Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Элементы: замечательный сон профессора Менделеева - Аркадий Искандерович Курамшин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

39. Иттрий

Ещё три десятка лет назад даже немногие химики могли рассказать что-то интересное про иттрий. Глядя на Периодическую систему, можно было сказать, что иттрий находится в побочной подгруппе третьей группы между скандием и лантаном. Кто-то мог вспомнить, что иттрий наряду с иттербием, эрбием и тербием назван в честь небольшого шведского города Иттербю, в окрестностях которого была обнаружена руда иттербит (помимо прочего из неё выделили скандий, о чем речь шла выше).

Кто-то мог припомнить историю открытия иттрия — то, как финский химик Юхан Гадолин выделил из иттербита оксид элемента, который, как показал позже Карл Мосандер, являлся смесью оксидов иттрия, эрбия и тербия. Металлический иттрий, содержащий примеси эрбия, тербия и других лантаноидов, впервые был получен в 1828 году Фридрихом Велером. Близость свойств и истекающая из этого сложность разделения редкоземельных элементов и была причиной того, что долгое время эти элементы практически не привлекали внимания учёных.

Ситуация изменилась в 1986 году, когда работавшие в IBM Георг Бердноц и Карл Мюллер обнаружили, что оксид лантана-бария-меди (La5−xCu5O5(3−y)) становится сверхпроводимым при рекордно высокой температуре — 35 Кельвинах (Z. Phys. B., 1986, 64 (1): 189–193). Говоря проще, при –238 °C электрическое сопротивление образца пропадало. В 1987 году Бердноц и Мюллер получили за своё открытие Нобелевскую премию по физике, что простимулировало других ученых поискать искать другие высокотемпературные сверхпроводники среди соединений других лантаноидов.

В 1987 году Мо-Куен Ву и Пол Чу, объединив усилия своих исследовательских групп из Университетов Алабамы и Хьюстона, выяснили, что оксид иттрия-бария-меди (YBa2Cu3O7, часто его упоминают просто как YBCO) становится сверхпроводимым ещё при более высокой температуре — 95 Кельвинах (–178 °C) (Physical Review Letters., 1987, 58 (9): 908–910).

С общежитейской точки зрения и –238 °C, и –178 °C сложно назвать высокими температурами, однако открытие Ву и Чу означало, что для поддержания сверхпроводящего состояния YBCO достаточно охлаждать его жидким азотом, в то время, как для перевода оксида лантана-бария-меди в сверхпроводящее состояние нужно было охлаждать его более дорогим жидкими гелием. Конечно, главная цель всех исследователей, занимающихся поиском сверхпроводящих материалов — вещество, которое сохраняло бы сверхпроводящее состояние хотя бы при комнатной температуре, но пока эта цель недостижима.

Применение YBCO могло бы значительно удешевить ряд современных технологий, основанных на применении сверхпроводимых материалов, например, магниты МРТ можно было бы охлаждать жидким азотом, что понизило бы расходы на эксплуатацию этих аппаратов, но внедрению этого соединения иттрия в повседневные технологии препятствует ряд причин. Во-первых, для того, чтобы потерять электрическое сопротивление при 95 K, в YBCO должно приходиться чуть меньше семи молей атомов кислорода на один моль атомов иттрия, а такое соотношение не так просто достичь. Во-вторых, YBCO жёсткий и хрупкий, а для практического применения было бы желательно его применение в виде гибких плёнок или эластичных проводов Исследователи пытаются разработать сверхпроводящие гибкие и эластичные композиты, содержащие YBCO, но пока значительных успехов в этой области не достигнуто.

Другая область применения иттрия — синтетические минералы, наиболее известным из которых является иттрий-алюминиевый гранат (Y3Al5O12, YAG; Journal of Materials Science., 2000, 35: 713–717). Твердость такого «граната» велика, составляет 8.5 единиц по шкале Мооса, что позволяет использовать YAG как имитацию алмазов для ювелирных изделий. Если же в иттрий-алюминиевом гранате заменить около процента атомов иттрия на неодим, получится рабочее тело для лазера, излучающего в видимой области, YAG с эрбием позволяет получить инфракрасный лазер. Иттрий-алюминиевый гранат, в который ввели трёхвалентный церий, используется в конструкции белых светодиодов.

В настоящее время производные иттрия также применяются в топливных ячейках, вырабатывающих энергию. Небольшое количество оксида иттрия добавляют к оксиду циркония, получая керамический материал «иттрий-стабилизированный оксид циркония» (Acta Materialia., 2009, 57 (18): 5480–5490). Необычное свойство этого сорта керамики в том, что она может проводить оксид-анионы, что даёт возможность применять её и в топливных генераторах электрического тока, и в системе контроля выхлопных газов двигателей внутреннего сгорания, определяющей содержание кислорода в выхлопе и оптимизирующей подачу воздуха в двигатель.

40. Цирконий

Наверное, большая часть населения нашей страны (и других стран постсоветского пространства) узнала о существовании циркония в 1990-е годы, когда воодушевлённые рекламой, вложенной в уста любимых артистов: «Ношу браслет, и всякое давление пропало!», люди, получившие самое лучшее советское образование, массово заказывали «лечебные циркониевые браслеты».

На деле, изделия из циркония стали популярными в изготовлении ювелирных изделий гораздо ранее — с середины 1970-х годов. Речь, правда, не идёт о металлическом цирконии, а о синтетической кубической форме диоксида циркония (ZrO2), технология выращивания которой была разработана в Физическом институте Академии наук СССР (Успехи химии, 1978, Том 47, Номер 3, Страницы 385–427). По сокращённому названию института (ФИАН) эти камни были названы «фианитами». За рубежом искусственно синтезированный оксид циркония называют цирконитом.

Название элемента циркония происходит от персидского слова «заргун» — название золотисто-жёлтого камня, известного с античных времен как «циркон» — ортосиликата циркония ZrSiO4. Кроме золотистых цирконов известны и сероватые, и розовые, и красные, и бесцветные формы.

В средние века интенсивно преломлявшие свет бесцветные кристаллы циркона ошибочно принимали за отличающиеся меньшей твёрдостью «алмазы второго сорта», украшали ими ювелирные изделия и даже властные регалии. То, что циркон не имеет отношение к алмазам, стало ясно в 1789 году, когда немецкий химик Мартин Клапрот проанализировал один из таких камней и сделал вывод о наличии в нём нового элемента, который и назвал «цирконием» по названию минерала. Металлический цирконий был получен спустя 35 лет Йенсом Берцелиусом. В наши дни фианиты и циркониты также применяются в ювелирном деле — их коэффициент преломления выше, чем у алмазов, и они блестят лучше обычных алмазов. От алмазов кубический диоксид циркония отличается меньшей твердостью, составляющей 8.5 единиц по шкале Мооса (у алмаза она равна 10) и большей плотностью — 6.0 г/см3 (плотность алмаза 3.52 г/см3).

В наше время цирконий применяется и в виде металла, и в виде соединений. Этот элемент можно найти в составе керамики, литейном оборудовании, стекле и сплавах. Песок из оксида циркония применяется для изготовления теплоустойчивой футеровки плавильных печей, ёмкостей для расплавленного металла и литейных форм. Добавки ванадия и празеодима к оксиду циркония позволяет получать жёлтые и синие пигменты для окраски керамики и кафельной плитки.

Термическая устойчивость материалов из оксида циркония исключительна — раскалённый до температуры красного каления тигель из оксида циркония можно резко охладить водой, не боясь, что он треснет. Оксид циркония можно найти в ультрапрочной керамике, изделия из которой можно заточить острее, чем изделия из стали — именно из неё делают уже привычные для наших кухонь керамические ножи. Ежегодное мировое производство оксида циркония составляет около 25 000 тонн и, помимо керамики и имитации алмазов, это вещество используется в косметике, для изготовления антиперспирантов и даже для производства упаковки продуктов питания.

Поверхность металлического циркония окислена, это придаёт металлу твердость и устойчивость к химическому воздействию, что оказывается полезным не только для изготовления химических реакторов, но и для медицины. Цирконий и его сплавы применяются в протезировании тазобедренных суставов. Из сплава алюминия с цирконием, прочного и одновременно лёгкого, делают рамы для гоночных велосипедов, которые, в последнее время заменяются композитными материалами. Особую популярность металлический цирконий приобрёл в конце 1940-х годов, когда стало ясно, что это идеальный металл для изготовления внутренней поверхности ядерных реакторов — этот металл ни подвергается коррозии при высоких температурах, ни поглощает нейтроны с образованием радиоактивных изотопов. До настоящего времени потребителем большей части произведённого металлического циркония является атомная промышленность. Руды циркония содержат незначительные примеси гафния (1–3 %). Благодаря близости химических свойств циркония и гафния эти металлы чрезвычайно тяжело разделить, но для применения циркония в атомной энергетике даже мельчайшие примеси гафния должны быть удалены — гафний в отличие от циркония активно поглощает нейтроны.

Можно упомянуть еще два интересных соединения циркония — ниобий-циркониевый сплав становится сверхпроводимым при температурах ниже 35 K (—238 °C), а вольфрамат циркония (ZrW2O8) при нагревании уменьшается в объёме пока, будучи нагретым до 700 °C не разлагается на оксид циркония и оксид вольфрама.

Кто-то после прочтения этой главы может задаться мыслью, а что же не так с циркониевыми браслетами? Всё в порядке. Выглядят они эстетично. Химическая инертность циркония и то, что этот металл ни в какой форме не играет биологической роли, не повредит вашей коже, так что его вполне можно носить. Только корректировать артериальное давление этот браслет, конечно не может.

41. Ниобий

Ниобий назван в честь Ниобы, дочери Тантала, имя которого послужило для названия элемента, расположенного в той же группе, что и ниобий. Если кто помнит, греческую мифологию, Тантал попробовал вести себя с богами-олимпийцами на равных, за что обречён в посмертии терпеть муки, который мы называем танталовыми.

Похоже, что представители этой семьи отличались повышенным уровнем гордыни и весьма скромной способностью к обучаемости. Ниоба стала уверять, что её дети — Ниобиды прекраснее и мудрее детей, рожденных от связи титанессы Лето и Зевса (Артемиды и Аполлона), после чего обитатели Олимпа, вероятно, не желая проверять, какие патологические формы гордыня примет у внуков Тантала и детей Ниобы, просто решили пресечь дерзкий род. Стрелы Аполлона перебили всех ниобидов, а Ниоба волею богов превратилась в каменный памятник самой себе (до сих пор турецкую гору Маниса, из-под которой текут ключи, известную ранее как Сигил показывают туристам как окаменевшую дщерь Тантала).

То, что в Периодической системе Ниоба и Тантал находятся в соседних клетках неудивительно. И ниобий, и тантал совместно содержатся в минерале колумбите, смешанном оксиде, в состав которого входят также железо и марганец. Химические и физические свойства тантала и ниобия настолько близки, что до появления экстракционных методов разделения тантала и ниобия у химиков-неоргаников была шутка о том, что разгружать вагон с углём в дождь легче и продуктивнее, чем отделять тантал от ниобия.

Сначала выделенный из минерала-колумбита в 1801 году английским химиком Чарльзом Хэтчетом элемент назвали по минералу колумбием. В 1802 году швед Андерс Густав Экеберг открыл элемент, который назвал танталом. Свойства «колумбия» и тантала были идентичными, в результате чего долгое время считалось, что в обоих случаях речь идёт об одном и том же элементе. Только в 1844 году немецкий химик Генрих Розе установил, что колумбий и тантал — разные элементы, попутно и переименовав его в ниобий, лишний раз подчёркивая их сходство. В США и Великобритании ниобий назывался колумбием (символ Cb) до официального одобрения названия «ниобий» ИЮПАК, однако и далее по инерции старое название элемента некоторое время продолжало применяться. Последняя статья, в которой я обнаружил старое название ниобия, датирована 1954 годом (A. U. Seybolt Solid Solubility of Oxygen In Columbium // The Journal of The Minerals, Metals & Materials Society — 1954, Volume 6, Issue 6, Р. 774–776), так что, если кому-то придется обращаться к публикациям, изданным до этого времени, не пугайтесь символа Cb — речь идёт не о «закрытом» элементе, а всего лишь переименованном.

В отличие от Ниобы, дочери Тантала, ниобий не ищет сомнительных приключений. В металлическом состоянии он крайне нереакционноспособен. Как и тантал не окисляется даже действием безжалостной к золоту царской водки и сохраняет инертность по отношению к поту. Это обстоятельство наряду с тем, что помощью анодного окисления на поверхности ниобия можно создать тонкий слой оксида, который, действуя как дифракционная решётка будет окрашивать металл в плавно переходящие друг в друга цвета, позволяет использовать ниобий для изготовления ювелирных изделий и чеканки металлических монет. С 2003 года Австрия отчеканила шестнадцать типов сувенирных монет номиналом в 25 Евро, в которых внутри серебряного диска находится окрашенный с помощью электрохимических методов ниобиевый диск.

Одно из самых известных областей применения металлического ниобия в наше время, наверное, сверхпроводящий ниобий-титановый сплав. Это сплав, точнее интерметаллид, становится сверхпроводимым при температурах ниже 10 К (–263 °C). Это свойство сплава применяется для изготовления сверхпроводящих катушек магнитов. На создание Большого адронного коллайдера было потрачено 1200 тонн кабеля из сплава ниобий-титан. Во время работы ниобийсодержащие магниты БАК охлаждаются до 1.9 K. Ниобий-титановые сверхпроводящие магниты используются и в некоторых моделях установок для МРТ.

Ниобий полезный металл для изготовления сплавов специального назначения. Всего 0.1 % ниобия, добавленного в сталь достаточно для значительного повышения её прочности. Этот металл также часто входит в состав некоторых термостойких сплавов, применяющихся для изготовления аэрокосмической техники. Какое-то время из-за высокой температура плавления (2468 °C) ниобий применялся в качестве материала для нитей лампочек накаливания, однако позже был заменён еще более тугоплавким вольфрамом.

Исследований, посвященных неорганической химии ниобия не так уж много, но этот элемент крайне важен для химии органической и металлорганической. В 1979 году Ричард Шрок издает первый обзор, посвящённый химии алкилиденовых комплексов ниобия и тантала — комплексов, в которых металлы связаны с атомом углерода двойной связью (общую структуру можно отобразить следующим образом LxM=C<; Acc. Chem. Res., 1979, 12 (3), pp 98–104). Ниобийорганические и другие металлоорганические соединения с подобным типом строения стали эффективными катализаторами нового способа синтеза органических соединений и полимеров — реакций метатезиса. За исследование метатезиса в 2005 Шроку была присуждена Нобелевская премии по химии (совместно с Робертом Граббсом и Ивом Шовеном).

42. Молибден

Один из моих любимых металлов — молибден. Это не только и не столько потому, что его номер в Периодической системе в соответствии с книгами Д. Адамса совпадает с ответом на главный вопрос Жизни, Вселенной и всего такого прочего. В моей исследовательской группе изучают органические и фосфорорганические производные металлов группы хрома, и с молибденом, временами получаются наиболее интересные результаты. Хотя, если учесть, что молибден позволил уже трём моим ученикам защитить кандидатские диссертации, возможно, что для нас он и действительно быть тем самым ответом хотя бы вопрос о смысле научного поиска.

Молибден стоит в шестой группе между хромом и вольфрамом. В виде простого вещества молибден представляет собой серебристо-белый металл. Неожиданно, но название молибдена на греческом языке означает «свинец». Так получилось из-за того, что минерал молибденит (MoS2), из которого впервые удалось выделить оксид молибдена, путали со свинецсодержащим минералом — свинцовым блеском (PbS), а оба этих минерала, в свою очередь, не могли отличить от графита (свинцовые карандаши, которыми пользовались до карандашей с графитовым грифелем, изготавливали из свинцового блеска. В итоге какое-то время молибденитом называли и сульфид молибдена, и сульфид свинца, и графит. Как отдельный элемент молибден был открыт в 1778 году, когда Карл Шееле смог получить и молибденовую кислоту, и оксид шестивалентного молибдена. В чистом виде — в виде металла, не содержащего посторонних примесей молибден удалось выделить Берцелиусу.

Чистый молибден представляет собой светло-серый металл, достаточно твердый для металла (4.5 единиц твёрдости по шкале Мооса), но, по мере очистки от примесей и «хвостов» становящийся более мягким. Молибден относится к тугоплавким металлам, его температура плавления 2620 °C, а температура кипения — 4639 °C. Металлический молибден используется для легирования сталей, а также как компонент жаропрочных и коррозионностойких сплавов. Взгляните на лампочку накаливания — твёрдые и прочные куски проволоки, которые поддерживают вольфрамовую нить накаливания, обычно сделаны из молибдена.

Одни соединения молибдена находят применение как катализаторы нефтепереработки, другие помогают работать продуктам переработки нефти — добавка сульфидов молибдена в смазочные масла позволяет увеличить их коэффициент скольжения, не давая углеводородам загустеть, перегреться и воспламениться от трения.

Тем не менее, самое главное применение молибдена, то, благодаря которому возможна жизнь на Земле, появилось без участия человека и задолго до его появления. Будучи переходным металлом, способным принимать различные степени окисления, молибден работает в активных центрах ферментов, включая активные центры ферментов-нитрогеназ, позволяющих азотфиксирующим бактериям усваивать атмосферный азот, не только получая из него жизненно свои собственные азотсодержащие соединения — аминокислоты и азотистые основания, но образуя те производные азота, которые могут усваиваться растениями. Выросшие, потребляя связанный с участием молибдена почвенный азот, некоторые растения попадают нам на стол, а некоторые поедаются животными, которые тоже могут оказаться у нас на столе, то есть содержащие молибден ферменты-нитрогеназы обеспечивают и работу пищевых цепей, и круговорот азота в природе. Изучая строение активного центра нитрогеназ, исследователи пытаются имитировать их, получив низкомолекулярные комплексы, способные превращать атмосферный азот в его соединения (в целом, подход, при котором идею для разработки химического метода или вещества берут у природы, называется биомиметическим), однако получить катализатор, который бы помогал связывать азот в столь мягких условиях, при которых справляются ферменты, не получается, а жаль — низкотемпературное связывание азота стало бы такой же революцией в химической технологии, какой в своё время стал процесс Боша-Габера (см. главу про азот). Содержащие молибден ферменты встречаются не только у бактерий. В организме человека молибденсодержащий фермент ксантиноксидаза участвует в обмене пуриновых оснований, а нарушение его работы может приводить к накоплению в суставах солей мочевой кислоты — уратов и развитию «болезни королей» — подагрического артрита, более известного как подагра.

43. Технеций

В 1860–70 года систематизировать химические элементы пытался (и весьма успешно) не только Менделеев. Так, в 1870 немецкий химик Лотар Мейер опубликовал статью «Природа элементов как функция их атомного веса», в которой приводились рассуждения практически аналогичные менделеевским. В 1882 году Лондонское королевское общество присудило золотые медали Дэви совместно Менделееву и Мейеру с формулировкой «За открытие периодических соотношений атомных весов».

Позже, в XX веке, создателем Периодической системы среди мировой научной общественности стал считаться уже только Менделеев, а про Мейера, как автора Периодической системы в наше время чаще вспоминают разве что в Германии. В чем причина? То, и у Мейера, и у Менделеева начиналось как попытка простой систематизации, у Мейера систематизацией им закончилось, а Дмитрий Иванович смог разглядеть в системе фундаментальный закон, который и использовал для предсказаний свойств неоткрытых еще элементов. Наиболее исчерпывающие предсказания Менделеев дал для свойств четырёх к тому времени неизвестных элементов. О трёх из них — галлии, скандии и германии, уже было рассказано выше, а теперь пришла пора рассказать про предсказание, которому не так повезло (естественно — не по вине Дмитрия Ивановича). Четвёртый элемент, свойства которого в деталях предсказал Менделеев был элемент № 43, названный экамарганцем.

После открытия галлия, скандия и германия и превращения Периодической системы из средства систематизации в фундаментальный закон поиски экамарганца начались с утроенной силой. В 1909 году профессор Токийского университета Масатака Огава, большой поклонник идей Менделеева, заявил, что, анализируя минералы торианит, реинит и молибденит, обнаружил элемент № 43, который назвал «ниппонием» (nipponium, Np), однако открытие не было подтверждено. Как показали исследования 2004 года (Spectrochimica Acta Part B, 2004, 59, 1305–1310), «ниппоний» Огавы — это на самом деле открытый еще в 1871 году рений. В 1925 году немецкие химики Ида Ноддак и Отто Берг сообщили об обнаружении элемента № 43 в уральской самородной платине, назвав его мазурием (masurium, Ма) и их открытие тоже не подтвердилось.

С развитием физики стало понятно, почему экамарганец не дается в руки химикам — оказалось, что этот элемент не должен иметь стабильных изотопов. В конце концов элемент № 43 был обнаружен только в 1937 году, причём не химиками, а физиками. Первооткрывателями экамарганца считаются Карло Перрье и Эмилио Сегре из Университета Палермо, получившие его из молибденовой мишени, облучая на ускорителе-циклотроне ядрами дейтерия. В 1936 году Сегре посетил лабораторию Эрнста Лоуренса и принял участие в эксперименте по облучению молибдена. В начале 1937 года Лоуренс переслал Сегре образец молибденовой фольги. Сам Сегре больше разбирался в физике (в 1959 он ещё успеет получить Нобелевскую премию по физике за открытие антипротона), однако вдвоем с минералогом Перрье он обнаружил в образце два радиоактивных изотопа элемента № 43, который было предложено назвать технецием (Nature, 1937, 140: 193–194).

Название происходит от греческого слова «искусственный», оно подчёркивало то, что технеций был первым химическим элементом, полученным человеком. Однако, несмотря на название, следовые количества технеция все же содержатся в земной коре. Технеций — продукт самопроизвольного распада урана, и, хотя у этого элемента нет устойчивых изотопов, из каждого килограмма руды урана — урановой смолки, если сильно постараться можно извлечь 0.2 нанограмма технеция, который, впрочем, быстро распадется сам. С развитием атомной энергетики содержание технеция в земной коре стало расти — элемент № 43 содержится в отработанном ядерном топливе, и, по оценкам химиков и физиков, только на атомных электростанциях за последнюю половину столетия было «наработано» несколько тонн технеция.

Фраза «только на атомных электростанциях» не случайна один из изотопов технеция, нуклид 99Тс, период полураспада которого составляет около 6 часов, получают специально. С помощью этого нуклида ежегодно проводится около 20 миллионов случаев сцинтилляционной медицинской диагностики. Нуклид 99Тс распадается, испуская гамма-излучение. Врачи вводят в организм пациента образец, содержащий технеций (часто его предварительно успевают связать с определёнными органическими молекулами, которые смогут связаться со строго определёнными тканями или даже органоидами клетки), и с помощью детектора гамма-излучения следят за транспортом и накоплением технеция в организме пациента чтобы определить, какие из его органов в порядке, а какие работают не должным образом. Малые количества технеция, нужные для такой диагностики и его малый период полураспада приводит к тому, что организм пациента получает дозу излучения, сравнимую с эффектом ежегодного рентгенологического исследования лёгких (флюорографии).

44. Рутений

Замок и пряжки кожаного чехла, в котором хранится кубок Чемпионата мира по футболу 2018 года, проводившегося в России, сделаны из «самого русского» металла — рутения. Это не только единственный существующий в земной коре элемент, официально открытый в России, но и его название происходит от латинского Ruthenia — Русь, Россия.

Рутений был открыт в Казани, так что можно сказать, что для меня, коренного казанца, к тому же — казанского химика, этот металл ближе вдвойне. Однажды, десять лет назад, беседуя в твиттере, я даже не постеснялся указать редакции журнала Nature Chemistry, что они не правы, и они дважды извинились — за неправильную информацию в редакторской колонке про рутений и за стереотипы в подборе для неё иллюстраций. Колонку, размещённую в интернете они даже исправили (наполовину) — указали, что источником для открытия рутения были уральские руды (в исходном варианте статьи речь шла про сибирские), но картинку матрёшки оставили.

Рутений был открыт профессором Казанского университета Карлом Клаусом в 1844 году. Клаус выделил рутений в виде металла из уральской платиновой руды и указал на сходство между тройками элементов рутений — родий — палладий и осмий — иридий — платина. Название «рутений» Клаус придумал не сам — в 1828 году работавший в России Готфрид Озанн предложил это название для своего открытия, который он по ошибке принял за новый элемент, Клаус, удостоверившись в том, что он действительно открыл новый элемент, дал ему название, предложенное Озанном. В 1844 году Клаус опубликовал о новом элементе большую статью «Химические исследования остатков Уральской платиновой руды и металла рутения» в «Учёных записках Казанского университета», журнале, который издаётся до нашего времени.

Как и другие металлы троек рутений — родий — палладий и осмий — иридий — платина, рутений мало распространён. По содержанию в земной коре он находится на 74-м месте, ежегодно добывается около 12 тонн рутения, а мировые резервные запасы этого металла оцениваются в 5000 тонн. Чаще всего рутений извлекается из руд совместно с другими металлами платиновой группы, а вот его содержание в разных платиновых рудах различается — в рудах, извлекаемых в Южной Африке, содержится до 11 % рутения, а вот в уральских рудах металлов платиновых групп рутения только 2 %.

Футбольный кубок, как и ювелирная продукция для рутения — только хобби. Большую часть времени рутений проводит в химических лабораториях и предприятиях в области тонкого химического синтеза. С 1960-х годов начались ставшие успешными систематические попытки заставить металлы платиновой группы катализировать превращения органических и неорганических веществ. В начале в эффективности вперёд вырвались платина с палладием, которые показали себя успешными в ускорении химических реакций, будучи просто металлами, благодаря чему значительные количества этих металлов стали востребованы нефтехимическими комплексами, в которых эти металлы ускоряют процессы химической переработки нефти, и автопроизводителями — платиновый катализатор очистки выхлопных газов способствует доокислению угарного газа СО в менее опасный углекислый СО2. Металлический рутений не мог похвастаться столь высокой эффективностью, и поэтому объектом исследования стали его соединения. Результатами этих исследований навскидку можно назвать пару Нобелевских Премий. В 2001 году Нобелевским лауреатом стал Рёдзи Ноёри, получивший её за «…за их работу над хиральными катализаторами реакций присоединения водорода…». Катализаторы Ноёри (комплексы рутения с оптически активными β-аминоспиртами и производными 1,2-диаминов) применяются в процессах получения практически чистого (1R,2S,5R) — ментола и исходных веществ для синтеза полиамидных волокон. Комплексы Граббса, которые применяются в получении непредельных органических соединений с помощью реакций метатезиса (за исследования в области метатезиса Нобелевская Премия по химии была присуждена в 2005 году), тоже представляют собой производные рутения.

Металлический рутений не зарекомендовал себя как катализатор, но как металл тоже работает — твёрдость «российского элемента» позволяет использовать его в сплавах с другими металлами платиновой группы, из которых делают износоустойчивые электрические контакты. Около половины производимого рутения используется в другой области электротехники — из диоксида рутения и рутенатов висмута производят детали для тонкоплёночных резисторов — элементов сопротивления в электросхемах. Если вы ещё не растеряли навык письма перьевой ручкой, есть шанс, что вы обладатель небольшого количества рутения. Золочёное перо выпускающихся с 1944 года ручек серии Parker 51 с маркировкой «RU» на 96.2 % состоят из рутения, на 3.8 % — из иридия.

Как и его близкий родственник — железо, рутений может образовывать различные оксиды. Один из таких оксидов — рутениевый красный, применяется для подкрашивания отрицательно заряженных биомолекул, например — нуклеиновых кислот, перед изучением биологических образцов с помощью микроскопии. Некоторые комплексы рутения изучаются как потенциальные противоопухолевые препараты.

45. Родий

С точки зрения строения атомного ядра родий можно считать уникальным — это единственный относительно тяжелый химический элемент, представленный в Земной коре единственным устойчивым нуклидом 103Rh. Радиоактивные изотопы родия также существуют, но период полураспада самого долгоживущего из них — 101Rh всего три года и четыре месяца, поэтому они не накапливаются в земной коре и можно говорить, что родий моноизотопный.

Родий — металл серебристо-белого цвета, который, как и все металлы платиновой группы (рутений-родий-палладий объединены в так называемую «малую платиновую группу») отличается крайне низкой активностью. Царская водка (смесь соляной и азотной кислот), которая быстро и охотно растворяет золото, реагирует с родием только при заметном нагревании. Именно с помощью царской водки родий и был отделён от платины (платина с ней не реагирует совсем). Первооткрывателем родия является Уильям Хайд Волластон. Он выделил этот металл из платиновой руды, доставленной в Британию контрабандой с территории современной Колумбии. Эту руду в канун Рождества 1802 года приобрели Волластон и его друг и коллега Смитсон Теннант.

Контрабандная руда оказалась весьма ценной для обоих ученых. Её исследования позволили получить не только окрашенный в розовый цвет раствор хлорида элемента, который Волластон назвал родием (от греческого «розос» — роза), но и другие находки. Волластон открыл в этом образце ещё и палладий, а Теннант — осмий и иридий.

Чаще всего мы сталкиваемся с родием, работающим в каталитической системе дожигания выхлопных газов от автомобильных двигателей внутреннего сгорания. Правда, в этом случае наш контакт с этим элементом весьма опосредован — каталитическая система, которая служит для обеспечения полного сгорания некоторых небезопасных веществ, покидающих выхлопную трубу, расположена глубоко внутри автомобиля, и к тем деталям, которые можно обслужить своими силами, не относится.

Помимо родия катализаторами дожигания выступают также платина и палладий, но их значение немного различается. Если палладий может выполнять работу платины и наоборот — ускорять окисление угарного газа СО в углекислый СО2, то родий выполняет тот трюк, на который ни платина, ни палладий неспособны. Его мишень — оксиды азота (их часто обозначают как NOx), которые в присутствии аммиака и при посредстве родия разрушают на молекулярные азот и кислород (или воду). Родий работает с производными азота и в другом процессе — до сих пор не существует более эффективного катализатора окисления аммиака воздухом (эта реакция важна для производства азотной кислоты и нитратов). Ежегодно из руд извлекается не более 30 тонн родия, поэтому и отслужившие своё системы дожигания выхлопных газов, и катализаторы сжигания аммиака подвергаются вторичной переработке, и извлечённый из них родий заново пускают в дело.

Ещё один процесс, в котором родий применяется как катализатор — получение уксусной кислоты в результате реакции монооксида углерода (СО) с метиловым спиртом (СН3ОН). В 1960-е годы родий заменил в этом процессе «соседа сверху» — кобальт, сделав процесс более эффективным и протекающим с меньшим количеством побочных продуктов. С помощью родиевых катализаторов до недавнего времени в мире производили около пяти миллионов тонн уксусной кислоты, однако в последнее время на смену родию приходит его «сосед снизу» — иридий, делающий получение уксусной кислоты еще более эффективным.

Родий применяется и в ювелирном деле — например, для того, чтобы серебро не темнело, его покрывают тонким слоем родия. Пожалуй, самое известное ювелирное изделие из родия — родиевый диск-сертификат от Книги рекордов Гиннесса, который получил Пол Маккартни, как самый успешный музыкант и сочинитель песен в истории (на момент вручения он был автором 43 песен, которые были проданы более, чем миллионными тиражами). Всего же Маккартни за свою музыкальную карьеру получил 60 золотых дисков (42 — играя в Beatles, 17 — играя в Wings и 1 — в сотрудничестве с Билли Престоном).

46. Палладий

В апреле 1803 года наиболее известным британских химикам анонимно доставили рекламный листок: «Палладий или новое серебро», в котором были перечислены свойства нового благородного металла и предложение его купить. Реклама указывала единственного поставщика металла — магазин минералов, руд и металлов мистера Джейкоба Форстера в Сохо. Сам мистер Сохо на момент подачи рекламного объявления был в отъезде, и потенциальным покупателям пришлось иметь дело с его женой. Когда редактор британского журнала Journal of Natural Philosophy, Chemistry and the Arts Уильям Николсон попытался выяснить, как попал в лавку этот металл, миссис Форстер ответила, что не оставивший на продажу образцы приятный и вежливый молодой человек пожелал остаться неизвестным.

Николсон перепечатал в своем журнале информацию, указанную в рекламе, но неудивительно, что необычный способ, который помог ученому сообществу обратить внимание на открытие, вызвал у многих подозрение. Проанализировал образец палладия, купленный у миссис Форстер за целую гинею английский химик Ричард Ченевикс заявил, что это никакой не новый элемент, а сплав платины с ртутью. После этой статьи Ченевикса Уильям Хайд Волластон (именно он и был тем самым вежливым молодым человеком, решившим сообщить об открытии нового элемента столь экстравагантным способом) опять же анонимно пообещал награду в 20 фунтов любому, кто получит разумное количество сплава платины со ртутью, соответствующего свойствам палладия. Естественно, награда осталась невыплаченной. В конце концов Волластон вышел из сумрака и в 1805 году опубликовал сообщение об открытии палладия в научном журнале (Philosophical Transactions of the Royal Society of London., 1805, 94: 419–430). Волластон назвал новый элемент по имени астероида Паллада, открытого в 1802 году, незадолго до открытия палладия. В свою очередь, астероид назван в честь Афины Паллады из древнегреческой мифологии.

История объявления об открытии палладия — не единственный пример из жизни этого элемента, имеющий оттенок в определённой степени скандальной славы. В конце XX века палладий на какое-то время стал героем статей, обещающих переворот в мировой энергетике. В 1989 году электрохимики Мартин Флейшман и Стэнли Понс сделали удивительное заявление о том, что они провели термоядерный синтез в электролитической ячейке. Когда исследователи подавали электрический ток на ячейку, по их мнению, атомы дейтерия из тяжёлой воды, проникшие в палладиевый катод, сливались в атомы гелия, а энергия этого процесса превращалась в тепло. Флейшман и Понс утверждали, что этот процесс не может быть результатом ни одной известной химической реакции, и присовокупили к нему термин «холодный синтез». Однако физики-ядерщики и специалисты по физике плазмы не верить в холодный термояд. Было известно, что два ядра дейтерия в принципе могут слиться с образованием ядра 4Не и высокоэнергичного гамма-кванта, но вероятность протекания такого процесса ничтожна. Обычно реакция двух ядер тяжелого водорода завершается рождением ядра трития и протона или же возникновением нейтрона и ядра 3Не, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов, которые можно было обнаружить с помощью нейтронных детекторов, то есть интерпретацию экспериментов Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры.

Однако из этого ничего не вышло. Флейшман убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет образования нейтронов, но нейтроны так и не были обнаружены. Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же это ничего не дало. В конечном итоге «открытие десятилетия» обернулось закрытием на конференции Американского физического общества 1 мая того же года. Исследование забраковали, а холодный термоядерной синтез пополнил паноптикум лженауки.

Хотя палладию и не удалось стать металлом холодного термоядерного синтеза, в начале нашего века он стал незаменимым элементом для «холодного горения» — палладий применяется в качестве катализатора водородных топливных элементов — устройств, в которых химическая энергия окисления водорода непосредственно преобразуется в электрическую, минуя протекающие с низким коэффициентом полезного действия процессы горения.

Палладий хорошо растворяет водород (при атмосферном давлении в одном объёме палладия растворяется 600 объёмов водорода). Так как поры кристаллической решётки палладия пропускают только водород, его можно использовать для тонкой очистки водорода от других газообразных примесей. То обстоятельство, что палладий взаимодействует с водородом не только поверхностью, но и фактически всем объёмом, делает его хорошим катализатором присоединения водорода к непредельным углеводородам. Палладий применяется для изготовления ювелирных изделий, зубных пломб и зубных коронок, однако, как и родий с платиной большей частью он используется в каталитических конверторах систем очистки выхлопных газов двигателей внутреннего сгорания — на это тратится до 100 тонн палладия из 160 потребляемых разными отраслями промышленности ежегодно.

47. Серебро

Блеск серебра известен и ценится людьми с глубокой древности. Серебро не столь редкий и дорогой металл, как золото, но всё же серебро — монетный металл. Археология говорит о том, что добывать серебро из сульфидных руд, чеканить из этого серебра монеты и делать украшения люди начали еще в четвертом тысячелетии до нашей эры. Серебро становилось основой экономической и военной мощи античных стран Средиземноморья. Так, именно Лаврионские серебряные копи позволили Афинам быстро построить военный флот, который в итоге и принес Элладе победу в греко-персидских войнах, а Афинам на некоторое время стать главным полисом в организованном ими же греческом союзе.

Серебро мягкий и ковкий металл с относительно низкой температурой плавления (962 °C), который легко ковать и отливать в формы. Эти свойства серебра веками позволяли чеканить из него монеты, изготавливать вазы, кубки, тарелки и столовые приборы — столовую утварь, которая веками и до сих пор воспринимают как проявление достатка. Тем не менее, столовое серебро — вещь капризная, оно быстро тускнеет. Даже при том, что соединений серы в воздухе не так уж много, серебро медленно покрывается слоем тёмного сульфида, который нужно удалять механически — именно из-за недолговечности блеска серебро оказалось в тени золота. Однако те же свойства серебра, которые оттеняют его внешний вид, втянули серебро в историю, позволяя фиксировать Историю — делать фотографии.

В 1727 году немецкий физик Иоганн Шульце обнаружил, что на свету паста из мела и нитрата серебра темнеет. Это наблюдение позволило ему получать первые картинки с помощью света, применяя трафареты. Реакция, которую обнаружил Шульце, ставшая началом фотографии, протекала благодаря тому, что соли серебра чувствительны к свету. Фотон выбивает из отрицательно заряженного нитрат-аниона электрон, который, присоединяясь к положительному иону серебра, восстанавливает его, а порошок металлического серебра делает поверхность материала тёмным. Открытие Генри Талботом в 1840 году ещё одного химического фокуса, который назвали «скрытым серебряным изображением», показалось современникам учёного магией или чем-то дьявольским — оказалось, что результат воздействия света на йодид серебра может быть проявлен действием галловой кислоты. Однако в появлении скрытого рисунка не было ничего мистического и тем более инфернального. Это была простая окислительно-восстановительная реакция — галловая кислота способствует восстановлению фотосенсибилизированных ионов серебра до металла. Способы нанесения фоточувствительного слоя на бумагу и прозрачную плёнку из целлулоида позволили появиться двум важнейшим из искусств.

Цветная, а затем цифровая фотография сократили применение серебра в фотографии, однако всё же не полностью заместили. Высокая электропроводность серебра служит свою службу и в цифровой фотографии (как и во всей микроэлектронике) — во многих узлах смартфонов и ноутбуков используются серебряные проволочки-проводники, серебряные контакты и серебряные детали источников питания. В наше время возвращаются даже хорошо забытые старые области применения серебра — на фоне возрастающей резистентности бактерий к антибиотикам ряд ученых предлагает вернуться к бактерицидным нанопокрытиям из серебра. Металлическое серебро убивает большую часть микроорганизмов (хотя природа этого эффекта до сих пор не ясна), но абсолютно безопасно для людей и даже применяется для украшения блюд на чрезвычайно гламурных обедах. Справедливости ради, в наше время применений у серебра меньше, чем в прошлом веке — некоторые благородные металлы выполняют его работу более качественно.

48. Кадмий

Доктор Айболит — вымышленный Корнеем Ивановичем Чуковским персонаж, а вот болезнь «Ай, болит» действительно существует. Точнее, она называется. Болезнь итай-итай, что с японского языка можно перевести как «ой-ой больно», была диагностирована в 1950 году в японской префектуре Тояма, расположенной на 100 километров к северу от Токио.

Симптомы болезни включали не только острые боли в суставах и позвоночнике, но и развитие почечной недостаточности, которая часто приводила к смерти заболевших. Как оказалось, симптомы развивались из-за хронического отравления кадмием — рис, культивировавшийся в очаге заболевания, выращивали на почвах, чрезвычайно богатых солями кадмия — выше по течению реки Дзиндзу, которая использовалась для орошения полей находилось производство горно-металлургической компанией «Мицуи», работа которой привела к загрязнению воды солями тяжёлых металлов, прежде всего, кадмия. В результате этого урожай риса, собранный в Тояме, содержал кадмия в десять раз больше, чем нормальный рис.

Ситуация с болезнью «Ай, болит» заставила производителей опасаться кадмия как огня — производители консервов исключили кадмий из состава припоя для изготовления консервных банок (хотя, строго говоря, кадмий и другие компоненты припоя мог попадать в продукты питания только после вскрытия банки — отсутствие воздуха внутри неё не даёт портиться не только продукту, но и делает невозможным окисление металлов, контактирующих с пищей). В 2010 году Кока-Кола отозвала с рынка США 22 000 стеклянных стаканов с фирменным дизайном, после того как в составе краски, которую использовали для нанесения логотипа, был обнаружен кадмий (хотя логотип был нанесён снаружи стакана и его контакт с напитками был исключён).

Любопытно, но в случаях хронического отравления кадмием превышение этого металла в потребляемой человеком пище было настолько высоко, что смогло преодолеть естественную защиту человеческого организма — малые дозы кадмия человек вполне в состоянии «переварить». Иод кадмия, как и ионы многих других тяжёлых металлов, тиофилен — он образует прочные связи с атомами серы, входящими в состав аминокислот и белков. При попадании в организм человека ионов тиофильных металлов начинается интенсивная выработка металлсодержащего белка металлотионеина, особо богатого серосодержащими аминокислотными остатками. Каждая молекула такого белка может связать до семи ионов кадмия или подобных ему тяжелых металлов и способствовать их выводу из организма. Люди, пострадавшие от болезни итай-итай, длительное время получали такие количества кадмия, с которыми не мог справиться естественный механизм защиты.

Кадмий был открыт в 1817 году немецким химиком Фридрихом Штромейером. Началось с того, что аптекари Магдебурга заподозрили, что в оксиде цинка, попадавшем в их аптеки есть примесь мышьяка. Штромейер выделил из предоставленных образцов коричнево-бурый оксид, восстановил его водородом и получил серебристо-белый металл, которому дал название кадмий. Название элементу было дано по греческому названию руды, из которой в Германии добывали цинк — кадмея. В свою очередь, руда получила своё название в честь Кадма, героя древнегреческой мифологии, легендарного основателя Фив Беотийских и создателя греческого алфавита.

Хотя в последнее время репутация кадмия в общественном сознании — вполне определённая слава отравителя и канцерогена, этот элемент нельзя назвать полностью перешедшим на тёмную сторону. Около 20 % кадмия применяется для изготовления ярких и не тускнеющих со временем красителей и пигментов, преимущественно сульфидов и селенидов кадмия, например — «кадмиевый жёлтый» и «кадмиевый лимонный» (теперь вы знаете, что, если вы занимаетесь живописью, не стоит облизывать кисточку). Ещё 20 % кадмия расходуется на изготовление источников электрического тока — никель-кадмиевых и свинцово-кадмиевых элементов. Наноразмерные кристаллы сульфида и селенида кадмия — полупроводниковые квантовые точки, могут использоваться в дисплеях и для медицинской диагностической визуализации.

И, наконец, есть в природе существа, которым кадмий не страшен — некоторые морские диатомеи «научились» замещать цинк фермента ангидразы на кадмий практически без потери его активности, то есть кадмий вполне может играть роль микроэлемента (Proc Natl Acad Sci U S A., 2000, 97(9): 4627–4631), хотя и не для людей. Мы же, потребляя кадмий с пищей (а иногда и с табачным дымом, можем только испортить себе здоровье.

49. Индий

Самым известным дальтоником среди химиков был Джон Дальтон (собственно говоря, он оказался не только самым известным химиком-дальтоником, но и первым описанным в медицине случаем цветослепоты), который до 26 лет даже не знал о существовании красного цвета, однако Дальтону его проблемы цветового восприятия не помешали заложить основы химической атомистики. Экспериментаторам всегда было сложнее — для открытия и описания новых веществ химикам, страдавшим от дальтонизма, приходилось надеяться на помощь ассистента.



Поделиться книгой:

На главную
Назад