Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - Игорь Сергеевич Дмитриев на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

(4.28)

должно обеспечивать минимальность величины J(2). В силу равенства

(4.29)

и инвариантности первой суммы в правой части этого равенства относительно преобразования (4.28) минимум величины J(2) соответствует максимуму

(4.30)

J(1) характеризует в среднем плотность орбиталей fi в смысле интеграла

(4.31)

определяющего энергию отталкивания двух электронов, находящихся в одном и том же i-м одноэлектронном состоянии, заданном орбиталью fi. Из равенства

(4.32)

и инвариантности следует далее, что минимум J(2) и максимум J(1) обеспечивают минимальное значение суммы обменных двухэлектронных интегралов:

(4.33)

На возможность использования энергии обменного взаимодействия К в качестве критерия локализации МО указывали Леннард-Джонс и Попл. Минимизация К позволяет максимально приблизить выражение для энергии электронного взаимодействия к виду, соответствующему аппроксимации многоэлектронной функции простым произведением спин-орбиталей. В этом случае каждому электрону, точнее каждой паре электронов, можно приписать определенную локализованную орбиталь. Такое соответствие между электронами и орбиталями нарушается при антисимметризации N-электронной функции-произведения, т. е при учете неразличимости электронов и связанной с ней антисимметричностью точной многоэлектронной функции относительно перестановок электронов.

Об уменьшении при локализации МО обменной энергии электронного взаимодействия, а также об увеличении J(1) и уменьшении J(2) по сравнению со значениями, соответствующими каноническим МО, можно судить по данным табл. 4, полученным в работе [82] для гидридов бора.

Таблица 4. J(1), J(2) и K для исходных канонических и локализованных МО

В табл. 5 приведены результаты Эдмистона и Рюденберга по локализации МО в молекулах N2, СО и BF. Первая из этих молекул характеризуется симметрией D∞h, гетеронуклеарные СО и BF — симметрией C∞ν. Их канонические МО должны поэтому классифицироваться на σ- и π-орбитали. Каждая из рассматриваемых изоэлектронных молекул содержит десять электронов в σ-системе и четыре — в π-системе. Четыре из десяти σ-электронов принадлежат атомным остовам в том смысле, что описываются МО (iA), локализованными на внутренних (остовных) σ-оболочках. Эти орбитали практически идентичны атомным 1s-орбиталям. Следующие четыре σ-электрона описываются локализованными МО (lА), представляющими неподеленные электронные пары атомов. Оставшиеся два электрона должны относиться, очевидно, к связывающей σ-орбитали. Однако локализация МО по методу Эдмистона и Рюденберга приводит к связывающим МО иной симметрии. Эти локализованные МО (bi) не могут быть отнесены ни к σ-, ни к π-типу. Они образуют систему трех эквивалентных, так называемых банановых МО, переводящихся друг в друга преобразованиями группы С и определяемых с точностью до произвольного поворота относительно молекулярной оси. В ряду молекул N2, CO, BF характер трех эквивалентных связывающих МО bi монотонно меняется от строго ковалентного для N2 до существенно поляризованного в направлении атома фтора для молекулы BF. В последнем случае они подобны неподеленным парам атома фтора.

Таблица 5. Орбитали Эдмистона-Рюденберга в молекулах N2, CO и BF

Практическая реализация метода Эдмистона-Рюденберга предполагает использование формализма самосогласованного поля и вычисление большого числа двухэлектронных интегралов, что представляет довольно сложную математическую задачу. Количество таких интегралов, как и время, необходимое для максимизации J(1) (или минимизации J(2) и К), очень быстро растет с увеличением числа электронов в системе и числа базисных АО, используемых для представления МО.

Следует отметить также, что метод Эдмистона и Рюденберга, строго говоря, не гарантирует соответствия между локализованными МО и отдельными атомами или связями. Впрочем, это обстоятельство может рассматриваться не только как недостаток, но и как достоинство метода, поскольку он допускает в принципе представление МО в базисе, существенно отличающемся от многоцентрового базиса АО.

В вычислительном отношении более удобным, чем метод Эдмистона-Рюденберга, является метод Бойса [31]. В качестве критерия, определяющего степень локализации МО, в этом методе используется сумма квадратов расстояний (Ri) между центрами тяжести орбиталей:

(4.34)

где

(4.35)

Локализованные по Бойсу МО характеризуются максимальным разделением в пространстве по критерию В и одновременно минимальными среднеквадратическими радиусами, точнее минимальным значением суммы их квадратов:

(4.36)

Недостатком метода Бойса является то, что он не обеспечивает эффективного разделения валентных и остовных АО. Например, 1s- и 2s-орбитали сферически-симметричны и никаким преобразованием нельзя изменить расстояния между их центрами тяжести (которое всегда равно нулю). С другой стороны, смешение остовной 1s-орбитали с валентными np-орбиталями должно приводить к увеличению расстояния от нулевого до некоторого конечного (для гибридных АО) значения. Максимуму значения В при этом должна соответствовать тетраэдрическая гибридизация 1s- и nр-АО. В действительности наряду с остовной 1s-орбиталью следует принимать во внимание и валентную ns-AO. Именно она должна смешиваться с другими валентными АО. Но с учетом сказанного выше ясно, что метод Бойса может приводить к завышенному вкладу остовных АО в связывающие МО.

Метод проецирования. Метод проецирования, предложенный в работах Полака [73] и позднее развитый Роби [74], основан на том, что одноэлектронная матрица плотности ρ1(x|x') в однодетерминантном приближении является ядром оператора проектирования на подпространство занятых молекулярных спин-орбиталей. Поэтому для любой нормированной спин-орбитали ψ проекционная норма

(4.37)

удовлетворяет неравенству

(4.38)

причем если спин-орбиталь ψ целиком принадлежит подпространству занятых молекулярных спин-орбиталей, и если спин-орбиталь ψ ортогональна к этому подпространству.

Следуя Полаку, локализованную на атоме А МО, описывающую неподеленную электронную пару или орбиталь внутренней оболочки атома, можно определять как линейную комбинацию орбиталей атома А (т. е. как гибридную АО этого атома):

(4.39)

максимизирующую проекционную норму . Если бесспиновая одноэлектронная матрица плотности ρ(r|r') представлена в базисе АО g матрицей

(4.40)

и базис g характеризуется матрицей перекрывания S, причем S'a = 0 для а, а' ∈ А, то столбец Ua, представляющий искомую гибридную АО ha, является собственным вектором матрицы Q(A) образуемой матричными элементами (SPS)aa' ∈ А, и этот собственный вектор отвечает максимальному собственному значению nа. Когда последнее равно двум, гибридная АО ha будет в точности совпадать с естественной МО, описывающей неподеленную электронную пару; когда na ≈ 2, гибридная АО ha будет аппроксимировать такую орбиталь.

Двух-, трех- ... и K-центровые МО, локализованные на атомных группах (связях) G = (A1,..., AK) и представленные линейными комбинациями вида

(4.41)

определяются в методе проецирования аналогичным образом, т. е. посредством диагонализации матриц Q(G) при условии ортонормированности

(4.42)

Согласно работам [73, 74], процедура локализации МО осуществляется в следующей последовательности:

1) сначала определяются одноцентровые , локализованные на остовных и валентных оболочках отдельных атомов;

2) одноцентровые исключаются из исходного базиса преобразованием

(4.43)

и канонической ортонормировкой линейно-зависимого набора орбиталей g';

3) в полученном ортонормированием базисе, включающем меньшее число орбиталей, чем исходный базис АО g, определяются двухцентровые МО ;

4) если число найденных и в сумме отлично от числа всех занятых канонических МО, аналогичным образом определяются многоцентровые последовательно для К = 3, 4,..., пока число локализованных МО не сравняется с числом занятых канонических МО.

Таблица 6. Одноэлектронная матрица плотности для молекулы метана, представленная в ортогонализованном (по Лёвдину) базису АО

Следует отметить, однако, что такую последовательность построения локализованных МО не всегда можно считать оправданной. Например, нет оснований для поиска локализованных трехцентровых МО диборана в подпространстве занятых МО, более узком, чем рассматриваемое при построении двухцентровых МО этой молекулы.

Существенным недостатком метода проектирования является то, что он приводит к неортогональным наборам локализованных МО. В частности, орбиталь hа, принадлежащая атому А и перекрывающаяся с орбиталью hb, атома В, принадлежит отчасти и последнему атому, а перекрывание МО l, локализованной на связи АВ, и МО l локализованной на связи АС, означает, что l и делокализованы на связи АС и АВ соответственно. В работах [73, 74] предлагалось ортогонализовывать наборы по методу Лёвдина [62]. Однако локализация получаемых таким образом МО не будет оптимальной в смысле максимума проекционной нормы . Поэтому метод проектирования удобно применять в тех случаях, когда требуется выделить лишь одну локализованную МО, например МО, реализующую донорно-акцепторную связь в аддукте Н3В. NH3.

Представляется разумным формулировать метод проектирования в ортогонализованном по Лёвдину многоцентровом базисе АО, орбитали которого могут рассматриваться как "модифицированные АО", представляющие атомы в химическом соединении. К такому базису относятся фактически результаты полуэмпирических расчетов МО в приближении полного пренебрежения дифференциальным перекрыванием. Следует отметить, что ортогонализация многоцентрового базиса АО g обеспечивает ортогональность гибридных АО неподеленных электронных пар, но двухцентровые или многоцентровые локализованные МО, определяемые методом проектирования, остаются при этом неортогональными, если связиi на которых они локализованы, имеют общие атомы.

Рассмотрим теперь в качестве примера, иллюстрирующего метод проектирования, данные по локализации МО и гибридизации АО в молекуле метана, полученные нами на основе расчетов в приближении полного пренебрежения дифференциальным перекрыванием. В табл. 6 приведена одноэлектронная матрица плотности Р для молекулы метана, равновесная геометрия и ориентация в пространстве которой определяются данными табл. 7. Вычислим двухцентровую МО, локализованную на связи С-H1. Для этого выделим из матрицы Р блок, соответствующий орбиталям атома углерода и атома водорода H1:

и приведем его унитарным преобразованием к диагональному виду

(4.44)

Таблица 7. Декартовы координаты атомов в молекуле метана,Ао

Собственные значения nl равны 2,000; 1,150; 1,009; 1,009; 0,000. Таким образом, одна из одноцентровых орбиталей, представленная в базисе АО

столбцом

оказывается естественной МО, строго локализованной на связи С-Н1 и заселенной двумя электронами. Эту локализованную МО можно записать в виде следующей линейной комбинации базисных атомных орбиталей:

или

где

гибридная АО углерода, ориентированная вдоль связи С-Н1, Существенно, что s-характер этой гибридной орбитали равен 33%, что соответствует sр2-гибридизации атома углерода и явно противоречит распространенному в химической литературе мнению о sp3-гибридизации углерода в метане и других насыщенных соединениях. Такое противоречие является следствием того что метод проектирования приводит к неортогональным наборам локализованных МО и гибридных АО, в то время как в теоретической химии обычно используется понятие об ортогональных орбиталях. Ортогонализация неортогонального набора четыоех эквивалентных гибридных АО hiC по методу Лёвдина приводит в рассматриваемом случае (СН4) к четырем ортогональным эквивалентным гибридным АО, которые идентичны гибридным АО углерода в метане, полученным из соображений симметрии. Вместе с тем следует отметить, что завышенный s-характер неортогональных гибридных АО углерода не является случайным. Как повышенная заселенность 2s-орбитали углерода в метане (1,2 против 1,0 для каждой из 2р-орбиталеЙ) он отражает "энергетическую предпочтительность" 2s-орбитали углерода по сравнению с его 2р-орбиталыо. В связи с этим уместно привести потенциалы ионизации свободного, т. е. химически не связанного, атома углерода, соответствующие его валентным орбиталям. Для 2s22p2-конфигурации I2s = 16,6 эВ и I2p = 12 4 эВ; для 2s2p3-конфигурации I2s = 24,7 эВ и I2p = 12,4 эВ.

Существенно для понимания особенностей метода проектирования то, что в отличие от обсуждавшихся ранее методов этот метод не приводит к смешиванию МО σ- и π-типа локализованных на кратных связях, например, в молекулах N2, CO, BF, C2H2 и C4H4. Однако вычисленные методом проецирования локализованные МО σ- и π-типа могут быть переведены дополнительным унитарным преобразованием в эквивалентные банановые МО аналогичные тем, которые были получены Эдмистоном и Рюденбергом (см. табл. 4.3).

Метод эталонной матрицы плотности. Метод эталонной матрицы плотности был предложен в 1968 г. Мак-Вини и Дель Ре [63] и получил дальнейшее развитие в работе [22].

Следуя Мак-Вини и Дель Ре, допустим, что МО могут быть локализованы в орбитали неподеленных и связывающих электронных пари, возможно, в вакантные орбитали некоторых атомов. Это означает, что каждую локализованную МО можно представить либо гибридной атомной орбиталью (ГАО), либо линейной комбинацией двух ГАО, относящихся к непосредственно связанной паре атомов. Будем предполагать пока, что заселенности этих гибридных АО равны, т. е. связи строго ковалентны. При учете поляризации двухцентровых локализованных связей орбитали неподеленных электронных пар и вакантные АО следовало бы рассматривать как случай предельной поляризации и выделять его особо не имело бы смысла. В силу сделанных допущений одноэлектронная матрица плотности в ортонормированном по методу Лёвдина многоцентровом базисе ГАО состоит из целых чисел 0, 1,2, причем каждой связывающей электронной пара соответствует блок , неподеленной электронной паре — диагональный элемент 2 и остальные элементы матрицы плотности равны нулю. Такая идеализированная матрица плотности называется эталонной.

Коэффициенты гибридизации, образующие матрицу

(4.45)

где А, В, С, ...- атомы в молекуле и одновременно соответствующие им наборы АО, определялись Мак-Вини и Дель Ре из условия минимума суммы орбитальных энергий

(4.46)

b предположении, что матрица Фока F(P) фиксирована и не меняется при преобразовании U. Однако Eoрб составляет лишь часть полной электронной энергии Eэл, и то обстоятельство, что изменение δEэл совпадает с δEорб в линейном по δР приближении, не может служить обоснованием критерия Мак-Вини и Дель Ре, так как величина Еэл должна быть стационарной относительно варьирования матрицы плотности, и определяюдими для ее изменения следует считать приближения более высокого порядка. В то же время вследствие зависимости F от матрицы плотности и, следовательно, от U точная минимизация Еэл относительно U является довольно сложной задачей.

Более простым в вычислительном отношении является метод, основанный на минимизации (посредством гибридизации АО) :реднеквадратического отклонения заданной в гибридном базисе матрицы плотности Ph от эталонной [22]. Для его реализации не требуется решения задачи самосогласованного поля при определении локализованных МО и соответствующих им ГАО, если эта задача уже решена в целях определения канонических МО или матрицы плотности. Основанием для такого выбора критерия оптимальности гибридных АО может служить то, что полная электронная энергия молекулы стационарна относительно малых вариаций одноэлектронной матрицы плотности

(4.47)

т.е.

(4.48)

при условии, что исходная матрица плотности Р вычислена в приближении самосогласованного поля и δР — достаточно малая (в смысле евклидовой нормы ||δP||) эрмитова матрица, определяемая формулой (4.47).

В качестве примера, иллюстрирующего формализм метода эталонной матрицы плотности, рассмотрим локализацию МО σ-типа в молекуле HCN. Предполагая, что в этой молекуле имеется одна неподеленная электронная пара, две остовные орбитали и две двухцентровые орбитали σ-типа, реализующие ковал ентные связи НС и CN, эталонную матрицу плотности записывают в виде

Исходная матрица плотности, вычисленная по методу МО, в ортонормированном базисе сферических АО

существенно отличается от :

Однако преобразованием гибридизации АО базиса g:

(4.49)

и его ортогонализацией:



Поделиться книгой:

На главную
Назад