Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: История климата с 1000 года - Эммануэль Ле Руа Ладюри на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

1) рецессия (отступание) ледников 1860—1960 гг. — явление большой длительности; оно соразмерно вековым процессам, а более вероятно, как это будет видно из дальнейшего, процессам межвековых или многовековых масштабов;

2) в целом эта рецессия всеобщая, квазимировая;

3) обусловлена климатом;

4) имеет большой размах;

5) поддается измерению и датированию;

6) легко установить реперы.


Рис. 9. Вековое отступание больших ледников Шамони ([238б], данные, собранные Муженом и Буверо).

Флуктуация большой длительности: всякий раз, когда удается проследить и нанести на график (при достаточном количестве данных) отступание ледникового языка за одно столетие или более чем за полстолетия, можно заметить, что, несмотря на временные нарушения, продвижения или скачки, отступание имеет непрерывный в течение века характер, что оно свидетельствует о подлинном тренде, об устойчивой, длящейся на протяжении десятилетий тенденции к сокращению. Это можно проследить по кривым Мужена и Валло, продленным Буверо и Ллибутри [266 б—е; 42] для ледников Монблана; по кривым и картам, построенным Меркантоном [262] для Ронского ледника; по кривым Тикстона [356] для ледников Свартис; по кривым Харрисона [171, стр. 666—668] для ледника Нискуолли в Скалистых горах; по кривым Хёйссера и Маркуса [179] для ледника Лимон-Крик на Аляске (см. рис. 9, 10, 11 и далее).

Флуктуация универсальная (в основном). Разумеется, все максимумы и минимумы колебаний ледников внутри одного и того же массива, а тем более в различных районах далеко не совпадают во времени. Наступание в одном месте может совпадать с отступанием в другом и т. д. Кроме того, даже ритм отступания (или наступания) сильно меняется в зависимости от ледниковой системы. Тем не менее, несмотря на эти расхождения, региональные тенденции, захватывающие до 80—90% района и более тенденции альпийские, скандинавские и т. д.), подтверждаются. И эти тенденции в свою очередь стремятся к синхронности если не во всем мире, то по крайней мере в большинстве районов мира [238б, стр. 731].


Рис. 10. Интенсивное отступание ледников группы Свартис (Норвегия) [356]. 1 — Энгабреен, 2 — Фондальсбреен.

Так, в Альпах, несмотря на кратковременные скачки, вроде имевших место в 1920—1925 гг., ледники, за которыми велись непрерывные наблюдения, на протяжении одного столетия и вплоть до недавнего времени отступали весьма заметно.


Рис. 11. Отступание ледника Нискуолли в Скалистых горах [171].

По оси ординат отложено расстояние от фронта ледника до моста Нискуолли (то место, где мост находится сейчас, еще до конца XIX в. было покрыто льдом, отсюда н отрицательные ординаты). Это впечатляющее отступание в настоящее время прекратилось, с 1963 г. ледник снова надвигается (письмо Гаррисона, 6 марта 1967 г.).

Еще в 50-х годах XX в. от 80 до 100% ледниковых языков Швейцарии, Франции, Италии и Австрии находились в стадии регрессии.[31]

Та же тенденция обнаруживается во Французских Пиренеях, где отступание, замеченное в конце XIX в., подтвердилось наблюдениями в XX в. Один пример: между 1912 и 1956 гг. ледник большого цирка в Портийоне исчез почти полностью [34а, стр. 28; 346; 53].

В скандинавских странах также с конца XIX в. наблюдается синхронное отступание ледников Йостедаль, Свартис и Фольгефонн (Норвегия) [319, стр. 151, 551] и ледника Ватнайёкудль (Исландия). Последний местами отступил с 1904 г. на один километр [116, стр. 250 и далее; 194, стр. 477]. С 1931 по 1947 г. Эйторсон смог измерить отступание 31 языка на этом леднике. Ледники на острове Ян-Майен отступают с 1880 г. [198, стр. 133—145; 197, стр. 167—182].

Современное отступание некоторых ледников на северо-востоке Гренландии свидетельствует, по-видимому, о снижении уровня самого материкового оледенения [398, стр. 704; 92; 238, стр. 728]. На Шпицбергене по крайней мере с 1897 (в 1906 и 1936 гг.) до 1962 г. отмечается непрерывное отступание, доходящее до 3 км (ледник Короля отступил на 3 км).

На севере Канады (Баффинова Земля) начиная с 60-х годов XIX в. ледники отступают на 3 м в год (конечные морены датируются там по возрасту колонии лишайников, диаметр которой увеличивается на 1 мм в год), и многие из ледников, достигавших в XIX в. моря, в настоящее время до него не доходят [167, стр. 22; 388][32]. Та же тенденция наблюдается в Британской Колумбии [390; 123; 253], на Аляске (многочисленные исследования морен, хорошо датированных по максимальному возрасту покрывающих их лесов, позволяют это утверждать) на протяжении более ста лет имело место, несмотря на незначительные колебания, очень интенсивное отступание (несколько километров) [221; 338; 73; 122; 179].

Льды на востоке (Кавказ, Курдистан, Гималаи) в XX в. оказались не более устойчивыми. Так, кавказский ледник Азау с 1849 (год, когда его наступание привело к гибели леса) по 1935 г. отступил на 1,5 км. Бобек и Эринк отмечали сходное отступание ледников в Анатолии и в горах Ближнего Востока. На юге Гималаев отмечены феноменальные отступания, соизмеримые с самим массивом: некоторые ледниковые языки на протяжении столетия отступали по 40 м в год [57, стр. 21—35; 58, стр. 126; 114, стр. 22; 6].

Экваториальные ледники Африки, расположенные в горах Кении, Килиманджаро, Рувензори, по данным всех авторов, находятся с начала XX столетия в стадии весьма быстрой регрессии. Спинк, а затем в 1963 г. Уитоу предсказали, что они исчезнут в течение 40—200 лет при условии, если сохранится современный темп отступания [394; 189; 348; 349; 66; 173]. Современное таяние льдов (начавшееся после максимума — приблизительно с 1850 г.) весьма отчетливо проявляется также в ледниках Перу и Чили [237; 238б, стр. 729—730; 94; 48; 393]. То же относится и к Новой Зеландии, где с 1866 по 1919 г. ледники отступили более чем на 2 км [281; 140; 170].

Только антарктическому материковому льду удалось, по-видимому, избежать до настоящего времени этой всемирной тенденции таяния льдов. Это, несомненно, объясняется тем, что огромная масса льда наделена чудовищной климатической инерцией 1259; 260; 238б, стр. 512, 513]. Такое объяснение относится и к горным ледникам, близко расположенным к этому материковому льду, например на юге Патагонии (ледники Фицроя) [237, стр. 168].

 Близится ли к концу эта мировая или квазимировая рецессия ледников, столь быстро определившаяся? Не достигла ли она стадии временного возобновления наступания, сопоставимого с наступанием в Альпах в 1920—1925 гг.? Это не исключено. На протяжении последних десяти лет были отмечены симптомы нового наступания[33]: на Шпицбергене — после 1957—1960 гг. и после 1962 г. (ледник Короля продвинулся вперед на 200 м с 1962 до 1964 г., в период же с 1897 по 1962 г. он отступил на 3 км); на севере Норвегии (ледник на Ян-Майене) — после 1954 г.; в Скалистых горах — с 1944 г. и особенно с 1952 г. и даже местами в Альпах (ледники Аржантьер и Боссон) с 1952—1955 гг. Имеем ли мы в данном случае дело просто с временных скачком (сравните с 1920 г.) или же это исходная точка нового векового колебания, направленного в обратную сторону? У историка, не имеющего особого отношения к подобным изысканиям, нет призвания к разрешению этой задачи. Во всяком случае, на сегодняшний день ледниковые языки еще далеко не достигли максимального положения, наблюдавшегося в XIX в.

Отступание мирового масштаба остается основным явлением. Основным для того, кто интересуется с исторической точки зрения флуктуациями ледников и лежащими в их основе колебаниями климата. Ибо современный эпизод длительного отступания раскрывает важный факт: альпийские ледники (и скандинавские) являются единственными или почти единственными ледниками, о которых есть документальные сведения с давних времен, как письменные, так и иконографические. Эти сведения являются единственными или почти единственными, на которые может полагаться историк, изучающий архивы. И вот в целом (последняя вековая рецессия, как и все большие ледниковые эпохи, это хорошо подтвердила) фаза изменений этих ледников такая же, как и остальных ледников мира, кроме антарктических. Изменения, разумеется, не абсолютно синхронны, но имеют достаточно общую тенденцию [238б, стр. 731]. Их эволюция в предшествующие времена, наступания и отступания большой длительности (поддающиеся изучению или открытию с помощью текстов и другими методами), относящиеся к средневековью, к XVII в., также являются, весьма вероятно, показателями гляцио-климатических явлений очень большого распространения, выходят за пределы Западноевропейского полуострова и составляют одно целое с гораздо более широкой ледниковой тенденцией — «межконтинентальной».

Третья характерная черта, существенная для нашего исследования: ледниковая флуктуация большой длительности обусловлена климатически. После Маурера, Альмана и Уоллена [256; 3, стр. 187; 4, стр. 120—123; 387] с еще большей убедительностью и точностью это снова показал Хойнкс [181; 182; 183; 238б, стр. 833—835] благодаря всевозможным метеорологическим и гляциологическим измерениям, проведенным в самой зоне ледников[34]. Он показал, что из двух статей баланса ледников (аккумуляция снега и абляция вследствие таяния), определяющих избыточность или дефицит массы льда, то есть в конечном итоге наступание или отступание ледника, именно абляция преобладала и обусловила отступание ледников за прошедшее столетие. Отступание ледников лишь частично зависит от ослабления зимних снегопадов. Главную роль играет увеличение длительности и интенсификация теплого сезона, сезона абляции, обусловленные изменениями циркуляции атмосферы и наиболее наглядно выражающиеся в повышении температуры (см. кривые). При этом имеет место, с одной стороны, более интенсивная и более длительная инсоляция, усиливающая поглощение ледником теплового излучения, поступающего от солнца и ясного неба; а с другой стороны, уменьшение повторяемости вторжений холодного воздуха летом (вторжения обусловливают летние снегопады, которые должны увеличивать альбедо ледника и тем самым уменьшать таяние). Эти два важных фактора на протяжении длительного времени соответствуют хорошо известному повышению температур как летних, так и (в силу закона образования средних температур) средних годовых. И именно конкретные сочетания этих факторов определяют изменения теплового баланса ледников, приводящие к понижению их профиля и к отступанию языков. Сложную связь имеет медленное повышение средних температур с прогрессирующим разрушением ледниковой системы.

Эти тонкие выводы Хойнкса подтверждаются явлениями, которые вполне можно отнести к разряду макромасштабных. Действительно, на протяжении последних 50 лет флуктуации температуры и флуктуации ледников в различных районах земного шара в общем, как правило, совпадали. Они «совпадали по фазе». Оправдывается простое правило (разумеется, слишком простое, чтобы дать обобщающее описание явлений, но достаточное для того, чтобы указать тенденцию [238б, стр. 833—835; 364, стр. 45—46]): при повышении средних температур ледники в основном уменьшаются. Были проведены исследования баланса ледников и составлены графики. Графики показывают реакцию концов ледниковых языков на изменение климатических условий и главным образом на повышение летних температур в области абляции (со сдвигом или с инерцией[35] в несколько лет, три, шесть, десять или еще больше, необходимых, чтобы передать импульс «от вершины к основанию»). Исследования подобного типа проводили Хэфели и Цингг в Альпах, Каллендер в Норвегии, Чижов и Корякин на Новой Земле, Метьюс в Британской Колумбии, Маркус и Хёйсер на Аляске [166; 400; 67; 253; 179]. Указываемая ими корреляция[36] обязательно должна основываться на объяснении и экспериментальной проверке, предложенной, например, Хойнксом. Объяснение и проверка окончательно подтверждают корреляцию между температурой, абляцией и состоянием ледников и делают ее пригодной для использования историком.

И действительно, для периодов большой длительности корреляция «температура—ледники» установлена как путем отдельных исследований, так и с помощью глобального подхода к двум явлениям — А и Б. Общее отступание ледников (Б) после максимума 50-х годов XIX в. подтверждено настоящим плебисцитом гляциологов всех стран, и оно полностью соответствует общему повышению температур (А) после минимума, отмеченного в 50-е годы XIX в. Причем повышение температур показывают десятки локальных рядов, обобщенные в работах Каллендера, Виллетта и особенно Митчелла. Соответствие решающее, оно разом обобщает исследования отдельных явлений и придает им историческое значение. Ледники — это великие свидетели процессов большой длительности.

Но ледники — не только интеграторы климата. Они, кроме того, могут давать информацию об общем характере метеорологических условий[37] своей эпохи. В этом смысле они обладают силой увеличения. Ибо измеримые и поддающиеся датированию колебания концов их языков являются для периода большой длительности колебаниями очень большого размаха: эффект (ледниковый) если и не соразмерен причине (климатической), то по крайней мере показателен для нее.

В самом деле, возьмем современную флуктуацию климата. Как уже отмечалось, потепление, если судить по средним годовым значениям температуры, имеет предел порядка 1°С. В Альпах за период от 1900—1919 до 1920—1939 гг. оно составляло от 0,6 до 0,8°F.[38] Это интересно, это показательно, но это довольно малая величина.

И вот такая скромная флуктуация (которая, правда, продолжает предшествующее потепление, уже обратившее на себя внимание) означает для ледников внушительную потерю вещества. Об этом можно судить по подсчетам недавнего сокращения поверхности ледников.[39]

Уже Мужен, работая со штабными картами 1853 и 1896 гг., а также с кадастрами 1885—1910 гг., обратил внимание на значительное сокращение ледников с середины и до конца XIX в.: площадь ледников в бассейне Изера в Тарантезе с 10 316 га в 1863 г. уменьшилась до 8664 га в 1899—1910 гг., ледники, частично обследованные в девяти долинах бассейна Арка, изменили свою площадь с 10 223 до 8636 га. Площадь 195 ледников в Дофине и Провансе (массивы Галибье, Гранд-Рус, Мориенн, Белльдонн, Мон-де-Лан, Пельву и др.) уменьшилась с 18 244 до 15 921 га [266д].

Отступание фронтов, сокращение площади ледников, уменьшение толщины льда достигли в XX столетии весьма значительных величин: в Верхнем Арке и в Верхнем Изере 77 ледников, известных по картам и аэрофотосъемкам, потеряли между 1900 и 1956 гг. 36% своей площади [382, стр. 313—329]. В бассейне Романш (Гранд-Рус, Уазан и т. д.) с 1925—1930 по 1952 г. эти потери достигли 15% [343]. При сравнении карт за 1860—1890 и 1927— 1940 гг. можно установить, что приблизительно за шестьдесят лет поверхность ледников Швейцарии (приведенная к горизонтальной плоскости) уменьшилась на площадь, равную площади Женевского озера: действительно, ледники потеряли 469 кв. км, то есть 25,3% поверхности 1875 г. (1853 кв. км), что составляет 3,3% территории Швейцарии [264, стр. 315—316].

В Восточных (Австрийских) Альпах 8 типичных ледников, изученных фотограмметрическими методами, между 1920 и 1950 гг. потеряли 17% своей площади, одновременно средние годовые температуры здесь за это же время повысились на 0,5°С [124, стр. 306—315]. Мощность этих ледников уменьшалась в среднем на 0,6 м за год в период с 1856 по 1890 г., на 0,3 м за год — с 1890 по 1920 г. и на 0,6 м — с 1920 по 1950 г., или на 0,49 м в год на протяжении 94 лет (50 м за столетие).

В Италии 192 ледника Валле-д’Аоста занимали 236,91 кв. км по картам 1884 г., 221,82 кв. км — по картам 1929 г., 190,54 кв. км— по картам 1952 г., то есть за время жизни двух поколений площадь их сократилась примерно на 20% [373, стр. 10].

Из 239 ломбардских ледников, изученных с начала XX столетия, между 1905 и 1953 гг. исчезло 66, а оставшиеся ледники значительно отступили [278].

Подобными статистическими данными о ледниках за пределами Альп мы располагаем довольно редко; но когда такие данные есть, то они указывают на сокращения ледников, эквивалентные указанным выше или даже превышающие их. Так, ледники Британской Колумбии потеряли между 1911 и 1947 гг. от 4 до 8 и даже до 12 футов своей толщины за год. Один из них занимал площадь 56 400 тыс. кв. футов в 1860 г., 48 800 тыс. кв. футов — в 1928 г. и лишь 34 300 тыс. кв. футов — в 1947 г., что составляет потерю 40% площади на протяжении жизни трех поколений [253].

Таким образом, ледник хорошо проявляет эффект усиления. Его «тепловой баланс», само собой разумеется, не является точным балансом, но для большого периода времени — это по меньшей мере сверхчувствительный баланс, убедительно подчеркивающий вековую климатическую тенденцию. Судите сами: долговременные флуктуации температуры (1°С за одно столетие)[40] часто очень трудно выявить (из-за малой амплитуды, возможных изменений приборов, местоположения станций, сроков и методов наблюдений). Однако в горной местности они проявляются, отражаясь на ледниковых системах и вызывая что-то вроде «сокращения шагреневой кожи» — уменьшение их поверхности на 15—30%; они проявляются также в отступании фронтов, оставляющих за собой на сотни метров или более весьма внушительные моренные валы. Эффект усиления их воздействия таков, что он бросается в глаза даже туристу, меньше всего осведомленному о долговременных флуктуациях в показаниях термометра.

И еще один момент, который может быть использован историком: для флуктуаций ледников длительностью в столетие и с большой амплитудой легко устанавливаются реперные точки.

В течение одного столетия, с 1860 по 1960 г., по очень точным данным Мужена, Валло и Буверо[41] и также управления водного и лесного хозяйства, фронт ледника Мер-де-Гляс отступил, если рассматривать его проекцию на горизонтальную плоскость, на 1100 м, фронт ледника Аржантьер — на 970 м, фронт ледника Боссов за шестьдесят лет (1895—1955 гг.) отступил на 600 м. Подобные движения языков ледника создают весьма существенные изменения и контрасты в деталях ландшафтов. Простое сопоставление карт, гравюр, текстов, старинных и современных фотографий позволяет (при необходимом критическом подходе) выявить эти контрасты. Я приведу лишь два примера, к которым я еще буду несколько раз возвращаться. Так, ландшафт нижней долины Шамони коренным образом изменился в XX столетии с того времени, когда ледник Мер-де-Гляс отступил и перестал быть видимым с «равнины» Арва. Разве не совершенно иначе стала выглядеть маленькая территория Глеч с тех пор, как Ронский ледник не распространяется на нее своей внушительной массой в виде ледяной шапки, «раковины», или pecten[42]? Он отступил на целый километр и укрылся со своим заострившимся языком в узких горловинах выше по течению, и над ним с тех пор возвышается отель «Бельведер».[43] Картины и гравюры XVIII столетия, фотографии 50-х годов XIX в. весьма красноречиво свидетельствуют об этих контрастах, как только начинаешь сравнивать их с положением в 50-х и 60-х годах XX в.


Рис. 12-А. Положение Ронского ледника в 1874—1882 гг.

Основанием для эскиза послужила обзорная карта Ронского ледника, составленная Хельдом. На этой очень точной (1:25 000) карте [262} Ронский ледник, образуя pecten, преграждает долину Муттбаха. Фронт ледника находится приблизительно в 800 м от деревни Глеч. Если этот эскиз, как и рис. 12Б—12Л, сопоставить с иллюстрациями VII—X, то можно представить, как изменялся Ронский ледник с 1705 до 1966 г. Интерес представляют также иконография в [262] и гравюры из коллекции Зейлер, хранящейся в отеле (Глеч), и… сам ледник.


Рис. 12-Б. Положение Ронского ледника в 1955 г.

Основанием для эскиза послужила топографическая карта Швейцарии (1:50 000. «Готард»). Ронский ледник значительно отступил с 1874—1882 гг. и уже не преграждает долину Муттбах. Его конец расположен в 1850 м от деревни Глеч.


Рис. 12-В. Pecten Ронского ледника, преграждающий Муттбах и распространяющийся на долину Глеч.

Рисунок Бессона с натуры, сделанный в 1777 г., гравированный Нике-сыном и опубликованный Цурлаубеном [402], [262]. Муттбах — первый тальвег в правой части рисунка.


Рис. 12-Г. Ронский ледник, распространяющийся в виде pecten в долину Глеч и преграждающий долину Муттбах. По акварели Конрада Эшера ван дер Линка, выполненной в 1794 г. [262].


Рис. 12-Д. Pecten Ронского ледника, преграждающий долину Муттбах и распространяющийся на долину Глеч в 1848 г. Перед ледником (слева) концентрические морены, как память о наступаниях ледника в XVII в. и 1820 г. Акварель Хогарда, выполненная 16 августа 1848 г. [262].


Рис. 12-Е. Гигантский pecten Ронского ледника, преграждающий долину Муттбах в августе 1849 г.

Дагерротип той эпохи, взятый Меркантоном из выпущенной в 1893 г. книги «Памяти Даниеля Дольфуса-Оссе» [262].


Рис. 12-Ж. Pecten Ронского ледника, преграждающий долину Муттбах и распространяющийся в долину Глеч в 1850 г. Старинная гравюра, автор которой, вероятно, воспользовался «дагерротипом».


Рис. 12-З. Ронский ледник в 1870 г. (фотография).

Pecten, преграждающий долину Муттбах, все еще существует. На переднем плане (слева) отель «Ронский ледник» [262].


Рис. 12-И. Pecten Ронского ледника в 1874 г. начал глубокое отступание, он сплющился, но все еще существует. Фотография сделана с левого склона Ронской долины [262].


Рис. 12-К. Фотография 1899 г.

Снято со склонов Ленгисграта, левый берег. Ронский ледник заметно отступил. Он покрывает еще толстым языком скалистый ригель, но впервые в истории своей иконографии (с 1705 г.) не преграждает долину Муттбах н не распространяется в виде pecten в долину Глеч [262].


Рис. 12-Л. Ронский ледник в 50-е годы XX в.

Следует обратить внимание (сравните с предыдущими изображениями и особенно за 1870 г.) на полную ликвидацию pecten и подъем ледника, отныне нависающего над серединой скалистого ригеля. Этот процесс будет еще более четко выражен в 1966 г. (рис. X).

Современное вековое потепление оказывает воздействие не только на ледники, но и на океаны: начиная с 80-х годов XIX в. температура их повышается, хотя и весьма неравномерно [316]. Потепление увеличивает общий объем океанов, так как в конечном итоге в них вливаются воды, образующиеся в результате таяния ледников.

Океаническое потепление представляет большой интерес само по себе, однако историк климата не может считать его центральным пунктом своих исследований (за исключением, может быть, исследований, связанных с рыбным промыслом). По историческим данным, полученным до 80-х годов XIX в., до систематических судовых наблюдений, очевидно, невозможно определить температуры океанических зон. И лишь для некоторых прибрежных районов Исландии и Гренландии благодаря более или менее интенсивному дрейфу льдов можно использовать отдельные старинные указания [204], с трудом укладывающиеся в ряды [375].

Что касается «эвстатического», или «гляцио-эвстатического» процесса, при котором повышение уровня моря соответствует отступанию ледников, то он, по-видимому, с самого начала является более важным для исторического исследования. Сколько текстов, подкрепленных иконографическими или археологическими данными, рассказывает нам об осевших в море берегах, о давно исчезнувших прибрежных поселениях, поглощенных морем, и об эффектных поднятиях новой суши. Армориканские берега у Мон-Сен-Мишель на острове Ре, лангедокские берега, Эг-Морт у Пор-Вандра предоставляют значительное количество данных и преданий такого рода [88; 114; 272]. Весьма заманчиво принять в расчет тектонические и эвстатические явления и связать исторические факты, часто очень хорошо датированные, с колебаниями уровня моря, с таянием (или, наоборот, с ростом) ледников и в конечном счете с флуктуациями климата.

Но и здесь историк должен исходить из современного положения вещей (в данном случае из наличия современной эвстатической флуктуации) и смотреть, предоставляет ли оно приемлемые и удовлетворительные модели для изучения более отдаленного прошлого.

Современное гляцио-эвстатическое (следовательно, климатически обусловленное) повышение уровня океанов, происходящее на протяжении одного столетия, установлено по данным мареографов, разбросанных почти по всему миру. Специалисты считают, что за счет таяния ледников уровень повышается на 1—2 мм в год, максимум на 3 мм [164, стр. 439; 59; 278; 368], что составляет от 10 до 20 см за столетие. По таким точным приборам, как мареографы, это хоть и слабое изменение легко обнаруживается. Однако для историка, который по необходимости работает с документами, дающими лишь приблизительные сведения за период, предшествующий периоду систематических наблюдений на морях, этого все же слишком мало. Вековым колебаниям ледниковых языков, колебаниям, амплитуда которых по горизонтали, измеряется километрами, противопоставляются эвстатические и вертикальные колебания уровня моря, вызванные в конечном счете теми же отдаленными причинами, но колебания эти в течение века выражаются лишь в дециметрах (10—20 см). Может ли историк, даже вооруженный «удвоенным дециметром», по явным изменениям уровня моря, имевшим некогда место, или по смещению берегов в историческую эпоху определить, что относится к тектоническим, часто важным, процессам и что можно законно отнести к эвстатическим флуктуациям гляцио-климатического происхождения?

Подведем итог. Вековые колебания ледников в определенных пределах доступны для изучения историку. Зато гляцио-эвстатические океанические колебания остаются предметом традиционных наук о Природе. И пока они не дадут более полной информации, они не могут интересовать историка, работающего с архивами в области истории климата.



Поделиться книгой:

На главную
Назад