Задача 1: победители забега
В забеге участвуют 12 бегунов. Сколькими способами можно сформировать тройку призеров?
Первое место может занять любой из 12 участников. Для каждого из этих 12 исходов есть И атлетов, которые могут занять второе место. Для каждой пары первого и второго призеров остаются 10 возможных вариантов третьего места. Следовательно, количество различных троек призеров равно 12 * 11 • 10 = 1320.
Мы определили количество групп из трех бегунов, которых можно выбрать из 12 участников забега, при этом порядок выбора имеет значение. Следовательно, тройки 1, 2, 3 и 2, 3, 1 отличаются: они образованы одними и теми же бегунами, но в первой тройке первым пришел бегун номер 1, вторым — номер 2, третьим — номер 3, а во второй тройке первым пришел бегун номер 2, вторым — номер 3, третьим — номер 1.
На языке математики это называется размещением из 12 элементов по 3 и обозначается V12,3 Как мы уже заметили, оно рассчитывается как 12 • 11 • 10. В общем виде размещение из m элементов по n (очевидно, что n < m) рассчитывается так:
Vm,n = m • (m - 1) • (m - 2) • ... • (m - n + 1).
Задача 2: играем в бридж
Игрок в бридж при раздаче получает 13 карт. Сколькими способами он может упорядочить карты?
Если у игрока 13 карт, то первую по порядку он может выбрать тринадцатью возможными способами, вторую — двенадцатью, третью — одиннадцатью и так далее до последней карты, которую можно будет выбрать единственным способом (она останется последней неупорядоченной). Следовательно, общее число возможных вариантов упорядочения карт равно:
13 • 12 • 11 • … • 3 • 2 • 1 = 13! = 6 227 020 800.
Эта операция называется перестановкой 13 элементов, и результат можно также записать в виде факториала. Факториал обозначается восклицательным знаком после числа. В нашем случае результат равен 13!. По определению n! равен произведению всех натуральных чисел от n до 1. В таблице ниже приведены значения факториала для первых 12 чисел, чтобы дать представление о том, насколько быстро он возрастает.
Задача 3: раздача карт
В игре бридж каждому игроку раздается по 13 карт из колоды в 52 карты. Сколькими различными способами можно выдать игроку 13 карт?
В этом случае нужно подсчитать число различных групп по 13 карт, которые можно выбрать из 52 карт, при этом порядок расположения выбранных 13 карт неважен. Если бы порядок карт имел значение, то общее число раздач вычислялось бы так:
52 • 51 • 50 • ... (13 множителей)... * 42 - 41 - 40 = 3,95424 • 1021.
Но так как порядок карт в раздаче неважен, а каждую группу из 13 карт мы посчитали 13! раз (это число перестановок 13 элементов), число способов раздачи карт в бридже равно
(52 • 51 • ... • 41 • 40)/13! = 52!/(39! • 13!) = 635 013 559 600.
Обратите внимание, что результат выражается огромным числом. В первом случае полученное число имеет 22 цифры в своей записи, во втором (когда порядок неважен) мы получили число из 12 цифр. Это сопоставимо с возрастом Вселенной в 1,5 • 1010 лет или примерно 4,7 • 1017 секунд. Таким образом, первое число (3,9 • 1021) более чем в 8000 раз превышает число секунд, прошедших с момента Большого взрыва, а второе число (6,3 • 1011) в 42 раза больше возраста Вселенной в годах.
На языке математики результат этой задачи именуется числом сочетаний из 52 элементов по 13, которое обозначается С12,13. Как мы уже видели, это сочетание рассчитывается по формуле: 52!/(39! • 13!). Общая формула для вычисления количества сочетаний из m по n (очевидно, что n < m):
Сm,n = m! / (m— n)! • n!
Задача 4: серия пенальти
Если финал футбольного чемпионата завершается ничьей, пробивается серия пенальти. Как правило, серия пенальти состоит из 5 ударов; все они должны выполняться разными игроками. Сколько списков из 5 пенальтистов можно составить из И игроков, которые находились на поле на момент окончания матча?
В некоторых задачах неясно, важен порядок или нет, и допускаются оба варианта. Эту задачу можно понимать двояко.
1. Нужно составить группы из 5 игроков так, чтобы любые две группы отличались между собой как минимум одним игроком. В этом случае нужно вычислить число сочетаний из 11 по 5: 11! / (5! • 6!) = 462.
2. Все интересующиеся футболом знают, что в реальности каждая команда подает арбитру пронумерованный список из 5 пенальтистов. Поэтому два списка, где указаны одни и те же игроки, но в разном порядке, будут отличаться. В этом случае нужно вычислить количество размещений из 11 по 5, равное 11!/6! = 55440.
Номера лотерейных билетов и другие ошибочные предположения о случайности
Представим себе такой диалог:
— Здравствуйте, можно лотерейный билет?
— Возьмите, номер 00010.
— Нет, дайте другой, этот номер очень маленький и никогда не выпадает.
— Если хотите, я дам вам второй, 00001, два по цене одного.
— Нет, они все равно почти никогда не выпадают.
— Хорошо, держите 74283.
— Другое дело, этот подойдет. Спасибо.
Все мы имеем некоторое представление о том, что такое случайность и каковы ее законы. Многие задачи теории вероятностей в действительности намного сложнее, чем кажется. В теории вероятностей подобное происходит чаще, чем в других разделах математики, поскольку при математическом моделировании случайных событий нужно учитывать все возможные ситуации. Диалог в начале этого раздела, пусть несколько неправдоподобный, показывает, насколько простейшие правила теории вероятностей далеки от реальности, в частности, когда речь идет об азартных играх. С одной стороны, страсть множества людей к азартным играм и ставкам показывает, сколь мало обычный человек знает о расчете вероятностей. Несмотря на все заверения о ничтожной вероятности выигрыша, многие продолжают играть, надеясь, что в этот раз им повезет, даже если они играют каждую неделю уже много лет и никогда ничего не выигрывали. С другой стороны, рассуждая о шансах попасть в аварию, отправляясь на выходных за город на машине, все надеются, что авария их минует.
Капризы вероятностей
Далее мы расскажем о некоторых любопытных примерах, связанных с вероятностью выигрыша в игре или со справедливой жеребьевкой. Не раз и не два результат будет противоречить тому, что нам будет подсказывать интуиция. Все эти игры и задачи показывают, что, как правило, мы не слишком хорошо знакомы со случайными событиями и порой интуиция подсказывает совершенно обратное тому, что происходит на самом деле.
Два друга, Иван и Николай, любители игры в петанк, на тренировках играют в такую игру: Иван берет два шара, Николай — один, они ставят кеглю на определенном расстоянии и бросают шары. Если их уровень игры одинаков, какова вероятность того, что ближе всего к кегле подкатится один из шаров, брошенных Иваном?
Кажется, что ответ — 2/3, так как единственный шар, брошенный Николаем, может быть ближе всего к кегле, а также на втором или на третьем месте. В двух последних случаях ближе всего к кегле подкатится один из шаров, брошенных Иваном. Однако можно рассуждать иначе и представить четыре возможных случая:
1. Оба шара, брошенных Иваном, находятся ближе к кегле, чем шар Николая.
2. Оба шара, брошенных Иваном, находятся дальше от кегли, чем шар Николая.
3. Первый шар Ивана окажется ближе, второй — дальше, чем шар Николая.
4. Первый шар Ивана окажется дальше, второй — ближе, чем шар Николая.
В этом случае Николай выигрывает всего один раз из четырех, поэтому вероятность победы Ивана равна 3/4. Какое из двух рассуждений неверно? Почему?
Верным является первое рассуждение. На самом деле, если мы не пометим шары, существует лишь три возможных случая, а если мы нанесем на шары какие-то отметки, число возможных случаев будет равно шести, и в четырех из них ближе всего к кегле окажется один из шаров, брошенных Иваном. Второй способ рассуждения неверен, поскольку мы подсчитываем два раза лишь один случай (шар Николая оказывается в середине), считая шары Ивана помеченными, но в остальных двух случаях мы считаем шары непомеченными и учитываем эти случаи только один раз, а не два.
Борис и Роман играют в кости с обычным игральным кубиком, на грани которого нанесены очки от 1 до 6. Первым кубик бросает Борис, затем Роман. Какова вероятность, что результат Бориса будет больше, чем результат Романа?
Очевидно, что вероятность того, что игроки выбросят одинаковое число очков, равна 1/6 (она совпадает с вероятностью того, что результат Романа будет тем же, что и у Бориса). Следовательно, вероятность выбросить разное число очков равна 5/6. Вероятность того, что результат Бориса будет выше, в два раза меньше и равна 5/12.
У нас есть три кубика разных цветов: на гранях красного кубика нанесены числа 2, 4, 9 по два раза каждое, на гранях синего кубика — 3, 5 и 7 по два раза каждое, на гранях белого — 1, 6 и 8 также по два раза каждое. В этой игре каждый из двух игроков выбирает один кубик и бросает его. Тот, кто выбрасывает больше очков, выигрывает. Оказывается, если дать сопернику выбрать кубик первому, вы всегда сможете выбрать кубик, с которым ваши шансы на победу будут выше, чем у противника. Как такое возможно? Какой кубик нужно выбрать?
Несмотря на то что сумма цифр на гранях всех кубиков одинакова, синий кубик предпочтительнее красного, белый предпочтительнее синего, а красный предпочтительнее белого. Из девяти бросков в каждой паре кубиков обладатель первого кубика выигрывает в пяти случаях, обладатель второго — в четырех. Иными словами, вероятность выигрыша для одного из кубиков равна 5/9, для другого — 4/9. Эти вероятности легко подсчитать, проанализировав все возможные исходы для каждой пары кубиков. Поэтому если вы выбираете кубик после противника, то при верном выборе можете получить преимущество.
Преподаватель решил разыграть подарок среди 30 учеников класса. Один из учеников предложил взять 30 бумажек, пометить одну из них, сложить бумажки пополам, перемешать и раздать ученикам. Преподаватель предложил более простой и быстрый способ: он загадает число от 1 до 30 и запишет его на листе бумаги. Затем каждый из учеников будет называть число, пока кто-нибудь не угадает число, загаданное преподавателем. Один ученик на заднем ряду возразил и сказал, что у него намного меньше шансов выиграть, чем у сидящих на первых рядах. Он сказал, что, скорее всего, он даже не сможет назвать число, так как до него кто-то почти наверняка назовет верный ответ. Прав ли этот ученик, или же, наоборот, преподаватель предложил справедливый способ розыгрыша?
Преподаватель предоставляет всем ученикам равные шансы, каждый имеет вероятность выигрыша в 1/30. Очевидно, что вероятность выигрыша для первого ученика равна 1/30, так как он может выбрать любое из 30 чисел. Вероятность выигрыша второго ученика равна 29/30 * 1/29 = 1/30 — это вероятность того, что первый ученик ошибется (29/30), а второй — нет (1/29). Для третьего ученика эта вероятность равна 29/30 • 28/29 • 1/28 = 1/30 и так далее. С другой стороны, заметим, что вероятность выигрыша для первого ученика однозначно равняется 1/30, и если бы для каждого последующего она уменьшалась, то сумма вероятностей оказалась бы меньше 1. Это абсолютно невозможно, так как 30 учеников назовут все 30 возможных чисел и один из них обязательно угадает.
Некий игрок в рулетку всегда ставит на четное или нечетное. Если он угадывает, то выигрывает столько же, сколько поставил; если ошибается, то теряет свою ставку. Он решает каждый раз ставить 1/10 от суммы, которая есть у него на руках. Если он начнет игру со 100 евро, сделает 10 ставок подряд, выиграв 5 раз и проиграв 3 раз, сколько денег у него останется — больше, меньше или столько же, сколько было вначале? Эту задачу можно обобщить для произвольной стартовой суммы, например, m евро и ставки в 1/n от суммы, которая находится на руках у игрока перед очередной ставкой.
Может показаться, что после 5 выигрышей и 5 проигрышей у игрока будет столько же денег, что и вначале. Однако это не так, и в действительности у него останется меньше денег. Выигрыш увеличивает сумму денег на 1/10, что равносильно умножению на 1,1. Проигрыш уменьшает сумму на 1/10, что равносильно умножению на 0,9. Поэтому после 5 выигрышей и 5 проигрышей (независимо от того, в каком порядке они происходили) имеем 100 * 1,15 • 0,95 = 100 • 1,61051 * 0,59049 = 100 • 0,95099 ≈ 95,099 евро. Игрок потеряет около 5 евро. Подобные рассуждения можно обобщить для произвольного случая. Тот факт, что итоговая сумма всегда будет меньше начальной, объясняется тем, что (1 + 1/n)(1 - 1/n) = 1 - 1/n2, что всегда меньше 1. При умножении начальной суммы на число, меньшее 1, мы всегда получим меньшее число.
Одна из элементарных задач теории вероятностей с очень удивительным результатом формулируется так. Какова вероятность того, что среди 25 человек найдутся двое, у которых день рождения приходится на один и тот же день? Учитывая, что в году 365 дней (не будем учитывать високосные), а в группе всего 25 человек, интуиция подсказывает, что итоговая вероятность будет невелика и в любом случае меньше 1/2. Однако расчеты с применением теории вероятностей показывают, что эта вероятность будет больше 1/2.
Так как в нашей группе может быть двое и более людей, дни рождения которых приходятся на один день, можно вычислить вероятность того, что все члены группы родились в разные дни. Для этого упорядочим членов группы: день рождения первого человека может приходиться на любой из 365 дней, второго — на любой из 364 оставшихся, третьего — на любой из 363 оставшихся и так далее. Следовательно, вероятность того, что все 25 человек родились в разные дни, равна
Отсюда получим вероятность того, что дни рождения как минимум у двух человек совпадают: 1 - 0,4313 = 0,5687 > 1/2. В действительности эта вероятность будет превышать 1/2 уже для группы из 23 человек.
Случайность не имеет памяти
Обычно интуиция нас подводит при определении независимых событий. Допустим, что мы наблюдаем за игрой в рулетку и выпало 10 четных чисел подряд. Мы решаем поставить на четное или нечетное. Что выбрать? Основы теории вероятностей подсказывают, что это безразлично, так как число, которое выпадет следующим, с одинаковой вероятностью может быть как четным, так и нечетным. Однако подобную ситуацию, про которую говорят, что «шарик не имеет памяти», не всегда так просто определить. Мы покажем это на примере следующих задач.
Преподаватель математики предложил студентам бросить монету много раз, например 150, и записать результаты, обозначив орел за 1 и решку за 0. Двое его учеников получили такие результаты:
Роман:
01011001100101011011010001110001101101010110010001
01010011100110101100101100101100100101110110011011
01010010110010101100010011010110011101110101100011.
Борис:
10011101111010011100100111001000111011111101010101
11100001010001010010000010001100010100000000011001
00001001111100001101010010010011111101001100011010.
Преподаватель изучил результаты и заметил, что что-то не так. Один из учеников провел эксперимент верно, но другой посчитал, что бросать монету необязательно и достаточно просто записать произвольную последовательность нулей и единиц. Увы, но он недостаточно хорошо изучил теорию вероятностей, и преподаватель быстро определил того, кто сжульничал. Кто из двух учеников не бросал монету?
Равномерное распределение нулей и единиц в результатах Романа заставило преподавателя подозревать, что сжульничал именно он. Так, если сравнить распределение нулей и единиц в результатах Романа и Бориса, то мы увидим, что результаты похожи и «правдоподобны» (78 против 72 у первого из учеников, 70 против 80 у второго). Однако в результатах Бориса присутствуют последовательности из четырех, пяти и даже девяти одинаковых чисел подряд, а в результатах Романа последовательности из единиц или нулей очень коротки (максимум три единицы или нуля подряд). Именно это и наводит на подозрения.
Проанализируем этот факт с точки зрения условной вероятности. Учитывая, что каждый бросок монеты никак не зависит от предыдущих, после каждого результата единицы и нули должны появляться примерно с одинаковой частотой. Видим, что в результатах Романа после одной единицы снова единица встречается 47 раз, ноль — 30 раз. После двух единиц подряд единица встречается всего 5 раз, в то время как ноль — 18. После каждой из 5 последовательностей из трех единиц всегда находится ноль. Подобную картину мы наблюдаем только в результатах Романа. В результатах Бориса все иначе: например, после двух единиц подряд снова единица встречается 18 раз, ноль — 14 раз; после трех единиц подряд 9 раз встречается единица и 9 раз — ноль. Следовательно, представление Романа о том, что в распределении нулей и единиц не должно быть «длинных» участков, состоящих только из нулей или только из единиц, и позволило преподавателю определить жульничество.
В следующей задаче обсуждение того, как информация о предыдущих событиях влияет (или не влияет) на вероятность последующих, еще интереснее. Игра, о которой мы сейчас расскажем, является адаптацией классической дилеммы заключенного и показывает, насколько сложно рассчитать, как именно определенная информация влияет на вероятность.
Одно из заданий телеконкурса состоит в том, что нужно угадать, за какой дверью находится приз. Конкурсанта просят выбрать одну из трех дверей. Затем ведущий конкурса (он знает, за какой дверью находится приз) открывает одну из двух дверей, не выбранных конкурсантом, за которой нет приза, и предлагает поменять изначально выбранную дверь на другую закрытую. Стоит ли принимать предложение ведущего, чтобы повысить шансы на победу?
Химик Лайнус Полинг (1901-1994) получил первую Нобелевскую премию в 1954 году за работы в области квантовой химии. После вручения ему второй премии — Нобелевской премии мира — в 1962 году за кампанию против испытаний ядерного оружия лауреат шутливо заметил, что получить первую премию было очень сложно: вероятность этого составляла один на шесть миллиардов (это население Земли). Вторая, по его мнению, была не столь почетна: вероятность этого равнялась одному на несколько сотен (число живущих на тот момент лауреатов Нобелевской премии). Где же кроется ошибка в этих забавных, но неверных рассуждениях?
Чтобы считать, что вероятность получения второй Нобелевской премии зависит только от числа ее прошлых лауреатов, необходимо, чтобы Нобелевский комитет решил дать премию тому, кто уже получал ее ранее. Однако если мы не располагаем такой информацией, то получить вторую премию с точки зрения теории вероятности столь же сложно, что и первую, так как комитет не принимает во внимание, кто уже получал премию раньше, а кто — нет.
Очевидно, что рассматривать получение Нобелевской премии исключительно с точки зрения теории вероятностей — уже шутка, так как все зависит не столько от случая, но главным образом от заслуг человека.
Лайнус Полинг (справа) получает Нобелевскую премию мира.
Это знаменитая противоречивая задача теории вероятностей, в которой нужно определить, как изменяется вероятность того, что за закрытой дверью находится приз. Когда конкурсант выбирает одну из дверей, вероятность выигрыша равна 1/3. Эта вероятность не изменяется, когда ведущий выбирает одну из оставшихся дверей (за которой нет приза) и открывает ее, поскольку уже известно, что за одной из двух других дверей нет приза. Однако изменяется вероятность того, что приз находится за другой закрытой дверью: она равнялась 1/3 и стала равна 2/3 (вероятности для закрытых дверей складываются). Поэтому конкурсант должен согласиться изменить свой выбор, потому что в этом случае вероятность выигрыша составит 2/3. Противоречивость задачи в том, что вероятность выигрыша для изначально выбранной двери не изменяется. Если бы ведущий не выбирал одну из дверей, за которой нет приза, а вместо этого конкурсант указывал на одну из двух оставшихся дверей и спрашивал, находится ли за ней приз, а ведущий ответил бы «нет», то в этом случае вероятность выигрыша для изначально выбранной двери изменилась бы с 1/3 на 1/2.
Эта игра допускает одно интересное обобщение. Пусть имеется n дверей, и за одной из них находится приз. Конкурсант выбирает одну дверь (не открывая ее), ведущий открывает одну из других дверей, за которой нет приза, а затем разрешает изменить первоначальный выбор. Затем ведущий открывает другую дверь (одну из всех закрытых, за исключением той, что конкурсант выбрал последней), за которой также нет приза, и снова разрешает конкурсанту изменить выбор. Игра продолжается до тех пор, пока не останется две двери и конкурсант должен будет сделать окончательный выбор. Как нужно действовать конкурсанту на протяжении игры, чтобы вероятность выигрыша была наибольшей? Какой в этом случае будет вероятность выигрыша?
Будем отталкиваться от того факта, что при открытии двери ведущим изменяются вероятности для всех закрытых дверей, кроме той, которую выбрал конкурсант. Следовательно, вероятность выигрыша будет наибольшей тогда, когда игрок не будет менять свой выбор, пока не останутся лишь две закрытые двери. В этом случае игрок изменит свой выбор и вероятность победы будет равна (n - 1)/n. Таким образом, при первом выборе вероятность выигрыша составляет 1 /n (так как число дверей равно n). Если игрок не меняет свой выбор до момента, когда останутся лишь две закрытые двери, для изначально выбранной двери вероятность выигрыша будет равна 1/n, для другой — (n - 1)/n, которая и будет наибольшей. Если же, напротив, на каком-то из промежуточных шагов игрок изменит свой выбор, в этом случае определить вероятности будет несколько сложнее. Результат будет зависеть от того, сколько раз игрок изменит свой выбор и когда. В любом случае вероятность в этом случае будет выше 1/n, так как все вероятности увеличатся по отношению к исходной минимум один раз. Когда останутся только две двери, ни для одной из них вероятность выигрыша не будет равной (n - 1)/n. Если вам интересно подробнее ознакомиться с этой игрой, попробуйте вычислить вероятности для разных стратегий. Получить верный результат будет непросто, но очень интересно.
Математика и ожидание
Одно из наиболее важных понятий, которое следует учитывать, принимая решения в азартных играх, — математическое ожидание. Перед тем как дать этому термину точное определение, рассмотрим несколько примеров. Допустим, нам предлагают сыграть в такую игру: бросают две монеты, если выпадает две решки, выигрыш равен 4 евро, если выпадает два орла — 1 евро, если выпадает орел и решка — мы проигрываем 3 евро. Стоит ли играть по таким правилам? Сколько мы надеемся выиграть (или проиграть)?
При броске двух монет имеется четыре возможных результата: две решки (р = 1/4), два орла (р = 1/4), орел и решка (р = 1/4), решка и орел (р = 1/4). Каждые четыре броска в среднем один раз выпадут две решки, один раз — два орла и два раза — орел и решка. Следовательно, в среднем наш выигрыш составит 1 • 4 + 1 • 1 + 2 • (—3) = -1 евро. Это означает, что играть невыгодно и в среднем каждые четыре броска мы будем проигрывать 1 евро, то есть 25 центов за игру. Аналогичный результат можно получить, умножив вероятности для каждого исхода на соответствующий выигрыш (или проигрыш, который будет выражаться отрицательным числом) и сложив полученные результаты. В таком случае получим
1/4.4 + 1/4.1 + 1/2 • (-3) = -1/4 евро.
Рассмотрим второй пример. В игре с обычным кубиком банк платит 6 фишек, если выпадает шестерка, 4 фишки, если выпадает нечетное число, в остальных случаях мы не получаем ничего. Сколько нужно ставить в каждом розыгрыше, чтобы игра была сбалансированной?
Учитывая, что р(6) = 1/6 и р(нечетное число) = 1/2, в каждом розыгрыше мы ожидаем выиграть 1/6•6 + 1/2•4 + 1/3•0 = 3 фишки. Следовательно, игра будет равновесной (ни банк, ни игрок не будут иметь преимущества), если каждая ставка будет равняться 3 фишкам.
Эти примеры позволяют нам ввести понятия математического ожидания и равновесных игр, а также привести их определения в общем виде. Пусть имеются события S1 S2, S3 ..., Sn, являющиеся попарно несовместными (ни одно из событий не может произойти одновременно с другим), которые могут произойти в азартной игре. Вероятности событий равны р1 р2, р3 ..., рn (выполняется условие p1 + p2 + p3 + … + рn = 1), суммы ставок соответственно равны r1, r2, r3 ..., rn. Ожидаемый выигрыш или математическое ожидание М [X] игры или случайного события, где результатом является одно из событий S1, S2, S3, ..., Sn, определяется следующим образом:
М [X] = р1 • r1 + р2 • r2 + р3 • r3 + ... + pn • rn.
На основании этого определения говорят, что игра является справедливой (или равновесной), если математическое ожидание (средний выигрыш на каждом ходу) совпадает с суммой сделанной ставки. Также говорят, что общее математическое ожидание игры (ожидаемая сумма выигрыша минус сумма сделанных ставок) равна 0.
Рассмотрим, как можно определить еще одним способом, является ли азартная игра равновесной, с помощью математического ожидания.
Игра с тремя кубиками
Игра заключается в следующем: игрок ставит 1 евро на число от 1 до 6, например на 3. Затем бросают три обычных кубика. Если 3 выпадает один раз, выигрыш составляет 1 евро, если 3 выпадает два раза, выигрыш равен 2 евро, если выпадает три раза — 3 евро. Кроме этого, при каждом выигрыше игроку возвращается сумма сделанной ставки в 1 евро. Если ни на одном из кубиков не выпадает 3, игрок проигрывает свою ставку в 1 евро. Является ли игра равновесной, либо же одна из сторон имеет преимущество?
Хотя на первый взгляд может показаться, что преимущество имеет игрок, на самом деле все по-другому. Можно рассуждать так: поскольку бросают три кубика и вероятность того, что выпадет заданное число, равна 1/6 для каждого кубика, вероятность выигрыша составляет как минимум 1/2. Но, кроме этого, есть вероятность того, что выбранное число выпадет два или даже три раза, поэтому шансы игрока на победу выше.
Однако подобное рассуждение неверно. Существует 216 возможных исходов (6*6* 6). Лишь в одном случае (р = 1/216) загаданное число выпадет три раза, в 15 случаях — дважды (р = 15/216), и в 75 случаях игрок получит сумму, равную ставке (р = 75/216). Следовательно, в 125 случаях (216 - 1 - 15 - 75) игрок теряет свою ставку.
Заметим, что исходов, когда игрок проигрывает (125), больше, чем тех, когда он выигрывает (91). Если вычислить математическое ожидание для ставки в 1 евро, получим:
3 • 1/216 + 2 • 15/216 + 1 • 75/216 - 1 • 125/216 = 108/216 - 125/216 = -17/216 = -0,0787...
Следовательно, преимущество имеет банк, который в среднем выигрывает почти 8 центов с каждого поставленного евро.
Несмотря на то что мы описали математическое ожидание на примере азартных игр, это понятие применимо к различным случайным событиям, которые порой не имеют ничего общего с азартными играми, как в следующем примере.
Ожидаемый платеж
В следующем июле состоится конференция, на которую вы хотели бы поехать, но не знаете, получится ли это сделать из-за напряженного расписания и проблем с работой.
Если заплатить вступительный взнос до 1 марта, то он составит 150 евро. Если вы не сможете поехать, платеж возвращен не будет. При оплате после 1 марта (и даже непосредственно по прибытии на конференцию) сумма составит 200 евро.
28 февраля вы оцениваете вероятность того, что сможете поехать на конференцию. Пусть эта вероятность равна p. Что нужно сделать в зависимости от значения p — заплатить заранее или непосредственно по приезде?