Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Уродливая Вселенная. Как поиски красоты заводят физиков в тупик - Сабина Хоссенфельдер на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Хиггсовский бозон, независимо предложенный несколькими исследователями в начале 1960-х, был последней открытой (в 2012 году) фундаментальной частицей, но не последней предсказанной. Последними предсказанными (в 1973-м) частицами были истинный и прелестный кварки, чье существование было экспериментально подтверждено в 1995 и 1977 годах соответственно. В конце 1990-х добавились массы нейтрино – существование самой частицы было доказано в 1950-х – после экспериментов, подтвердивших, что нейтрино имеют ненулевую массу. Однако с 1973 года не было больше ни одного успешного нового предсказания, которое бы пришло на смену Стандартной модели.

* * *

Стандартная модель – это пока наш лучший ответ на вопрос «Из чего мы сделаны?». Но она не объясняет гравитацию. Все потому, что специалистам по физике элементарных частиц не нужно учитывать гравитацию, делая предсказания для экспериментов на ускорителях: массы отдельных элементарных частиц ничтожны, поэтому незначительно и их гравитационное притяжение. Гравитация – преобладающая сила на больших расстояниях, а на коротких, исследуемых при столкновениях частиц, она пренебрежимо, почти неизмеримо, мала. Однако, в то время, как все остальные силы могут уравновесить друг друга (и уравновешивают), с гравитацией такое не проходит. Хотя для больших объектов все другие силы взаимно компенсируются и становятся незаметными, силы гравитации суммируются и, напротив, проявляют себя.

Еще гравитация стоит особняком, поскольку в наших действующих теориях это единственная (фундаментальная) сила, не обладающая квантовыми свойствами: она неквантуема, мы называем такие силы «классическими». Мы увидим, какие проблемы это доставляет, в седьмой главе, но сначала позвольте мне рассказать вам, что мы знаем о гравитации и как это знание обрели.

Пока специалисты по физике элементарных частиц строят все бо́льшие коллайдеры, чтобы прощупать все меньшие расстояния, астрономы конструируют все бо́льшие телескопы, чтобы заглянуть все глубже в космос[40]. Первые телескопы создавались бок о бок с первыми микроскопами, но затем эти приборы быстро обособились. И теория и эксперимент в этой области также развивались параллельно.

Поскольку от далеких звездных объектов до нас доходит очень мало света, астрономы конструировали телескопы со все большей апертурой, то есть с более крупными зеркалами, чтобы собирать как можно больше света. Однако этот подход вскоре исчерпал себя, ведь с громадными аппаратами стало невозможно управляться. Положение кардинально изменилось в середине XIX века – с появлением фотографических пластинок. Теперь астрономы имели возможность накапливать свет в течение длительного времени. Но, так как Земля вращается, большие выдержки приводили к смазыванию изображения, пока астрономы не снабдили телескопы специальным компенсирующим механизмом, что, в свою очередь, опять-таки требовало знаний о движении Земли. И так, чем больше астрономы узнавали о ночном небе, тем подкованнее становились по части его наблюдения.

Сегодня астрономы больше не запечатлевают изображения на фотопластинках, а используют ПЗС-матрицы, электронные сердца цифровых камер. Современные телескопы так чувствительны, что способны регистрировать единичные фотоны, а выдержки иногда достигают нескольких миллионов секунд (больше недели)[41]. И конечно же, телескопы по-прежнему становятся все больше: теперь у нас есть особые механизмы, которые двигают огромные зеркала, оснащенные тысячами маленьких приводов, чтобы предотвращать деформации из-за сейсмических и температурных колебаний. Суперкомпьютеры и головокружительно точное измерение времени позволили телескопам, отстоящим друг от друга на большие расстояния, работать сообща, что, по сути, создает еще бо́льшие телескопы. Чтобы сладить с атмосферными флуктуациями, размывающими изображения, астрономы теперь используют так называемую адаптивную оптику, компьютерную программу, перенастраивающую телескоп в ответ на атмосферные изменения. Или вообще исключают любые искажения из-за атмосферы, устанавливая телескопы на спутниках и запуская в открытый космос.

Мы расширили свои возможности от видимого света до длинноволнового излучения инфракрасного, микроволнового и радиодиапазонов и в другую сторону до коротковолнового рентгеновского и гамма-излучения. И свет – не единственный связной, используемый нами сегодня для исследования космоса. Другие частицы, включая нейтрино, электроны и протоны, тоже рассказывают свои истории об источниках своего происхождения и о перипетиях на своем пути к Земле. Самое последнее достижение астрономии: первая прямая регистрация гравитационных волн, возмущений самой ткани пространства-времени. Эти волны несут информацию о зачастую суровых событиях, что породили их, – таких как слияние черных дыр.

Благодаря комбинации всех этих методов астрономы дерзнули заглянуть в прошлое во времена, когда Вселенной было лишь 300 000 лет от роду, и в дали порядка 10 миллиардов световых лет от нас. Данные коренным образом отличаются от тех, что дает физика в коллайдерах. Но для нас, теоретиков, задача та же: объяснить измерения.

Согласованная космологическая модель

Наше лучшее на сегодняшний день объяснение данных, полученных астрономами, – так называемая согласованная космологическая модель[42]. В ней используется математика общей теории относительности, согласно которой мы живем в трех пространственных измерениях и одном временно́м, да к тому же это пространство-время искривлено.

Я знаю, трудно представить себе искривленное четырехмерное пространство-время – дело тут не только в вас. К счастью, для многих целей двумерные поверхности служат неплохими аналогиями. Специальная теория относительности обращается с пространством-временем как с плоским листом бумаги. Тогда как в общей теории относительности пространство-время имеет возвышения и впадины.

Продолжим эту аналогию: если у вас есть карта гористой местности без отметок высоты, серпантины на ней будут выглядеть абсурдно. Но если вы знаете, что там горы, то понимаете, почему дороги столь извилисты – при таком ландшафте это наилучшее решение. Вот и то, что мы не видим искривления пространства-времени, сродни обладанию картой без отметок высоты. Если бы вы могли видеть искривления пространства-времени, вы бы поняли, что для планет в высшей степени целесообразно обращаться вокруг Солнца. Это лучшее, что они могут.

Общая теория относительности основывается на тех же симметриях, что и специальная. Разница в том, что в общей теории относительности пространство-время становится податливым: оно откликается на энергию и вещество, искривляясь. В свою очередь, перераспределение энергии и движение вещества зависят от кривизны пространства-времени.

Но кривизна меняется не только от точки к точке, а еще и со временем. Стало быть, самое важное, чему нас научила общая теория относительности, состоит в том, что Вселенная не вечно неизменна, она расширяется в ответ на вещество, и по мере этого расширения вещество становится все более тонко распределенным.

Тот факт, что Вселенная расширяется, означает, что в прошлом вещество было сильно сжато. Значит, ранняя Вселенная была наполнена очень плотным, но почти гомогенным «супом» из частиц. Притом очень горячим, то есть средняя энергия столкновений отдельных частиц была высокой. Возникает проблема: если температура превышает примерно 1017 кельвинов[43], то средняя энергия столкновений превышает ту, что позволяет исследовать сейчас Большой адронный коллайдер. Для более высоких температур – а значит, для более ранней Вселенной – у нас нет надежных знаний о поведении материи. У нас, конечно, имеются кое-какие предположения, и мы поговорим о некоторых из них в пятой и девятой главах. Но пока давайте сосредоточимся на том, что творится ниже этой температуры, где согласованная космологическая модель в силах объяснить, что же именно происходит.

Общая теория относительности дает нам уравнения, которые связывают расширение Вселенной с видами заключенных в ней энергии и вещества. Таким образом, космологи могут выяснить состав Вселенной, перебирая различные комбинации вещества и энергии и отслеживая, которая из них лучше всего объясняет наблюдения (точнее, космологи предоставляют это компьютеру). Они повторяют процедуру каждый раз, как появляются новые наблюдательные данные. И какие же сюрпризы они обнаружили!

Самое шокирующее открытие состоит в том, что основной источник гравитации во Вселенной в наши дни не имеет ничего общего со всем, с чем мы когда-либо сталкивались. Это неизвестный тип энергии, названный «темной энергией», и он составляет ошеломляющие 68,3 % общего запаса энергии-вещества. Мы не знаем, обладает ли темная энергия микроскопической структурой, знаем только, какой эффект она дает. Темная энергия ускоряет расширение Вселенной. Вот почему нам ее нужно так много – данные свидетельствуют, что скорость расширения Вселенной растет. Однако темная энергия тоже очень тонко распределена, и потому мы не в силах детектировать ее в непосредственной близости от себя. Лишь на огромных расстояниях мы замечаем результирующее влияние, выражающееся в разгоне расширения Вселенной.

Простейший тип темной энергии – космологическая постоянная, лишенная какой-либо подструктуры и неизменная как в пространстве, так и во времени. Космологическая постоянная – это то, что используется в согласованной космологической модели в качестве темной энергии, однако темная энергия может быть и чем-то более сложным.

Оставшиеся 31,7 % наполнения Вселенной – это вещество, правда (еще один сюрприз!), преимущественно не тот вид вещества, что нам привычен. 85 % вещества (26,8 % общего запаса энергии-вещества) называют «темной материей». Единственное, что мы знаем о темной материи, – что она редко вступает во взаимодействие, как с самой собой, так и с другим веществом. В частности, она не взаимодействует со светом, откуда и название. Некоторые суперсимметричные частицы ведут себя так, как подобало бы темной материи, но мы до сих пор не знаем, верно ли это объяснение.

Оставшиеся 15 % вещества во Вселенной (4,9 % общего запаса энергии-вещества) составляют стабильные частицы Стандартной модели – материал, из которого вылеплены мы с вами (рис. 7).

Узнав, какие виды энергии и вещества заполняют Вселенную, мы можем воссоздать прошлое. В ранней Вселенной темной энергии (в форме космологической постоянной) было ничтожно мало по сравнению с веществом. Ведь по мере расширения Вселенной плотность вещества уменьшается, тогда как космологическая постоянная остается неизменной. Стало быть, если того и другого сегодня соизмеримо много (соотношение темной энергии и вещества примерно равно 2:1), значит, в ранней Вселенной плотность вещества должна была значительно превышать плотность энергии, выраженной космологической постоянной.


Рис. 7. Энергетический состав Вселенной (для тех, кто не жалует круговые диаграммы)

Итак, при 1017 кельвинов все начинается с «супа», состоящего в основном из вещества и темной материи. Пространство-время реагирует на это вещество, начиная расширяться. Это охлаждает «суп» и способствует формированию первых атомных ядер, а затем легких атомов. Изначально «суп» из частиц настолько густой, что в нем застревает даже свет. Но как только образуются атомы, свет получает возможность распространяться почти без помех.

Темная материя, раз она не взаимодействует со светом, охлаждается быстрее, чем обычное вещество. Следовательно, в ранней Вселенной темная материя первой начинает образовывать скопления под действием собственного гравитационного притяжения. На самом деле без исходного комкования темной материи галактики не сформировались бы так, как мы это наблюдаем, поскольку гравитационное притяжение уже скомковавшейся темной материи необходимо, чтобы ускорить комкование обычного вещества. И только когда достаточное количество обычного вещества скопилось вместе, могло начаться образование больших атомных ядер в недрах звезд.

Под воздействием гравитации на протяжении миллиардов лет формируются галактики, возникают солнечные системы, загораются звезды. И все это время Вселенная расширяется, хотя расширение и стало замедляться. Но примерно тогда, когда галактики полностью сформировались, темная энергия берет верх – и скорость расширения Вселенной начинает расти. Именно в эту фазу мы сейчас и живем. И дальше, в будущем, вещество будет только еще сильнее истончаться. А значит, если темная энергия и есть космологическая постоянная, она продолжит доминировать, а расширение Вселенной продолжит ускоряться – бесконечно.

Длина волны первых световых лучей, вырвавшихся из «супа» частиц в ранней Вселенной, увеличилась с расширением последней, но этот свет все еще здесь и сегодня. Его длина волны теперь – несколько миллиметров, она лежит далеко вне видимого диапазона, в микроволновой области. Это космическое микроволновое фоновое излучение измеримо и служит самым ценным источником информации для космологов.

Средняя температура реликтового излучения равна примерно 2,7 кельвина, не намного выше абсолютного нуля. Но существуют мельчайшие отклонения от средней температуры – примерно на 0,003 %. Они исходят из областей в ранней Вселенной, где было чуть теплее или чуть холоднее, чем в среднем. Таким образом, в температурных флуктуациях реликтового излучения зашифрованы неоднородности горячего «супа», из которого образовались галактики.

Вооруженные этим знанием, мы можем использовать реликтовое излучение, чтобы делать заключения об истории Вселенной, которые я и описала выше. Другие данные мы получаем из наблюдаемого распределения галактик, различных измерений расширения Вселенной, распространенности химических элементов и гравитационного линзирования – это если перечислить только самые важные источники информации[44].

Согласованную космологическую модель также обозначают как «Лямбда-CDM», где «лямбда» (буква греческого алфавита) – это космологическая постоянная, а CDM – Cold Dark Matter (холодная темная материя). Вместе Стандартная модель и согласованная космологическая модель на сегодняшний день составляют основания физики[45].

Дальше будет трудно

Раньше я участвовала в серии международных конференций «Суперсимметрия и объединение фундаментальных взаимодействий». С 1993 года они проходили ежегодно и в лучшее время собирали свыше пятисот участников. Каждый год в докладах восхвалялись достоинства суперсимметрии: естественность, объединяющая способность и наличие кандидатов в темную материю. Из года в год поиски суперпартнеров приносили отрицательные результаты. Из года в год модели подновляли, чтобы примирить их с отсутствием доказательств.

Безуспешность попыток доказать существование суперпартнеров в Большом адронном коллайдере отразилась на настрое теоретиков. «Пока еще не время отчаиваться… но, вероятно, уже пора впасть в уныние»54, – заметил итальянский физик Гвидо Альтарелли в 2011 году. Бен Алланах из Кембриджского университета описал свою реакцию на результаты анализа данных с Большого адронного коллайдера 2015 года так: «Несколько угнетающе для теоретика суперсимметрии вроде меня»55. Джонатан Эллис, теоретик из ЦЕРН, отозвался о вероятном сценарии, по которому Большой адронный коллайдер не найдет ничего, кроме бозона Хиггса, как о «настоящей жуткой катастрофе»56. Закрепилось, правда, название «кошмарный сценарий»57. И сейчас мы этот кошмар проживаем.

Я не посещала эту ежегодную конференцию с 2006 года – слишком уж вгоняет в депрессию. Однако оттуда я знаю Кита Олива и его работу над суперсимметрией. Кит – профессор физики в Университете Миннесоты и директор Института теоретической физики имени Уильяма Файна. Я звоню ему, чтобы спросить, как он расценивает неявку SUSY на Большой адронный коллайдер.

«Мы получали данные небольшими порциями, – вспоминает Кит. – Границы все сужались и сужались. Каждые несколько месяцев, когда у нас появлялись результаты анализа новых данных, становилось чуточку хуже. Мы действительно ожидали SUSY на более низких энергиях. Это серьезная проблема. Что-то мне подсказывает, что суперсимметрия должна быть частью природы, хотя, как вы говорите, доказательств нет. Должна ли она проявляться на низких энергиях? Думаю, никто этого не знает. Мы думали, что она проявится».

Кит – представитель старшего поколения, предшествовавшего моему, поколения, которое засвидетельствовало успехи симметрии и объединения в разработке Стандартной модели. Но у меня подобного опыта нет, нет причины считать, что красота – хороший советчик. Не этот ли голос нашептывает Киту, что часть природы, а что нет? Я этому голосу не верю.

«Почему SUSY должна быть частью природы?»

«Все дело в силе ее симметрии, – объясняет Кит. – Думаю, она все еще очень убедительна. Независимо от того, достижима ли SUSY на низких энергиях, я продолжаю считать, что ее существование возможно. Если бы масса бозона Хиггса оказалась 115, 120 ГэВ, а SUSY не обнаружилась, было бы гораздо хуже. А то, что его масса близка к верхнему пределу, дает некоторую надежду. На самом деле все и должно быть непросто, поэтому в том, что Большой адронный коллайдер не видит SUSY, есть смысл».

Хиггсовский бозон после своего рождения быстро распадается, так что о его присутствии приходится судить по продуктам распада, достигающим детектора. Однако то, как распадается бозон Хиггса, зависит от его массы. Тяжелый бозон Хиггса, при условии, что он бы вообще родился, вызвал бы сигнал, который было бы легче обнаружить. Таким образом, даже прежде, чем Большой адронный коллайдер начал свой поиск, масса хиггсовского бозона уже была ограничена как снизу, так и сверху.

Большой адронный коллайдер в конце концов закрепил за бозоном Хиггса массу 125 ГэВ, точно на верхней границе диапазона, который пока еще не был исключен. Более тяжелый бозон Хиггса допускает существование более тяжелых суперпартнеров, поэтому, коль скоро речь идет о SUSY, чем тяжелее хиггсовский бозон, тем лучше. Но тот факт, что никаких суперпартнеров до сих пор не нашли, означает, что они должны быть настолько тяжелыми, что измеренной массы бозона Хиггса можно было бы достичь только за счет тонкой настройки параметров суперсимметричных моделей.

«Теперь мы знаем, что некоторая тонкая настройка есть, – говорит Кит. – И это само по себе превращает вопрос в крайне субъективный: насколько тонкая настройка плоха?»

* * *

Как мы уже обсуждали, физики не любят численных случайностей, которые требуют очень больших чисел. А поскольку величина, обратная очень большому числу, есть число очень маленькое, а значит, одно может быть преобразовано в другое, физики не любят и очень маленькие числа. В общем, они не жалуют числа, сильно отличающиеся от 1.

Однако беспокоятся физики только о величинах без единиц измерения – «безразмерных» величинах, в противоположность «размерным», имеющим единицы измерения. А все потому, что значения величин, имеющих размерность, по сути своей бессмысленны, ведь они зависят от выбора единиц измерения. Действительно, при помощи подходящих единиц измерения любую величину, имеющую размерность, можно сделать равной 1. Скажем, скорость света равна 1 в световых годах в год. Поэтому-то, когда физики волнуются о числах, тревогу у них вызывают лишь безразмерные величины, такие как отношение масс бозона Хиггса и электрона, которое оказывается примерно равным 250 000:1.

Проблема с массой хиггсовского бозона, которую мы обсуждали выше, не в том, что сама эта масса мала, ведь подобные утверждения зависят от выбранных единиц измерения и потому лишены смысла. Масса бозона Хиггса равна 1,25 × 1011 эВ, что выглядит солидно, но это то же самое, что и 2,22 × 10–21 грамма, что смотрится уже мизерным. Нет, мала не сама масса хиггсовского бозона, а отношение массы к (массе, эквивалентной) энергии, соответствующей квантовым поправкам к этой массе. Надеюсь, вы простите мне прежнюю небрежность.

Аргументы о естественности происходят из желания физиков, чтобы все безразмерные величины были близки к 1. Но числа не обязаны равняться ровно 1, поэтому тут есть предмет для споров, насколько большое число все еще допустимо. И правда, во многих уравнениях у нас уже присутствуют безразмерные величины, а они могут дать множители, не обязательно близкие к 1. Например, 2π в степени, зависящей от числа пространственных измерений (особенно если у вас их больше трех), резво взлетает до значений больше 100. А если вы еще немножко усложните свою модель, то сумеете получить значения даже выше.

Итак, какой размах тонкой настройки считать уже «перебором», зависит от вашей толерантности к объединению факторов во что-то более крупное. Следовательно, субъективны и оценки того, насколько суперсимметрия в беде – теперь, когда результаты с Большого адронного коллайдера требуют от нее тонкой настройки, чтобы у бозона Хиггса была правильная масса. Возможно, мы в силах точно вычислить, какого масштаба требуется тонкая настройка. Но мы не можем вычислить, тонкую настройку какого масштаба теоретики готовы допустить.

* * *

«Одним из основных привлекательных свойств суперсимметрии всегда было то, что она позволяла избежать тонкой настройки, – говорит Кит. – Нам нравится думать, что если за пределами Стандартной модели есть некая теория и вы выписываете [квантовые] поправки, то вам не придется подстраивать их до нужной точности».

«А что не так с тонкой настройкой?»

«Она кажется какой-то непривлекательной! – восклицает Кит и смеется. – Естественность – своего рода руководящий принцип. Если ее называть привлекательной, то это и есть определение привлекательного: оно привлекает нас, на него мы слетаемся». «В конечном счете, – продолжает Кит, – единственное, в правильности чего мы уверены, – Стандартная модель. И это всех раздражает. Должно быть что-то за ее пределами, хотя бы чтобы объяснить темную материю или [почему Вселенная содержит больше вещества, чем антивещества]. Там правда что-то должно быть. Просто многим людям сложно себе представить, будто это что-то совсем другое, случайное, что-то совершенно отдельное. По-моему, нужно как раз добавить симметрию или объединение».

Я спрашиваю Кита, какой экспериментальной стратегии придерживаться, но ему нечего посоветовать.

«Все простые шаги уже сделаны, – говорит он. – Дальше будет сложно. Будет сложно. В 1950-х годах, когда началось развитие физики элементарных частиц, было намного проще. Было не так уж трудно построить установку на несколько ГэВ и сталкивать частицы. И отовсюду полезли новые данные, о которых физика еще ничего не знала. Столько было странных результатов – вот почему они назвали частицы “странными”! Количество открытых за год частиц зашкаливало. И это привело к разнообразнейшим достижениям в теории. А сейчас… Тяжело без каких-либо ориентиров в эксперименте. Поэтому-то мы и работаем, полагаясь на то, что, по нашему мнению, красиво».

ВКРАТЦЕ

• Обычно эксперимент и теория способствуют обоюдному прогрессу.

• То, что сейчас мы считаем самыми фундаментальными законами природы, выстроено на принципах симметрии.

• Если новые данные становятся редкими и скудными, при оценке теорий физики-теоретики полагаются на свое чувство прекрасного.

• Красота – не научный критерий, однако может быть критерием, основанным на опыте.

Глава 4

Трещины в фундаменте

В которой я встречаюсь с Нимой Аркани-Хамедом и стараюсь смириться с тем, что природа неестественна, все, чему мы учимся, превосходно и всем наплевать, что я думаю.

Отличная работа, если суметь ЕЕ получить

Стайка школьников фотографирует Институт Нильса Бора, когда я подъезжаю на такси. С фасада здания надпись сообщает название института и год основания – 1920. Именно здесь в Копенгагене почти сто лет назад ученые собирались, чтобы заложить основы атомной физики и квантовой механики, теорий, благодаря которым существует вся современная электроника. Каждой микросхемой, каждым светодиодом, каждой цифровой камерой и каждым лазером – всем этим мы обязаны уравнениям, зародившимся здесь, когда Гейзенберг и Шрёдингер приходили говорить о физике с Бором. Правильное место, чтобы делать фотографии, когда на вас смотрит учитель.

Пока я стояла перед закрытыми дверями, а зимний дождь заливал мне лицо, я осознала, что здание, может, и датируется 1920 годом, но вот электронные замки вряд ли. Пришлось побродить по соседнему зданию в поисках регистрационной стойки. Молодая датчанка сообщает, что меня нет в ее списке ожидаемых посетителей, и спрашивает, какова цель моего визита.

«Я приехала поговорить с Нимой Аркани-Хамедом», – ответствую я и сама поражаюсь, насколько же это странно – запрыгнуть в самолет только ради того, чтобы подержать записывающее устройство у чьего-то рта. Однако Нима и сам прибыл в институт в качестве гостя – не знаю, к кому именно, – и тоже не значится в списках.

Я только наполовину вру, когда говорю, что приехала из Нордиты[46], бывшего дочернего института (по отношению к Институту Нильса Бора), перебазировавшегося в Стокгольм в 2007 году. Мой контракт как раз закончился, но я все еще улыбаюсь с их веб-сайта. Девушка протягивает мне электронный пропуск.

Я приехала слишком рано, поэтому отыскиваю библиотеку. Знакомые книги приветствуют меня. Деревянный пол поскрипывает – и я останавливаюсь, чтобы не потревожить потенциальные великие мысли. Пахнет наукой, то есть кофе. Мне вспоминается история о том, как во время Второй мировой войны здание начинили взрывчаткой, рассудив, что пусть лучше оно взлетит на воздух, чем достанется нацистам. Ходят слухи, что никто не уверен, всю ли взрывчатку убрали после войны. Дальше я двигаюсь с осторожностью.

Только я решаю выследить кофемашину, как появляется Нима. С тех пор как я впервые наткнулась на его статьи в конце 1990-х, его карьера складывалась исключительно блестяще. В 1999 году в возрасте двадцати семи лет он стал преподавателем на физическом факультете в Беркли. Продолжил в Гарварде в 2002-м, затем в Принстоне с 2008-го, был избран членом Американской академии искусств и наук в 2009-м. Он выиграл кучу наград, в том числе Премию за прорыв в фундаментальной физике с формулировкой «за оригинальные подходы к нерешенным проблемам физики элементарных частиц». Проблемы остаются неразрешенными. Как и Нима.

Он провожает меня в кабинет, который ему отвели на время его пребывания в институте. Я усаживаюсь на диван, чувствуя себя неуверенно: что именно мне следует делать дальше? Нажать кнопку записи на диктофоне кажется хорошей идеей. И словно он только и ждал этого сигнала, Нима начинает говорить, жестикулируя и взмахивая волосами.

Вопрос красоты и естественности, объясняет он, немало занимал его в свете последних результатов с Большого адронного коллайдера.

«Тема естественности и красоты всюду предстает в страшно искаженном виде, – говорит Нима. – Слияние красоты в искусстве и в науке, вероятно, помогает продавать книги». И его это не устраивает. «Если вы глубокий дилетант и ваши знания о физике почерпнуты из “Элегантной Вселенной” Брайана Грина, не в пику ему будет сказано, у вас может остаться ощущение, что физики попросту пудрят всем мозги. И это печально, поскольку сильно оторвано от реальности, реальности порядочного, честного физика».

«Да, – продолжает Нима, – вы вполне можете так решить. Иногда провести эксперименты невозможно практически. И даже если это возможно практически, их проведение может занять так много времени, что, по сути, вы проживете бо́льшую часть жизни без необходимости предстать на очной ставке с результатами эксперимента. А до этого все сходит с рук. Вы можете состряпать всевозможных заурядных теорий, и изредка, раз лет в пятьдесят, эксперимент, возможно, таки случится и разнесет все в щепки. Ну чем не отличная работа, если суметь ее получить? Можно просто ни черта не делать, вешать всем лапшу на уши – и никто вас на этом не подловит. Вот какое мнение могло бы сложиться у меня».

Когда мой контракт с Нордитой закончился, я покинула Стокгольм и переехала в Германию. Но пока я не получила новый исследовательский грант, так что временно осталась безработной. И это происходит не в первый раз. Уже пятнадцать лет я перескакиваю с одного краткосрочного контракта на другой, мотаюсь из одной страны в другую, движимая убеждением, что физика – наилучший для меня шанс понять окружающую действительность. Это не столько профессия, сколько одержимость. Моя ситуация – норма, ситуация Нимы – исключение. Большинство физиков нельзя обвинить в том, что у них отличная работа.

Не ведая, какие мысли бродят в моей голове, Нима продолжает: «Эксперимента нет, и вы просто сидите сложа руки и разглагольствуете о красоте, элегантности и математическом очаровании. И звучит все это как социологический вздор. Я считаю, что такое впечатление просто в корне неверно – но неверно в корне по интересной причине. И эта причина отличает физику высоких энергий от большинства других научных направлений».

«Действительно, – объясняет он, – в большинстве остальных областей науки для проверки, правильна идея или ошибочна, требуются новые эксперименты. Но наша область так солидна, что мы обложены неимоверным количеством ограничений, порожденных прежними экспериментами. Ограничений столь сильных, что они перечеркивают почти все, что вы можете попробовать изобрести. Если вы честный физик, 99,99 % ваших идей, даже хороших, будут опровергнуты, и не новыми экспериментами, а заранее – несовместимостью со старыми. Вот что по-настоящему сильно отличает нашу область исследований и дает нам внутреннее представление о том, что верно или неверно, до проведения новых экспериментов. Поэтому, в противоположность ощущению нашего гипотетического маловерного дилетанта, мнение, будто можно втирать всем очки, ошибочно. Это невероятно трудно».

Кому вы рассказываете о трудностях, думаю я и киваю.

Создавая проблемы

Несмотря на успех Стандартной модели, физики ее недолюбливают. Митио Каку называет ее «уродливой, надуманной»[47], Стивен Хокинг – «уродливой и случайной», Мэтт Страсслер хулит ее как «уродливую и нелепую», Брайан Грин жалуется, что она «обладает слишком большой гибкостью», а Пол Дэвис считает, что «от нее несет душком нерешенной проблемы», ибо «тот неуверенный способ, каким она объединяет электрослабое и сильное взаимодействия» – «уродливое свойство»58. Я все еще в поисках физика, кому Стандартная модель нравится.

Что же делает Стандартную модель такой уродливой? Худшее ее прегрешение: множество параметров – чисел, за которыми не стоит более глубокого объяснения, – и многие из них нисколечко не близки к 1. Мы уже обсуждали, какая головная боль эта масса бозона Хиггса. Но есть и еще подобные досадные числа, начиная с масс других элементарных частиц или, соответственно, отношений этих масс к массе хиггсовского бозона (ведь беспокоят нас только безразмерные величины). Такое отношение масс принимает значения вроде 0,00000408 для электрона или примерно 1,384 для истинного кварка. Никто не в силах объяснить, почему эти отношения масс таковы.

Между тем отношения масс также не кажутся и абсолютно случайными, и это заставляет физиков верить, что тому должно быть какое-то объяснение. Например, все три нейтрино очень легкие, сумма их масс более чем в 1011 раз меньше массы бозона Хиггса. Поколения фермионов имеют массы, отличающиеся, грубо говоря, в десятки раз. А есть еще странная формула Коидэ, связывающая массы электрона, мюона и тау-лептона 59. Сумма этих масс, деленная на квадрат суммы квадратных корней из этих масс, равна 2/3 вплоть до пятого знака после запятой. Почему? Похожие нумерологические соотношения были найдены и для других частиц, хотя и с меньшей степенью точности. Они вынуждают нас подозревать, что мы упускаем какое-то более глубокое объяснение.

Помимо масс есть еще так называемые матрицы смешивания. Перемещаясь из одной точки в другую, некоторые частицы могут превращаться – «осциллировать» – в другие частицы. Вероятности таких событий записываются в матрицах смешивания[48]. Опять-таки числа в этих матрицах пока необъяснимы, но и не выглядят совсем уж случайными. Некоторые частицы регулярно превращаются в другие, тогда как иные – не особенно, хотя могли бы. Почему это так? Мы не знаем.

Следующая проблема в том, что в Стандартной модели слишком много симметрии! Речь идет о так называемой CP-симметрии. Преобразование CP-симметрии – это комбинация изменения электрического заряда частицы на противоположный (отсюда буква C в названии, от слова charge) и трансформации частицы в ее зеркальное отражение (P, от слова parity, «четность»). Если произвести это преобразование, уравнения слабого ядерного взаимодействия меняются, то есть электрослабое взаимодействие этой симметрии не подчиняется. Квантовая электродинамика не может нарушать эту симметрию. Сильное взаимодействие может, однако по непонятным причинам не делает этого. Если бы сильное взаимодействие нарушало CP-симметрию, это отражалось бы, например, на распределении электрического заряда в нейтроне, а мы такого не наблюдаем.

Сила этого CP-нарушения сильным взаимодействием измеряется параметром θ. Согласно данным, собранным на настоящий момент, этот параметр оскорбительно мал, гораздо меньше 1.

Предложенный механизм для разрешения этой так называемой сильной CP-проблемы состоит в том, чтобы сделать параметр θ динамическим и позволить ему скатиться в потенциальный минимум, где он остается равным небольшому числу 60. Такое решение было бы естественным, поскольку не требует новых больших или малых чисел. Тем не менее, как независимо друг от друга заметили Стивен Вайнберг и Фрэнк Вильчек, к динамическому параметру θ должна прилагаться частица, которую Вильчек назвал «аксион» (первая и, будем надеяться, последняя частица, названная в честь стирального порошка). Аксион, однако, найден не был, так что сильная CP-проблема осталась нерешенной.

Но когда мы смотрим на Стандартную модель, нас раздражают не только числа. Еще три непонятных поколения фермионов и три калибровочных симметрии. Разве не было бы гораздо милее, если бы электрослабое и сильное взаимодействия могли быть объединены, образуя теорию Великого объединения или, еще лучше, суперсимметричную теорию Великого объединения? (Подробнее об этом в седьмой главе.)

А еще, конечно же, у нас есть претензии к согласованной космологической модели. Здесь у нас тоже полно необъяснимых чисел. Почему количество темной энергии именно такое? Почему темной материи впятеро больше, чем обычного вещества? И что же это все-таки такое – темная материя и темная энергия? В согласованной космологической модели мы лишь описываем их макроскопическое поведение, а микроскопические их свойства не играют никакой роли. Есть ли у них вообще микроскопические свойства? Сделаны ли темные энергия и материя из чего-то? И если да, то из чего? (Мы обсудим это в девятой главе.)

Далее, есть проблемы с объединением согласованной космологической модели со Стандартной моделью. Сила гравитационного притяжения между элементарными частицами чрезвычайно мала по сравнению с другими взаимодействиями. Так, например, отношение сил гравитационного и электрического притяжения между электроном и протоном равно примерно 10–40. Еще одно необъяснимо маленькое число, иллюстрирующее «проблему иерархии».

Что еще хуже, общая теория относительности отказывается слаженно объединиться со Стандартной моделью, вот почему физики уже восемьдесят лет пытаются разработать квантованную версию гравитации – теорию «квантовой гравитации». В идеале они хотели бы также срастить квантовую гравитацию со всеми остальными взаимодействиями – создать «теорию всего». (К этому мы вернемся в восьмой главе.)

Ну и наконец, даже если бы мы разрешили все эти проблемы, то все равно продолжали бы жаловаться – обвиняя квантовую механику (это тема шестой главы).

* * *

Эти проблемы известны уже по меньшей мере двадцать лет, и ни одна из них сегодня не близка к разрешению. Частично отсутствие прогресса объясняется тем, что сложнее становится затевать (и финансировать) новые эксперименты – все простые уже проведены. Такое замедление вполне предсказуемо для зрелой области исследований.

Однако, как мы видели, у теоретиков нет недостатка в загадках даже и без всяких новых экспериментов. Так, большинство моих коллег верят, что перечисленные выше проблемы возможно решить на чисто теоретических основаниях. Просто им это еще не удалось. Поэтому прогресс в теории замедлился, и почти по тем же причинам, по которым трудно разжиться новыми результатами экспериментов: простые шаги все уже сделаны.

Всякий раз, как мы разрешаем какую-то проблему, становится все труднее изменить что-либо в действующих теориях, не переформулируя вопросы, ответы на которые нами уже получены прежде. И поэтому фундаментальные законы природы, известные нам сейчас, кажутся неизбежными следствиями прошлых достижений. Эту неизбывность существующих теорий часто называют «жесткостью». Она порождает в нас надежду, что мы уже знаем все необходимое для того, чтобы отыскать более фундаментальную теорию, – и что нашей сообразительности будет достаточно, чтобы эту теорию нащупать.

Двоякая ситуация. С одной стороны, жесткость желательна, поскольку сигнализирует: теория близка к тому, чтобы единственным образом, идеально подладиться под наши наблюдательные данные. Но с другой стороны, жесткость означает, что мы зашли в тупик и должны пересмотреть долго решавшиеся проблемы, ища не изведанный прежде путь.

* * *

«Проще говоря, – продолжает Нима, перефразируя сказанное им ранее, – то, что у нас есть и теория относительности, и квантовая механика, – это очень сильное ограничение. Думаю, мало кто это осознает: и теория относительности, и квантовая механика обе неслыханно – неслыханно! – ограничивают вас в том, что вы можете сделать. Жесткость и неминуемость, вне всяких сомнений, важнее всего. Называйте их как хотите, но для меня это замена красоты».

«Но почему у нас вообще есть симметрии? Квантовые поля? Искривленное пространство-время?» – спрашиваю я, перечисляя некоторые привычные математические допущения.

Мы прибегаем к этим и другим абстракциям, потому что они работают, потому что мы обнаружили: они описывают природу. С чисто математической точки зрения они определенно не являются неизбежными, в противном случае мы могли бы вывести их, руководствуясь исключительно логикой. Но мы никогда не можем доказать, что какая-то математика верно описывает природу, так как все доказуемые истины касаются исключительно самих математических структур, а не их связи с реальностью. Стало быть, жесткость – осмысленный критерий только тогда, когда мы фиксируем костяк допущений, из которых затем делаются дедуктивные выводы.

Скажем, гравитация почти неотвратима, как только вы соглашаетесь с идеей, что мы живем в искривленном пространстве-времени. Но это никак не объясняет, почему мы вообще живем в искривленном пространстве-времени, это лишь представление, которое, как мы выяснили, работает. И мы знаем лишь, что оно работает для случаев, которые были нами проверены.

«Правда ваша, – говорит Нима, – любая дискуссия о жесткости должна оставаться в контексте того, что признано истинным. Не потому, что мы знаем, что оно истинно, – мы этого не знаем». Он разражается импровизированной лекцией о возникновении теории струн, а затем устремляется за кофе.

Мне трудно с ним не согласиться. Пожалуй, квантуемая гравитация – технически пресложная проблема. Симметрии специальной теории относительности чрезвычайно непросто соблюдать в квантовой теории гравитации, и эта трудность заставляет подозревать, что, если мы найдем один способ сделать это, он, вероятно, единственный.

Впрочем, опять-таки это может говорить больше о людях, чем о физике.



Поделиться книгой:

На главную
Назад