не двигается в продолжение года, либо звезды должны быть далеко-далеко от нас – значительно дальше, чем Солнце и другие планеты, тогда параллакс был бы очень маленьким. Такой вариант допускал расположение Солнца в центре, но астрономы его отринули, ибо он требовал от них принять необъяснимо большие числа.

В XVI веке Николай Коперник создал убедительную доказательную базу для гелиоцентрической системы на том основании, что она упрощала движение планет, однако вопрос параллаксов оставался. Проблема заключалась не только в том, что звезды должны были располагаться значительно дальше любого другого объекта Солнечной системы. Дело осложнялось еще и тем, что Коперник и его современники неверно оценили размеры звезд.

Свет от далекого источника, проходя через круговую диафрагму – глаза или телескопа, – размазывается и выглядит более широким пятном, но до XIX века этого еще не понимали. Из-за такого визуального дефекта астрономы времен Коперника ошибочно считали звезды куда большими, чем те есть на самом деле. Итак, в гелиоцентрической модели неподвижные звезды должны были находиться очень далеко – и все равно через телескоп казаться большими, а это означало, что они должны быть громадными, значительно крупнее нашего Солнца.

Тихо Браге считал, что столь разительно отличающиеся числа абсурдны, и поэтому отверг идею, согласно которой Земля будто бы обращается вокруг Солнца. А взамен предложил свою собственную модель, в которой Солнце вращалось вокруг Земли, а другие планеты бегали вокруг Солнца. В 1602 году он выступил против гелиоцентризма, ибо

следует соблюдать в этих вопросах некую приличествующую соразмерность, чтобы предметы не простирались в бесконечность, а истинная гармония творений и видимых объектов, связанная с размерами и удаленностью, не была отвергнута: следует сохранять эту гармонию, ибо Бог, создатель вселенной, любит надлежащий порядок, а не беспорядок и сумятицу 61.

Вот эти «приличествующая соразмерность» и «надлежащий порядок» – фактически сегодняшний критерий естественности.

Теперь мы знаем, что большинство звезд сравнимы по размеру с нашим Солнцем и нет ничего неестественного в огромных расстояниях между ними и нами. Типичные расстояния между нашей Солнечной системой и другими звездами Млечного Пути, как и расстояние от нас до других галактик, определяются тем, как вещество скучивается под действием собственного гравитационного притяжения по мере того, как Вселенная расширяется. Эти расстояния не остаются неизменными и не служат фундаментальными параметрами ни одной теории.

Но идея, что большие числа якобы требуют объяснения, укоренилась 62. В 1937 году Поль Дирак заметил, что возраст Вселенной, деленный на время преодоления светом радиуса атома водорода, приблизительно равен 6 × 1039. Примерно таково же и отношение сил электрического и гравитационного взаимодействий между электроном и протоном, равное 2,3 × 1039. Не точно такое же, да, но довольно близкое, поэтому Дирак допустил, что эти числа имеют одинаковое происхождение. И что не только эти числа должны быть связаны, а «любые два очень больших безразмерных числа, встречающиеся в Природе, связаны между собой простым математическим соотношением, в котором коэффициенты определяются порядком величины[49]».

Это утверждение стали называть гипотезой больших чисел Дирака.

Однако в своей игре с числами Дирак использовал константу, которая вообще-то константой не является, – возраст Вселенной. Это значит, что для сохранения постулированного равенства другие постоянные природы тоже должны изменяться с течением времени. В результате возник вал следствий, касающихся формирования структур во Вселенной, который привел гипотезу к несовместимости с наблюдениями 63.

В применении к конкретным величинам, которые он выбрал, гипотеза больших чисел Дирака сегодня не считается принципиально важной. Однако суть его идеи – что большие числа требуют объяснения или оно по крайней мере желательно, если несколько чисел имеют общее происхождение, – до сих пор активно используется. Так, физики заметили, что появление подозрительно больших или маленьких чисел может выдавать присутствие новых, доселе не учтенных эффектов. Это укрепило веру физиков в то, что тонкая настройка служит ярким маяком, сигнализирующим о необходимости пересмотра и переработки.

Логика аргументов о естественности напоминает попытку предсказать сюжет длинного сериала: если главный герой – в нашем случае естественность – в беде, он точно выживет, поэтому обязательно должно произойти что-то, что выправит кажущуюся безнадежной ситуацию.

В неквантованной электродинамике, например, масса электрона неестественно мала. Это потому, что электрон создает электрическое поле и энергия поля должна вносить большой (а точнее, бесконечный) вклад в его массу. Чтобы избавиться от этой «энергии самовоздействия», потребовалось бы тонко настраивать математику, а это некрасиво. И вот он, наш герой – естественность, – запертый в горящем здании. Если расчет верен, герой погибнет.

Но расчет неверен, поскольку пренебрегает квантовыми эффектами. А с их учетом электрон оказывается окруженным парами виртуальных частиц, которые рождаются и аннигилируют, не становясь непосредственно регистрируемыми. Однако же они вносят непрямой вклад, устраняющий «самовоздействующие» дефекты неквантованной теории. Малость массы электрона, таким образом, «естественна» в квантовой электродинамике[50]. Наш герой спрыгивает с крыши и приземляется в мусорный контейнер, целым и невредимым.

В физике элементарных частиц отсутствие численных случайностей обрело математическую формулировку и называется «технической естественностью»[51]. Как ни странно, вся Стандартная модель технически естественна, если не считать неприятностей с массой бозона Хиггса. Даже для составных частиц, склеенных сильным ядерным взаимодействием, все массы технически естественны, за единственным исключением: массы трех мезонов (одного нейтрального пиона и двух заряженных) подозрительно близки друг к другу. Если взять разность квадратов масс заряженного и нейтрального пионов и разделить на квадрат самих масс, результат окажется неестественно мал. Герой снова в опасности: прижатый к стене, смотрит в направленное на него в упор дуло пистолета.

Но оказывается, что и здесь расчеты не предсказывают корректно, что происходит. Выручает то, что выше определенной энергии новая физика проявляется в форме частицы – ро-мезона, – с которой приходит и новая симметрия, объясняющая, почему массы пионов так близки друг к другу. Объяснение технически естественно, никакой тонкой настройки не требуется. Пистолет дает осечку, и герой спасается.

Квантовые поправки к энергии самовоздействия электрона и поправки для ро-мезона были, однако, не предсказаниями, а постсказаниями, или можно было бы назвать их озарениями задним числом (словно при повторном просмотре кино). Единственное настоящее предсказание, основанное на естественности, относится к очарованному кварку, открытому четвертым по счету. Его существование было предсказано в 1970 году – чтобы объяснить, почему вероятности некоторых взаимодействий частиц неестественно малы 64. С учетом очарованного кварка эти взаимодействия стали попросту запрещены, так что их ненаблюдаемость получила естественное объяснение, без всякой тонкой настройки.

Итак, естественность Стандартной моделью соблюдается и имеет на своем счету одно предсказание. На этом основании Натан Зайберг из Института перспективных исследований в Принстоне утверждает, что «понятие естественности служило ориентиром в физике на протяжении пары последних столетий»65. А стало быть, противоположность естественности, тонкая настройка, стала отвратительной. По словам Лизы Рэндалл из Гарвардского университета, «тонкая настройка почти наверняка есть акт отчаяния, отражающий наше невежество»66[52]. Или, как сказал мне Говард Бэр, специалист по физике элементарных частиц: «Полагаю, что тонкая настройка – это просто недуг в теориях, с которым приходится разбираться и который указывает вам на то, как эти теории можно вылечить и какой путь в Великое Неизвестное, к рубежам познаваемого, правильный»67.

Космологическая постоянная неестественна. Но она имеет отношение к гравитации, поэтому специалисты по физике элементарных частиц не чувствуют за нее ответственности. Теперь, когда мы знаем, что и масса бозона Хиггса неестественна, проблема прямо у порога.

Никто и не обещал розового сада

«Я не защитник естественности, – говорит Нима. – Естественность – не принцип, не закон. Ее считают неким проводником. Иногда это был хороший проводник, иногда плохой. Мы должны быть открыты возможностям. Кто-то говорит, что естественность – это чистая философия, но это определенно не философия. Она много для нас сделала».

Он перебирает примеры, говорящие в пользу естественности, добросовестно упоминая и то, что свидетельствует против нее, и заключает: «Естественность не была – и не должна была быть – доводом в пользу Большого адронного коллайдера. К чести ЦЕРН надо сказать, что этот довод пришел от теоретиков. Однако не так уж глупо было думать, что естественность окажется правильной концепцией. Ведь были же у нее все эти успехи».

Несмотря на успехи естественности, Нима, рассказывает он дальше, десять лет назад отказался от естественной красоты в пользу новой идеи под названием «расщепленная суперсимметрия». Это вариант SUSY, когда некоторые из ожидаемых суперсимметричных партнеров по своей природе настолько тяжелы, что находятся вне досягаемости Большого адронного коллайдера. Это объясняет, почему суперсимметричные партнеры до сих пор не были обнаружены. Но тогда расщепленная суперсимметрия нуждается в тонкой настройке – чтобы получить правильную наблюдаемую массу бозона Хиггса.

О реакции своих коллег на необходимость тонко настраивать теорию Нима вспоминает: «Я буквально орал на людей на конференциях. Такого со мной никогда не случалось ни до, ни после».

Вот что происходит, думаю я, если ты не отвечаешь критерию красоты своего времени.

«Большой адронный коллайдер изменил ваши представления о естественности?» – спрашиваю я.

«Забавно: ходит популярная байка, что, мол, теоретики до запуска Большого адронного коллайдера были абсолютно уверены, что суперсимметрия явит себя, а тут такой провал. Думаю, те, кто профессионально занимается разработкой моделей, лучшие, я считаю, люди в нашей области, обеспокоились уже после Большого электрон-позитронного коллайдера. Но все обернулось программой, как избегать [конфликта с имеющимися данными]. Страшного ничего не было, но не давали покоя всякие мелочи. Лучшие люди, они отнюдь не были уверены, что суперсимметрия обнаружится на Большом адронном коллайдере. И качественно ничего с 2000 года (когда завершился последний запуск Большого электрон-позитронного коллайдера) не изменилось. Какие-то бреши были заткнуты, но ничего не изменилось качественно».

«Вы спрашиваете, – продолжает Нима, – почему над естественностью по-прежнему работают? Вообще это очень забавно. Как я сказал, лучшие люди довольно хорошо понимали, что происходит. Они не балбесничали в ожидании, когда же из Большого адронного коллайдера посыплются глюино[53]. И еще они довольно спокойно отреагировали на данные».

Однако же ни один из этих «лучших людей» не высказался, не назвал ерундой эту расхожую историю, согласно которой у Большого адронного коллайдера якобы были неплохие шансы засечь суперсимметрию или частицы темной материи. Даже не знаю, что хуже: ученые, верящие в доводы о красоте, или ученые, умышленно вводящие общественность в заблуждение насчет перспективности дорогостоящих экспериментов.

Нима продолжает: «Люди, которые были убеждены, что суперсимметрия проявится, теперь уверены, что этого не будет. Сейчас есть те, кто говорит, что они подавлены, встревожены или напуганы. Да кому не плевать на вас и вашу маленькую жизнь? Кроме вас самих, конечно».

Он говорит не обо мне, но мог бы, думаю, сказать такое и про меня. Вдруг я попросту ищу оправдания тому, что покинула университетскую среду, поскольку разочарована, не способна сохранять воодушевление на фоне всех этих нулевых результатов? И какую же дивную я нашла отговорку – обвинять научное сообщество в дурном обращении с научным методом!

«Все, что мы узнаём о природе, потрясающе». Голос Нимы прерывает мои размышления. «Если есть новые частицы – у вас больше подсказок. Нет новых частиц – все равно подсказки есть. Это признак какого-то нарциссизма нашего времени – что люди используют такие выражения. В лучшие времена не было бы дозволено произносить подобное в приличном обществе. Кому какое дело, что вы чувствуете? Кого волнует, что вы потратили на это сорок лет своей жизни? Никто и не обещал розового сада. Это рисковое дело. Хочешь определенности – занимайся чем-то другим. Люди веками ставили не на ту лошадь. Такова жизнь».

Мы разговариваем уже несколько часов, но энергия Нимы кажется неисчерпаемой, почти неестественной. Слова спотыкаются друг о друга, потому что не успевают достаточно быстро вылетать из его рта. Нима раскачивается на стуле, вертится, иногда подскакивает и быстро пишет что-то на доске. Чем дольше я за ним наблюдаю, тем старее себя чувствую.

«Особенно раздражает, когда депрессивные ощущения этих людей сказываются на наших последующих шагах, – досадует Нима. – Это просто нелепо! Очень важно узнать, истинна естественность или нет».

Излишне говорить, что специалисты по физике элементарных частиц уже ратуют за строительство нового коллайдера. Китайский круговой коллайдер, создание которого Нима горячо одобряет, будет достигать энергии столкновений примерно в 100 ТэВ, но это не единственный обсуждаемый сегодня проект68. Другое благосклонно воспринятое предложение – Международный линейный коллайдер, в строительстве которого выразили заинтересованность японцы. А у ЦЕРН в планах построить суперколлайдер с длиной окружности 100 километров, что позволит достичь энергий, сравнимых с энергиями, заявленными в китайском проекте. Может, тогда мы наконец обнаружим суперсимметрию.

«На самом деле SUSY – это история про лягушку в кипятке, – говорит Нима, вспоминая прошлое теории. – Ее должны были увидеть при первом запуске Большого электрон-позитронного коллайдера, еще в 1990 году. Многие из вовлеченных теоретиков, очень мною уважаемых, ожидали проявления суперсимметрии в том коллайдере. Я сам этого ожидал».

«Мы ее не увидели, – констатирует он. – Но люди восприняли это как возможность, а не как проблему. Они подумали: “Ладно, это подсказывает нам, что еще теория должна иметь особую структуру”. <…> В 1990-х то было вполне обоснованное предположение. Однако затем границы раздвинулись, а суперсимметрию мы так и не наблюдали. И в 1990-х же на Большом электрон-позитронном коллайдере константы взаимодействий были измерены достаточно точно, поэтому мы знали, что они не сойдутся в одну точку [в рамках Стандартной модели], а с SUSY – сойдутся».

* * *

В калибровочной теории самым важным параметром служит константа взаимодействия, которая определяет его силу. В Стандартной модели их три: две для электрослабого взаимодействия и одна для сильного. Эти константы инвариантны относительно преобразований пространства и времени, однако их значения зависят от разрешения процесса, в котором они измеряются. Это пример упоминавшегося выше потока в пространстве теорий.

Поскольку нам нужны высокие энергии, чтобы прощупать короткие расстояния, низкое разрешение соответствует низкой энергии, а высокое разрешение – высокой энергии. В физике высоких энергий, что, в общем-то, и не удивительно, о потоке в пространстве теорий чаще размышляют как об изменении энергии, а не разрешения. Тогда константы взаимодействий «бегут» с энергией, как говорят физики, и этот их бег можно вычислить.


Рис. 8. Экстраполяция (пунктирные линии) сил известных взаимодействий из измеренной области (сплошные линии) до высоких энергий. С суперсимметрией прямые сходятся в одной точке, при условии, что суперсимметричные частицы начнут проявляться в коллайдерах уже скоро (при энергиях вблизи серой вертикальной линии). Выше энергии объединения индивидуальные силы взаимодействий теряют смысл.

Если подобные расчеты выполнить для Стандартной модели, прямые согласуются с измерениями при энергиях, достижимых сегодня. При экстраполяции в область более высоких энергий силы взаимодействий сходятся попарно в трех разных точках (рис. 8, вверху). А вот если добавить суперсимметрию, то они сходятся в одной точке (в пределах погрешности измерений низкоэнергетических значений), соответствующей «объединению констант взаимодействий» (рис. 8, внизу). Если существует только одна фундаментальная калибровочная симметрия, значит, существует и единственная фундаментальная константа взаимодействия, следовательно, три разных константы должны в итоге совпасть. То, что суперсимметрия при высоких энергиях заставляет три константы слиться в одну, стало одним из сильнейших стимулов разрабатывать эту теорию. Необходимо ли объединение констант взаимодействий? Нет. Красиво ли оно? О да.

* * *

«Мне кажется, пик взбудораженности по поводу SUSY пришелся на 1991–1992 годы, – говорит Нима. – А с тех пор ажиотаж утихает. Когда суперсимметрия не проявилась при втором запуске Большого электрон-позитронного коллайдера, многие в нашей области говорили, что есть проблема, что мы уже должны были увидеть суперсимметрию. Если не существует никаких суперпартнеров, почему тогда работает объединение констант взаимодействий? А что насчет темной материи, почему она работает?»

«Ну, вообще-то мы не знаем, работает ли она», – замечаю я.

«Да-да, конечно», – соглашается Нима.

«Она дает нам кандидата?» – подсказываю я.

«О’кей, – говорит он, – почему кажется, будто она подсказывает нам кандидата? Почему она словно хотела бы работать?»

Я молчу. Трудно поверить, что все это лишь бессмысленное совпадение. SUSY так естественно продолжает поиски объединения, так красиво работает, так идеально вписывается – она просто не может быть самообольщением, культивируемым стадным мышлением физиков. Либо я идиот, либо тысяча человек с их премиями и наградами. Расклад не в мою пользу.

«Возвращаясь к вопросу, почему люди вообще до сих пор работают над суперсимметрией, – прерывает Нима молчание, – нужно сказать, что интерес к ней резко снизился. Конечно, есть еще те, кто над ней работает. У академической науки много хворей, и одна из них заключается в том, что ты продолжаешь заниматься тем, чем занимался. Каким-то образом оказывается, что все так или иначе занимаются аналитическим продолжением того, что делали для своей диссертации[54]. Хорошо, что экспериментаторам все равно».

«Но ведь нужно, чтобы теоретики говорили экспериментаторам, где искать?»

«Это верно», – кивает Нима.

Но я счастлива согласиться, что мы на верном пути. Все хорошо. Давайте вернемся к работе, построим следующий коллайдер, выясним, что не так с бозоном Хиггса. Нам не нужна помощь философов.

Во время обратного рейса во Франкфурт, вдали от пышущего энтузиазмом Нимы, я понимаю, почему он приобрел такое большое влияние. В отличие от меня, он верит в то, что делает.

Дифотонная диарея начинается

15 декабря 2015 года. Как и тысячи моих коллег по всему миру, я смотрю прямую трансляцию из ЦЕРН. Сегодня коллабораторы, проводившие два самых масштабных эксперимента на Большом адронном коллайдере – CMS и ATLAS, – представят свои первые результаты со второго запуска, измерения на беспрецедентно коротких расстояниях.

Джим Олсен из команды CMS выходит на сцену. Он начинает разъяснять устройство детектора и применявшиеся методы анализа. Как бы мне хотелось перемотать эту часть… Не исключено, что настал день, когда Стандартная модель начнет разваливаться, – я хочу увидеть данные, а не фотографии магнитов!

При первом запуске проявились некоторые небольшие отклонения от предсказаний Стандартной модели. Подобные отклонения могут – и часто так и происходит – возникать случайно, в результате хаотических флуктуаций. Поэтому ученые любому отклонению от их действующих лучших теорий приписывают показатель достоверности, определяемый как вероятность того, что это отклонение – чистейшая случайность. Выпадающие значения в данных с первого запуска имели шансы оказаться случайными примерно 1 к 100. Такие флуктуации возникают все время и исчезают все время, так что не было никаких причин для волнения.

Олсен переходит к результатам эксперимента CMS. Действительно, надежность всех флуктуаций с первого запуска упала, то есть они почти наверняка были случайным шумом. Дальше ученые проанализировали данные со второго запуска, ища отголоски популярных в последнее время идей. И не нашли ничего: ни признаков дополнительных измерений, ни суперпартнеров, ни мини-версий черных дыр, ни четвертого поколения фермионов. Под пристальным вниманием со стороны прессы большинство заявлений звучат как череда нулевых результатов. Интересно, как Гордон Кейн это воспринял, думается мне.

Но затем, уже в самом конце, Олсен объявляет о новом отклонении от Стандартной модели: зарегистрировано слишком много распадов, в результате которых возникла пара фотонов. Прозванный «дифотонной аномалией», этот излишек не вписывается ни в одно из существующих предсказаний. Он не совместим со Стандартной моделью. Не совместим с любой из известных нам теорий. После этого Олсен передает слово Маруми Кадо из команды ATLAS.

Отчет Кадо почти идентичен олсеновскому. Прежние флуктуации исчезли, но ATLAS тоже зарегистрировал дифотонный излишек. Тот факт, что он был независимо зарегистрирован в обоих экспериментах, существенно снижает риск, что сигнал этот – чистая случайность. Вместе два эксперимента дают шансы 3 к 10 000, что излишек – хаотическая флуктуация и ничего больше. Это все еще очень далеко от стандарта надежности, которого специалисты по физике элементарных частиц придерживаются, когда объявляют о новом открытии, – примерно 1 к 3 500 000. Но вдруг это оно, думаю я, первый шаг на пути к более фундаментальному закону природы? Немедленно мы все начинаем обсуждать, что бы это могло быть.

Сутки спустя в бесплатном архиве статей и препринтов arXiv.org значится десять новых статей о дифотонной аномалии.

ВКРАТЦЕ

• У физиков-теоретиков вагон претензий к обнаруженным пока законам природы. Особенно не жалуют они неестественные числа.

• Естественность использовалась в качестве руководящего принципа при разработке теорий как минимум с XVI столетия. Иногда этот принцип срабатывал, иногда нет.

• Естественность – не математический критерий. Это математически сформулированное требование красоты. Отсутствие каких-либо успехов на счету естественности не оправдывает ее использования даже как основанной на опыте.

Глава 5

Идеальные теории

В которой я ищу пределы науки, но обнаруживаю, что воображение физиков-теоретиков поистине неисчерпаемо. Я лечу в Остин, позволяю Стивену Вайнбергу говорить сквозь меня и осознаю, сколько же мы делаем, просто чтобы убежать от скуки.

Удиви меня, но не слишком

Возможно, вас удивит утверждение, что у Баха очень много общего с «Битлз».

В 1975 году Ричард Восс и Джон Кларк, два физика из Беркли, изучали шум электронных устройств 69. Шутки ради они применили потом тот же метод к разным типам музыки. Каково же было их удивление, когда выяснилось, что разные типы музыки – западная и восточная, классическая, блюз, джаз – все обладают общим свойством: хотя высота и громкость звуков сами по себе в разных стилях музыки различаются, количественно различия всегда сглаживаются с обращением частоты (это называют «1/f-спектром»).

У 1/f-спектра нет – теоретически – никакой типичной временно́й шкалы, вопреки ожиданию, согласно которому разные ритм и метр характеризуют различные типы музыки. Исследование, таким образом, выявило, что звуковые паттерны в музыке обладают самоподобием, или «корреляциями», и это справедливо для всех временны́х масштабов. Белый шум имел бы постоянный спектр и никакой корреляции между колебаниями. Случайный сдвиг мелодии между близкими звуками имел бы сильную корреляцию и 1/f2-спектр. Где-то посередине, как показали Восс и Кларк, располагаются Бах, «Битлз» и все остальное, что вы слышите по радио[55].

На интуитивном уровне это означает, что музыка балансирует на границе между предсказуемостью и непредсказуемостью. Когда мы включаем радио, то хотим, чтобы нас удивили, но не слишком сильно. Вполне очевидно, что поп-музыка строится по довольно простым рецептам, поэтому-то вы можете подпевать, когда повторяются припевы.

Думаю, это наблюдение насчет музыки распространяется и на другие области человеческой деятельности. В искусстве, литературе, науке мы тоже хотим, чтобы нас удивляли, но не чересчур. В научных статьях также нужно соблюдать золотую середину между старым и новым, хотя тут провести расчеты сложнее, чем со звуковыми узорами. Новизна – это прекрасно, но только если не требует слишком многого от воспринимающих ее. Настоящие поп-звезды, как и поп-звезды науки, – это те, кто существует на самом острие, кто заставляет нас хлопать себя по лбу, бормоча: «Как же я сам до этого не додумался?!»

Однако в науке, в отличие от искусства, на идеях ничего не заканчивается, они не замкнуты сами на себя, а призваны описывать окружающий мир. В науке новые данные могут вынуждать нас к внесению изменений. Но что, если новых данных нет? Тогда мы переизобретаем хиты прошлого, более или менее очевидными способами. И новые теории в физике, как новые эстрадные песни, остаются вариациями на уже знакомые темы.

* * *

В теоретической физике популярные в наши дни темы – это простота, естественность и элегантность. Этим понятиям, строго говоря, никогда не дают точного определения, поэтому и я не буду пытаться его сформулировать, а просто расскажу вам, как они используются.

Простота

Сделать что-то «проще» – значит сделать с меньшими затратами. Но, как уже когда-то заметил Эйнштейн, теория должна быть «настолько простой, насколько это возможно, но не проще». Требование простоты само по себе не может быть использовано для разработки теории, поскольку есть много теорий более простых, чем те, что описывают нашу Вселенную. Вообще, нет ни одной уважительной причины, по которой нашей Вселенной стоило бы существовать или содержать в себе вещество. Или вот вам менее нигилистический пример: квантовать гравитацию существенно проще в двух измерениях, но мы, увы, населяем не такую вселенную.

Простота, таким образом, имеет сугубо относительную ценность. Мы можем искать теорию, которая была бы проще, чем какая-то другая, но не можем начать конструировать теорию, основываясь исключительно на принципе простоты.

Почти излишне говорить, что из двух теорий, описывающих одно и то же, ученые в конце концов выбирают ту, что проще, ибо кому же хочется делать свою жизнь сложнее, чем необходимо? В прошлом иногда бывали задержки с принятием такого решения, когда простота вступала в конфликт с другими заветными идеалами, такими как красота движения планет по круговым орбитам. Но лень всегда побеждала, по крайней мере пока.

Почти излишне – поскольку простота непрерывно играет в перетягивание каната с точностью. Дополнительные параметры (а значит, меньшая простота) обычно позволяют лучше описать данные, и мы можем провести статистическую оценку, чтобы выяснить, оправдывает ли улучшенное соответствие наблюдательным данным введение этих параметров. Можно спорить насчет плюсов и минусов разных оценок, но для наших целей достаточно сказать, что поисками расширенных теорий, пусть и противоречащих принципу простоты, занимается особая область науки – феноменология[56].

Объективно измерять простоту помогает так называемая вычислительная сложность, которая определяется длиной кода компьютерной программы, производящей вычисления[57]. Вычислительная сложность, в принципе, измерима для любой теории, которая может быть переведена в компьютерный код. Сюда относятся и теории из современной физики. Но сами мы не компьютеры, так что вычислительная сложность – не та оценка, которую мы в действительности используем. Человеческое понимание простоты преимущественно основывается на легкости в применении, а она, в свою очередь, тесно связана с нашей способностью уловить идею и удерживать ее в голове, раскручивая, до тех пор, пока не родится научная статья.

Чтобы добиться простоты новых, предполагаемых законов природы, теоретики сейчас стараются минимизировать набор допущений. Этого можно достичь, сокращая число параметров, полей или вообще аксиом теории. На сегодня самые распространенные способы сделать это – добавление симметрий или объединение.

Эйнштейн тоже мечтал о том, чтобы фундаментальная теория не содержала необъяснимых параметров:

…Природа устроена так, что ее законы в большой мере определяются уже чисто логическими требованиями настолько, что в выражения этих законов входят только постоянные, допускающие теоретическое определение (то есть такие постоянные, что их численных значений нельзя менять, не разрушая теории)70[58].

Эта мечта и по сей день направляет исследования. Однако мы не знаем, обязательно ли более фундаментальные теории должны быть проще. Предположение, что более фундаментальная теория должна быть еще и проще – по крайней мере восприниматься проще – это надежда, а не что-то такое, чего у нас на самом деле есть причины ожидать.

Естественность

В отличие от простоты, с позиций естественности оценивается не количество допущений, а их тип. Это попытка избавиться от человеческого фактора – требование, чтобы в «естественной» теории не использовались тщательно подобранные допущения.

Техническая естественность отличается от общей тем, что применяется только к квантовым теориям поля. Но у них обеих одинаковый фундамент: предположений, которые вряд ли могли быть выполнены случайно, нужно избегать.

Правда, критерий естественности бесполезен без других допущений – допущений, которые требуют делать необъяснимый выбор, тем самым возвращая в игру избирательный подход. Проблема в том, что у чего-либо есть бесконечное множество разных способов оказаться случайным, а потому отсылка к случайности уже сама по себе требует выбора.



Поделиться книгой:

На главную
Назад