Однако это значение менее точно, чем полученное египтянами в Гизе еще в 2600 г. до н. э. Соотношение периметра и высоты пирамид Гизы равно 22/7, хотя считается, что оно подчинялось неким божественным законам, которым следовали архитекторы того времени. Многие исследователи считают это соотношение приближенным значением ТС, которое загадочным образом определили строители пирамид. Если мы допустим, что соотношение периметра и высоты пирамид не случайно, получим
π = 22/7 = 3,142…,
что соответствует π с хорошей точностью.
В Вавилонии в этом смысле прогресс шел медленнее: на глиняной табличке из древнего города Суса, датированной примерно 200 г. до н. э., приведено значение π, равное 25/8 = 3,125.
В ведических текстах Древней Индии, относящихся к IX веку до н. э., приводятся различные значения π, рассчитанные для разных практических задач. Наиболее точное значение основано на астрономических вычислениях и содержится в «Шата-патха-брахманы»: π = 339/108 = 3,1388…
История числа
Перенесемся в Древнюю Грецию — родину одного из величайших умов человечества, Архимеда из Сиракуз. Возможно, еще в V веке до н. э. вычислением числа π занимался Анаксагор, но письменных свидетельств этого не сохранилось. Мы не будем приводить здесь выкладки Архимеда о расчете приближенного значения π, так как они сложны и объемны. Оставим их историкам науки. Попробуем объяснить метод Архимеда простым и доступным образом, используя современное понятие предела. Представим себе многоугольник, вписанный в окружность, подобный тому, что изображен на рисунке.
Заметим, что он состоит из треугольников с основаниями
Таким образом,
Перейдя к пределу и увеличивая число треугольников так, что
так как
и придем к следующему заключению:
Архимеду было неизвестно современное определение предела, и он использовал так называемый метод исчерпывания, созданный Евдоксом Книдским (400–347 до н. э.). Для этого Архимед использовал вписанные и описанные многоугольники, как показано на рисунке. Окружность заключалась между вписанным и описанным многоугольниками, соответственно, была ограничена и площадь окружности. С ростом числа углов многоугольников оценка площади окружности становилась все точнее.
Схема, на которой изображен так называемый переход к пределу, поможет понять, почему площадь круга равняется π
Мы видим, как формируется криволинейный параллелограмм и его стороны постепенно распрямляются. Вспомним, что площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне. Высота постепенно приближается к значению радиуса
Архимед вычислил верхнюю и нижнюю оценку значения π:
223/π = 3,140845… < π < 22/7 = 3,142857…
с отменной точностью.
Греческий инженер, физик, астроном и математик Архимед считается важнейшим ученым античности и одним из величайших умов человечества. В области математики фигурами сопоставимой величины можно назвать лишь Ньютона, Гаусса и фон Неймана. Его вклад в науку неоценим. Он создал червячную передачу, параболические зеркала, многочисленные системы блоков (полиспасты) и многие другие механизмы. Наверное, самым значимым стал открытый им закон гидростатики, известный нам как закон Архимеда. Образ Архимеда, который выскакивает из ванной и кричит «Эврика!» («Нашел!»), стал классическим образом первооткрывателя. Его открытия в математике бессчетны: помимо вычисления числа к он определил периметр, площадь, объем и центр тяжести для множества геометрических фигур и тел (в частности, для сферы, цилиндра, параболы, спирали и пр.), изучал диофантовы уравнения, построил счисление, позволяющее записывать и называть весьма большие числа, и так далее.
Он умер во время осады Сиракуз, при обороне которых использовались придуманные им механизмы. Согласно Плутарху, Архимед рассматривал чертеж на песке, когда к нему подошел римский солдат. Архимед настойчиво просил его подождать, сказав: «Не трогай мои чертежи», после чего разгневанный солдат зарубил Архимеда мечом. Плутарх пишет, что смерть Архимеда возмутила римского генерала, который считал ученого очень ценной добычей.
На могиле великого геометра изображен шар, вписанный в цилиндр. Соотношение между объемами цилиндра и вписанного шара открыл именно Архимед.
* * *
Метод, использованный Архимедом, стал фактически обязательным к применению в последующие несколько веков. Он доступен, прост и понятен. Математический гений Архимеда создал настоящее чудо. По существу, Архимед придумал алгоритм расчета π с любой точностью. Чтобы использовать этот алгоритм, нужен только калькулятор или компьютер и одна рекуррентная формула. Если
В этом и заключается суть алгоритма Архимеда — рекуррентной формулы, с помощью которой рассчитывается приближенное значение π, точность которого повышается по мере роста п. Всегда выполняется соотношение
Используя алгоритм Архимеда начиная с правильного шестиугольника, в котором
3,00000 < π < 3,46410
3,10583 < π < 3,21539
3,13263 < π < 3,15966
3,13935 < π < 3,14609
3,14103 < π < 3,14271.
Рассчитав значения этого неравенства для правильного 96-угольника, мы получим оценку числа π, вычисленную самим Архимедом.
Примерно в 20 году до н. э. известный римский архитектор, военный инженер и писатель Марк Витрувий Поллион (ок. 85 — ок. 20 гг. до н. э.), более известный как Витрувий, создал монументальный труд «Десять книг об архитектуре», где используется соотношение, найденное в Месопотамии: π = 25/8. Сам Витрувий произвел оценку числа π с помощью колеса с нанесенными отметками. Тем не менее он известен потомкам не поэтому, а благодаря рисунку Леонардо да Винчи «Витрувианский человек» с каноническими пропорциями человека.
Несмотря на столь широкую известность, Витрувий не добился более точного результата, чем Архимед. Это удалось египетскому астроному, астрологу и географу греческого происхождения Клавдию Птолемею (ок. 100 — ок. 170 гг.). Для расчетов он использовал 120-угольник, получив поразительно точный результат π = 3 + (17/120) = 3,141666… К сожалению, это не принесло ему заслуженной славы среди потомков. Он известен благодаря одному из своих трудов, «Альмагесту» в 13 книгах, название которого с древнегреческого переводится как «Великое построение». С этой книги началась традиция создания трудов, описывающих все известные на данный момент знания. Фактически «Альмагест» Птолемея не терял актуальности вплоть до появления работ Коперника.
Уделяя основное внимание западной культуре, мы часто забываем, что в эпоху Античности процветали и другие города помимо вавилонских, греческих, римских и египетских. Западная цивилизация наблюдала появление числа π, но что же происходило в это время на далеком Востоке?
Например, в Китае этому вопросу уделяли внимание Чань Цан (ок. 220 г. до н. э.), который принял значение π равным 3, и другие математики. Чжан Хэн (78-139 гг.н. э.), который занимался астрономией и математикой и изобрел прибор для регистрации землетрясений, в одной из своих книг рассчитал значение π = 736/232 = 3,1724… При вычислении объема шара, вписанного в куб, он использовал приближенное значение π = √10 = 3,162277…
Ван Фань (217–257 гг. н. э.) в 250 году рассчитал приближенное значение π = 142/45 = 3,155555…
Математик Лю Хуэй (ок. 220 — ок. 280 гг.) является автором комментариев к «Математике в девяти книгах». Именно по этим комментариям, изданным в 263 году, нам известно о существовании этого ученого и о его достижениях. Лю Хуэй приводит рекуррентную формулу для расчета периметра правильного многоугольника, имеющего 3∙2k сторон при известном периметре многоугольника, число сторон которого равно 3∙2k-1. Лю Хуэй рекомендовал использовать значение π = 3,14, хотя сам он вычислил значение π = 3,141592104…, для чего потребовалось использовать многоугольник с 3072 сторонами.
Несколько веков спустя Цзу Чунчжи (429–500 гг.), ученый и математик, который разработал новый календарь, с превосходной точностью оценил верхнюю и нижнюю границы числа π:
3,1415926 < π < 3,1415927.
Он также рекомендовал использовать значение 22/7 для простых вычислений и 355/113 — для более сложных.
Перенесемся в Древнюю Индию, где выдающийся мудрец Ариабхата (ок. 476–550 гг.) получил значение π, равное 3,1416, используя многоугольник с 384 сторонами.
Брахмагупта (598–665 гг.), вне всякого сомнения наиболее одаренный индийский математик, создал объемный труд «Брахма-спхута-сиддханта», где, к сожалению, приводится достаточно неточная оценка
π = √10 = 3,162277…
Более точное значение было получено лишь в XII веке усилиями Бхаскары II (1114–1185) в его книге «Лилавати». Книга носит имя его дочери, которая, если судить по важности этого труда, должна была быть прекраснейшей девушкой — удивительно, но именно это и означает имя Лилавати. Бхаскара II приводит π = 3917/1250 = 3,1416.
Наша система счисления является позиционной с основанием 10. В ней используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, имеющие индо-арабское происхождение. Мы не уделяем этому особого внимания, но именно появление этой системы счисления способствовало развитию торговли: западная цивилизация получила математический инструмент, благодаря которому вычисления стали доступны для всех.
Подробная история индо-арабских цифр выходит за рамки нашего повествования. Отметим лишь, что свое название они получили по месту происхождения. Удивительно, но на Западе эти цифры и система счисления в целом появились лишь в X веке в «Книге Абака» Леонардо Пизанского (ок. 1170–1250), также известного как Фибоначчи. Индо-арабские цифры распространились в Европе с быстротой молнии, особенно среди торговцев и образованных людей. Расчеты в новой системе счисления перестали быть такими проблематичными благодаря простым правилам умножения и деления. Цивилизация сделала медленный, но важный шаг вперед.
На середине нашего повествования мы впервые встречаем имя Фибоначчи, который в 1220 году вычислил приближенное значение π = 3,141818 в одной из своих работ «Практика геометрии» (Practica geometriae), несколько вольно применив метод Архимеда.
Но не будем забегать вперед. Обратим внимание на фигуру Мухаммеда ибн Муса аль-Хорезми (ок. 780–850 гг.), также называемого аль-Хорезми. От видоизмененного имени аль-Хорезми берет начало термин «алгоритм». Аль-Хорезми является автором «Книги о восполнении и противопоставлении», от арабского названия которой происходит слово «алгебра». Его труды, переведенные на Западе, имели огромнейшее влияние. Аль-Хорезми также рекомендовал использовать значение 3,14 в простых расчетах и 3,1416 — в сложных, например, в астрономии.