«Как и самолеты на автопилоте, современные автономные лодки могут добраться из точки А в точку Б. Однако до недавнего времени они были не способны работать в изменяющемся окружении, в котором может произойти что угодно, — говорит консультант группы доктор Мэтт Данбебин. — Новое же поколение умных лодок станет первым, способным выполнять поисково-спасательные работы в штормовую погоду, когда спасателям слишком опасно выходить в открытое море».
Пока команда из Квинсленда не раскрывает деталей, как устроено и работает их судно-робот. Известно лишь, что «Брюс» должен будет выполнить пять специализированных заданий, чтобы выиграть и получить дополнительное финансирование. Среди них — лавирование между плавучими маркерами, автономная швартовка, прокладка курса через бурные волны, распознавание морских сигналов и обнаружение цели, находящейся под поверхностью воды.
Пока еще никому не удалось создать робота, который бы полностью заменил спасателей и выполнял их работу на достаточно высоком уровне. Однако сам факт, что эти прототипы существуют, означает, что подобные роботы, оперативно доставляемые на место ЧП с помощью вертолетов или самолетов, вскоре могут оказаться полезными при спасении людей после кораблекрушения, а также при падениях самолетов в море.
ОН НИЧЕГО НЕ БОИТСЯ…
Резиновый робот-ползун, созданный гарвардскими учеными, не боится ничего. Устройство стоимостью всего 1 100 долларов может выдержать вес машины, двигаться сквозь огонь, по воде и снегу, говорится в статье, опубликованной в журнале Soft Robotics.
Несколько лет назад инженеры из Гарвардского университета уже представляли публике модель ползающего робота, использующего для движения энергию сжатого воздуха. Особые клапаны позволяли гонять воздух по телу устройства и шевелить его ногами. Однако недостатком ползуна была его привязанность к источнику сжатого воздуха, с которым его соединяли гибкие шланги. Теперь инженеры под руководством Джорджа Уайтсайдса усовершенствовали робота, снабдив его собственным питанием и насосами, которые сделали устройство автономным.
Робот выполнен из очень прочной резины, что допускает его эксплуатацию при низких температурах, ветре до 40 км/ч, лужах глубиной до 5 см и кратковременное пребывание в огне при температуре до 3 000 °C. По нему может даже проехать машина, и ползун продолжит движение, если только система управления и насосы останутся неповрежденными.
Кроме того, резиновая оболочка защищает устройство от агрессивной химической среды. Встроенные аккумуляторы позволяют роботу самостоятельно двигаться и сохранять работоспособность до 2 часов. Он может передвигаться несколькими способами, поворачивать и двигаться по прямой со скоростью 18 м/ч.
СОЗДАНО В РОССИИ
Изобретена ручка… волшебная
Мы уже несколько раз писали о новых технологиях создания трехмерных объектов. Наиболее популярны ныне 3D-принтеры. Однако далеко не каждый может выложить за такой принтер несколько тысяч долларов. Куда дешевле обещает быть особая 3D-ручка для изготовления объектов… в воздухе!
Сами изобретатели в шутку именуют свою разработку «волшебной палочкой». Она и в самом деле может кое-что сотворить… Ну, а если серьезно, разработка принадлежит нашим соотечественникам — команде молодых ученых из Томска. Им удалось не только создать и запатентовать чудо-ручку, но также и разработать специальные чернила для нее — полимерную пасту со специальными параметрами. Под воздействием встроенной в ручку ультрафиолетовой лампы паста отвердевает на воздухе буквально за секунды. «Это первая в мире 3D-ручка с холодными чернилами», — прокомментировал создание новинки учредитель компании-разработчика Игорь Ковалев.
В самом деле, в отличие от существующих аналогов, новинка практически не подвержена нагреву, в то время как другие устройства этого ряда плавят пластик и даже могут нанести человеку ожог. К тому же после работы с расплавленным пластиком зачастую приходится проветривать помещение. А холодные чернила не имеют неприятного запаха и абсолютно безопасны даже для детей!
Новый гаджет имеет довольно широкий спектр применения, так как для него созданы разнообразные варианты чернил. Есть ароматизированные, есть магнитные, светящиеся в темноте, токопроводящие, термоконтрастные. Все свойства пасты-чернил передаются готовому изделию.
Использовать ручку достаточно просто. Если вам хватает ловкости водить пальцем в воздухе, то при помощи 3D-ручки вы вполне можете «нарисовать» себе лампу над столом, вазочку, корзину для бумаг или любую безделушку для украшения интерьера.
Такие манипуляции и в самом деле напоминают занятия магией. Как по мановению волшебной палочки, в воздухе или на любой поверхности возникают различные предметы, а какими они получатся, зависит только от вас. Быстро застывающая смола, твердея, превращается в прочную конструкцию. Уже после нескольких часов тренировки любому пользователю удается творить в пространстве с каждым разом все более и более сложные формы.
Существует множество вариантов использования 3D-ручки, полагают изобретатели. Так, с ее помощью можно моделировать фигуры в пространстве, чертить детали на бумаге и затем соединять их в придуманную конструкцию. Трехмерная ручка позволяет изготавливать, например, недорогую бижутерию в виде висячих украшений; чехлы для телефонов, планшетов, письменных принадлежностей и так далее.
Зачем это нужно? Во-первых, изготовление таких мелочей обойдется вам значительно дешевле, чем покупка изделия в магазине. Во-вторых, вы сможете проявить фантазию и сконструировать нечто такое, чего больше ни у кого нет. В-третьих, для кого-то это даже может стать домашним бизнесом. Изготовляя изделия по заказу, можно будет получить вполне реальный доход.
Предполагается, что изобретение вскоре появится в свободной продаже. Так что у каждого из нас будет шанс стать волшебником. Кстати, ручка способна работать на аккумуляторах около двух с половиной часов, а подзаряжается через USB-порт.
ПРЕМИИ
Сбылась голубая мечта…
Лауреатами Нобелевской премии по физике за 2014 год стали ученые
Так решил Нобелевский комитет, а он, как известно, своих решений не меняет. И все-таки такое суждение вызвало довольно много вопросов и сомнений. Начать хотя бы с того, что один из лауреатов, а именно старейшина данного коллектива Исаму Акасаки, прямо сказал на пресс-конференции, что никогда не думал, что будет удостоен столь высокой награды. Эти слова можно, конечно, отнести на счет скромности ученого. Но сам он, видимо, хорошо помнит слова Ньютона, сказавшего однажды: «Я потому видел столь далеко, что стоял на плечах гигантов», — намекая на работы своих предшественников.
В данном случае у многих ученых вызвал недоумение тот факт, что Нобелевский комитет в своем пресс-релизе и словом не помянул тех, кому нынешние лауреаты во многом обязаны своим успехом. Начать хотя бы с того, что американские физики до 70-х годов ХХ века называли светодиоды Losev light — «свет Лосева», прямо указывая, что их первооткрывателем был Олег Лосев, о жизни которого мы рассказали в «ЮТ» № 9 за 2013 год.
В дальнейшем совершенствование полупроводниковой техники, в том числе и светодиодов, тоже не обошлось без наших соотечественников. Так, в 1956 году Нобелевская премия за создание транзистора была вручена американцу русского происхождения Джону (Ивану) Бардину, который в своей нобелевской речи лично признал приоритет Лосева.
Первый в мире светодиод, работающий в световом (красном) диапазоне и пригодный к практическому применению, разработал Ник (Николай) Холоньяк, бывший учеником Бардина, в Университете Иллинойса в 1962 году. Далее, бывший студент Холоньяка Джордж Крафорд в 1972 году изобрел первый в мире желтый светодиод. А первый синий светодиод с кристаллом из нитрида галлия (GaN) на сапфировой подложке примерно в это же время создал Жак Панков (Яков Панчечников), работавший в IBM (International Business Machines).
И лишь спустя почти 20 лет, в середине 1980-х годов, японские ученые Акасаки и Амано из Нагойского университета предложили использовать в синем светодиоде тот же нитрид галлия, но с примесью магния. Облучив новый материал потоком электронов, они заставили его светиться.
В 1989 году на открытие Акасаки и Амано обратил внимание сотрудник Nichia Corporation Сюдзи Накамура и довел изобретение своих коллег до стадии серийного производства. Компания запатентовала технологию Накамуры и в 1993 году первой в мире наладила промышленный выпуск синих светодиодов. К концу 1990-х годов она выпускала около 20 млн. таких устройств в месяц. Изобретателю же корпорация заплатила меньше 200 долларов, а потому в 1999 году Накамура подал на нее в суд, выиграв после пяти лет разбирательств 20 млрд. иен. И судится с нею дальше, намереваясь получить еще 60 млрд. иен.
Тяжба с Nichia Corporation побудила ученого уволиться из компании и переехать в США, где он устроился на работу в Калифорнийский университет в Санта-Барбаре.
Такая вот получилась история. Что же касается, самих синих светодиодов, то теперь с их появлением путем сложения синего, зеленого и красного появилась возможность получать чистый белый свет, а следовательно, и все оттенки световой гаммы. Это дало возможность выпускать яркие и экономичные светодиодные источники, которые используются в видеоэкранах больших размеров, а также в автомобильных и авиационных фарах.
Светодиоды легли в основу и так называемого цифрового прожектора, изобретенного сотрудниками Университета Карнеги-Меллона.
Все водители знают, как сложно ехать в плохую погоду, причем проблема даже не столько в скользком дорожном покрытии, сколько в том, что значительная часть света фар падает на снежинки и капли дождя, так что водитель видит только сплошную стену осадков, а не освещенную дорогу. Группа ученых под руководством Сриванаса Нарасимхана разработала систему освещения, которая освещает только дорожное покрытие, оставляя невидимыми частицы снега и дождя.
Основные элементы новой системы — цифровой светодиодный проектор, играющий роль фар, и скоростная видеокамера, которая при помощи светоделящей полупрозрачной пластины фиксирует световое поле. Когда частицы осадков оказываются в поле зрения проектора с камерой, то их изображение попадает на компьютер, который рассчитывает скорость и траекторию движения каждой из них. Затем проектор выборочно затемняет на матрице точки так, чтобы свет не попадал на снежинки и капли. Осадки продолжают падать, но свет фар перестает отражаться от них в глаза человека, сидящего за рулем.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Чернее черного
На международном авиашоу в Фарнборо британские нанотехнологи представили самый черный объект, какой только может быть. Материал, получивший название Vantablack, настолько черен, что человеческий глаз уже не воспринимает этой черноты и кажется, что перед вами «черная дыра», пишет The Independent.
«Британской компании Surrey NanoSystems удалось создать материал, поглощающий практически весь видимый спектр света, отражая лишь 0,0035 % светового потока. Основой для него послужили графитовые нанотрубки, каждая их которых в 10 000 раз тоньше человеческого волоса. Также новый материал в 10 раз прочнее стали на разрыв и проводит тепло в 7,5 раза эффективнее, чем медь, — пишет газета. — А главное, новый материал настолько темный, что при взгляде на него все контуры и формы теряются; возникает такое ощущение, будто человек вглядывается в бездну».
Материал Vantablack был выращен из нанотрубок на слоях алюминиевой фольги. Эту фольгу можно изгибать любым способом, создавая любые формы и неровности — для человеческого глаза они останутся незаметными. «Это очень странное ощущение: сгибая фольгу, ожидаешь увидеть изменения на ее поверхности, однако этого не происходит», — говорит представитель компании Surrey NanoSystems Бен Дженсен.
Принцип поглощения видимого света в данном случае можно описать следующим образом: графитовые нанотрубки в основе материала настолько тонки, что световые частицы не могут в них проникнуть. Вместо этого фотоны попадают в щели между трубками и практически полностью поглощаются. Таким образом, Vantablack представляет собой упорядоченный «лес» из вертикально расположенных вплотную друг к другу углеродных нанотрубок. Он производится при помощи запатентованного компанией Surrey NanoSystems процесса выращивания таких структур при низкой температуре на кремниевой поверхности.
Использование Vantablack позволяет преодолеть некоторые ограничения, с которыми сталкиваются инженеры, разрабатывающие сверхвысокоточные устройства. Большинство покрытий из других черных материалов производится в условиях достаточно высокой температуры, что весьма сужает область их применения, исключает нанесение таких покрытий на сверхчувствительные электронные компоненты и на узлы, изготовленные из материалов с низкой точкой плавления.
Уникальный материал также имеет малую плотность, он обладает устойчивостью к воздействию высокой и низкой температуры, а коэффициент поглощения света составляет рекордные 99,965 %. Благодаря этому он является идеальным материалом для использования в оптических системах современных телескопов, в экранах, системах тепловой защиты, в качестве покрытия миниатюрных узлов и элементов различных микроэлектромеханических устройств.
Помимо технологии производства материала Vantablack, специалисты компании Surrey NanoSystems разработали высокоточную технологию нанесения покрытия из этого материала, которая может работать как с плоскими поверхностями, так и с поверхностями сложной формы, обеспечивая точность нанесения покрытий на уровне долей микрона.
Изначально этот материал разрабатывался для изготовления эталонов типа «черное тело», на которых производится калибровка всевозможного оборудования космического и военного назначения. Однако по ходу дела выяснилось, что, кроме всего вышеперечисленного, технология производства материала Vantablack позволяет на стадии производства управлять высотой и частотой «леса». Это, в свою очередь, позволяет получить максимально возможный коэффициент поглощения материала в каком-либо определенном диапазоне длин волн света, начиная от инфракрасного и заканчивая ультрафиолетом.
Создание такого материала сейчас особенно актуально, уверены ученые. Благодаря ему, астрономические камеры, телескопы и инфракрасные системы сканирования смогут работать с большей эффективностью.
В настоящее время компания Surrey NanoSystems, базирующаяся в Ньюхевэне, расширяет свои производственные мощности, что позволит увеличить ассортимент выпускаемых видов материала Vantablack, который должен удовлетворить все запросы многочисленных заказчиков.
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Топливо из воды
Еще Жюль Верн мечтал о временах, когда топливо можно будет добывать из воды, разлагая ее на составляющие газы — водород и кислород. Этот процесс, называемый электролизом, тоже известен достаточно давно. Однако его широкому внедрению долгое время мешало одно обстоятельство — разложение воды требует изрядного количества электроэнергии. Но вот, похоже, данная трудность преодолена. «Ныне разработана новая технология расщепления воды, использующая электрический потенциал батарейки типа ААА», — сообщает команда исследователей из США, Канады и Тайваня. Результаты своей работы авторы опубликовали в журнале Nature Communications.
«В результате электролиза ток от железоникелевой батареи, протекающий между анодом и катодом, расщепляет воду на водород и кислород, — пишут ученые. — Реакция происходит в комнатных условиях, при небольшом напряжении и совершенно безопасна».
Далее исследователи из группы профессора Хонгджи Дэя приводят такие подробности. Основой данной технологии стал новый катализатор, который не содержит ни дорогой платины, ни редкого иридия, а состоит из соединений никеля и железа — элементов, которые находятся в изобилии на Земле.
«В течение нескольких десятилетий ученые занимались поисками дешевого эффективного катализатора, при помощи которого процесс электролиза может идти при комнатной температуре и низком электрическом напряжении, — рассказал профессор Дэй. — В конце концов, нам удалось наткнуться на сложное соединение никеля и железа, которое работает столь же эффективно, как и платина. Это стало для нас полной неожиданностью».
Основное открытие было сделано Мингом Гонгом, аспирантом профессора Дэя. «Минг обнаружил соединение, которое в роли катализатора выступает эффективней чистого никеля, железа или оксидов этих металлов, — продолжал профессор Дэй. — Это соединение очень эффективно разлагает воду на кислород и водород, хотя мы еще не полностью понимаем, как именно это происходит».
Пока опытные образцы способны непрерывно работать лишь в течение нескольких дней. А для масштабного применения таких катализаторов требуется ресурс непрерывной работы, исчисляющийся месяцами и годами.
«Результаты наших последних исследований позволят нам надеяться на получение больших сроков службы электродов из нового катализатора, — рассказал профессор Дэй. — И после этого нашу технологию можно будет широко использовать для прямого получения водорода при помощи энергии солнечных лучей или ветра».
Исследователи считают, что их открытие найдет применение в качестве альтернативы современным бензиновым двигателям. А там, глядишь, дело дойдет и до заправки ракет при помощи солнечных батарей и нового катализатора. Вода ведь есть не только на нашей планете, но и в космосе.