Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Дилемма заключенного и доминантные стратегии. Теория игр - Хорди Деулофеу на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

1 в двоичной системе: 1

3 в двоичной системе: 11

2 в двоичной системе: 10

Теперь сумма цифр в каждом столбце четная. Любой ход второго игрока сделает сумму цифр в одном из столбцов нечетной. После этого первый игрок сможет снова сделать все суммы цифр четными и так далее до финального положения. В финальном положении все цифры будут равны 0. Ноль — четное число, то есть суммы цифр во всех столбцах снова будут четными.

Игра 5: Мариенбад

На столе четыре кучки фишек. В кучках лежат 1, 3, 5 и 7 фишек. На каждом ходу игрок берет любое число фишек из выбранной кучки (минимум одну фишку, максимум все). Выигрывает тот, кто забирает последнюю фишку. Для какого игрока существует выигрышная стратегия?

Аналогично предыдущему случаю получим:

1 в двоичной системе: 1

3 в двоичной системе: 11

5 в двоичной системе: 101

7 в двоичной системе: 111

Так как в начальной позиции суммы цифр в каждом столбце четные, первый игрок не может выиграть. Выигрышная стратегия существует для второго игрока. Любой ход первого игрока сделает сумму цифр хотя бы в одном столбце нечетной. Допустим, что первый игрок взял одну фишку из кучки с тремя фишками. Получим:

1 в двоичной системе: 1

2 в двоичной системе: 10

5 в двоичной системе: 101

7 в двоичной системе: 111

NIMROD

В начале 50-х годов XX века инженеры английской компании Ferranti создали первый компьютер, предназначенный только для игр. Он назывался NIMROD. Первые три буквы NIM означали игру, для которой он и был спроектирован. На панели компьютера находились светящиеся лампочки, которые представляли положение фишек в игре. Прототип компьютера был представлен на выставке «Фестиваль Британии» в 1951 году. Считается, что это послужило началом эпохи электронных игр.

Теперь второй игрок должен сделать такой ход, чтобы сумма цифр в правом столбце стала четной, а остальные не изменились, так как они уже четные. Значит, нужно взять одну фишку из любой кучки, кроме второй. В двоичной системе это означает, что нужно заменить 1 на 0 в правом столбце.

Хотя найти стратегию игры Ним было намного сложнее, чем для предыдущих игр, о которых мы рассказали, для всех этих игр справедлива одна общая идея. Нужно найти равновесную ситуацию, которая совпадает с конечным положением, и определить, какой из игроков всегда сможет сохранять подобную ситуацию, а какой — никогда. Так, в первой игре этой главы («Игра 1: выигрывает первый») равновесная ситуация такова: нужно оставить на столе число фишек, кратное 3. Во второй игре («Игра 2: выигрывает второй») нужно записать число, кратное 11, а в последней игре Ним нужно оставить в каждой кучке такое число фишек, чтобы при записи количества фишек в двоичной системе сумма цифр в столбцах всегда была четной.

Во многих случаях для игры Ним используются противоположные правила: тот, кто забирает последнюю фишку, не выигрывает, а проигрывает. В этом случае выигрывает тот же игрок, что и при обычных правилах. Изначально используется та же стратегия, единственное различие появляется, когда во всех кучках остается менее двух фишек. В этом случае выигрышный ход — оставить всего одну фишку в нечетном числе кучек. В игре по обычным правилам нужно оставить одну фишку в четном числе кучек.

Как только мы узнали выигрышную стратегию для любой игры типа Ним, возникает вопрос: можно ли создать игру подобного типа, для которой бы не существовало выигрышной стратегии в общем случае? Ответ на этот вопрос положительный и ведет нас к так называемым играм типа Нимбус. Эти варианты игры Ним имеют одно существенное отличие: если мы хотим взять больше одной фишки из определенного ряда (кучки), это можно сделать только тогда, когда фишки расположены рядом, то есть между ними нет промежутков, образованных после предыдущих ходов. Появляется правило, касающееся расположения фишек в рядах, что раньше не учитывалось. Это аналогично следующему: всякий раз, когда мы берем фишки из ряда, этот ряд разделяется на два. Это будет происходить всегда, если мы не будем снимать одну из крайних фишек. Поскольку образуются новые кучки, игра меняется так, что для нее уже нельзя использовать стратегию игры Ним.

ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Это позиционная система счисления, в которой любое число можно представить с помощью всего двух цифр: 0 и 1. Чтобы преобразовать двоичное число в десятичное, нужно заменить все единицы степенями двойки. Показатели этих степеней будут зависеть от позиции цифры: правый разряд соответствует 20, следующий — 21 и так далее. Например, двоичное число 110101 в десятичной системе выглядит так: 1 • 20 + 0 • 21 + 1 • 22 + 0 • 23 + 1 • 24 + 1 • 25 = 1 + 4 + 16 + 32 = 53.

Аналогично для записи десятичного числа в двоичном виде нужно разделить его на 2, полученный результат снова разделить на 2 и так далее до тех пор, пока результатом деления не будет 1. Последний результат деления будет первой цифрой справа. Все прочие остатки отделения, от последнего к первому, составят следующие разряды (остаток от деления на 2 может равняться только 0 или 1). Например, 39 в двоичной системе записывается как 100111, так как 39:2 дает 19 (и остаток 1), 19:2 дает 9 (остаток 1), 9:2 дает 4 (остаток 1), 4:2 дает 2 (остаток 0), 2:2 дает 1 (остаток 0). Мы выразили число в виде суммы степеней двойки.

Итак, 39 =1 + 2 + 4 + 32 = 1•20 +1•21+1•22+0•23+0•24+1•25 = 100111 по основанию 2. Хотя двоичная нотация появилась сравнительно недавно, свойство, на котором она основана («всякое число можно представить в виде суммы различных степеней двойки»), было известно и применялось еще в древности. Например, древние египтяне использовали для умножения такую систему. Один из сомножителей удваивался, второй делился на 2. Если число было нечетным, то на 2 делилось предыдущее число. Этот метод дает верный результат именно благодаря указанному свойству.

Страница бюллетеня Французской академии наук, посвященная двоичной системе счисления, разработанной Лейбницем в 1703 году.

НЕСКОЛЬКО ИНТЕРЕСНЫХ ИГР

Вращаем кубик. Это стратегическая игра для двух игроков. Первый игрок ставит кубик на стол выбранной стороной вверх. Второй игрок поворачивает кубик на четверть оборота так, что на верхней грани будет уже другое число очков, и прибавляет это число к первому. Затем каждый игрок по очереди вращает кубик на четверть оборота (так можно получить любое число, кроме тех, что расположены на верхней или нижней грани кубика) и прибавляет число очков на верхней грани к общей сумме. Тот, кто набирает в сумме 31, выигрывает.

Какой из игроков имеет преимущество? Как нужно играть, чтобы всегда выигрывать?

Разрезаем прямоугольник. Это стратегическая игра для двух игроков. На листе бумаги в клетку нужно нарисовать прямоугольник размерами 17 × 15 клеток. Затем нужно пометить квадратик в нижнем правом углу. Каждый из игроков своим ходом делит прямоугольник на две части вертикальной или горизонтальной линией и удаляет ту часть прямоугольника, которая не содержит маленький отмеченный квадрат. Тот, кто не сможет разделить прямоугольник (то есть от прямоугольника останется только один отмеченный квадратик), проигрывает.

Какой из игроков имеет преимущество? Как нужно играть, чтобы всегда выигрывать?

Пересекаем круг. Это стратегическая игра для двух игроков. На листе бумаги нужно нарисовать окружность и обозначить на ней восемь произвольных точек. На каждом ходу игрок соединяет две точки отрезком. Он может соединить любые две точки, кроме уже соединенных, но нарисованный им отрезок не должен пересекать никакой другой отрезок. Игрок, которому не удастся провести такой отрезок, проигрывает.

Какой из игроков имеет преимущество? Что изменится, если изменить начальное число точек?

Цели и правила игры: эквивалентные и отличающиеся игры

При анализе целей и правил игры можно увидеть, что во многих случаях на первый взгляд отличающиеся стратегические игры на самом деле эквивалентны. И напротив, очень похожие игры в действительности сильно отличаются друг от друга и выигрышные стратегии для них явно разнятся.

Игра 6: продвижение по шестиугольным клеткам

Игровое поле изображено на рисунке 1. Каждый игрок берет единственную фишку, которая изначально расположена в ячейке S, и передвигает ее на соседнюю клетку. При этом он всегда должен двигаться вправо — по горизонтали или по диагонали. Игрок, который поставит фишку в крайнюю клетку М, выигрывает.

Рисунок 1.

Если читатель попытается решить игру сам, то легко увидит, в какие клетки нужно ставить фишку, чтобы победить. Если рассуждать в обратном направлении, то станет понятно, что первый игрок будет всегда выигрывать, если будет ставить фишку в помеченные крестиком клетки. Совсем не очевидно, что эта игра аналогична игре 1 («выигрывает первый»), если не заметить, что допустимые ходы можно интерпретировать как переход на два шага вперед (если мы передвигаем фишку в горизонтальном ряду) или на один шаг вперед (если мы двигаем фишку по диагонали и переставляем ее в другой ряд). Если пронумеровать клетки таким способом, то станет четко видна аналогия между этими играми (рисунок 2).

Рисунок 2.

Игра 7: поставь последнюю фишку

На игровой доске всего один ряд из шести клеток. На нем расставлены три фишки. На каждом ходу игрок выбирает фишку и передвигает ее вправо на любое количество клеток (минимум на одну и максимум на пять, в крайнюю правую клетку). Цель игры — поставить все фишки в крайнюю правую клетку. Тот, кто ставит в эту клетку последнюю фишку, выигрывает. В одной клетке могут одновременно находиться несколько фишек. Заметим, что эта игра эквивалентна первой рассмотренной нами версии игры Ним (игра 4): каждая фишка соответствует кучке, перенос фишки вправо соответствует взятию фишек из кучки в игре Ним. Когда фишка попадает в крайнюю правую клетку, это равносильно тому, что из кучки в игре Ним взяты все фишки. Рассмотрим еще две игры и проанализируем их эквивалентность.

Игра 8: цзяньшицзы

На стол выкладываются две кучки фишек, например 7 и 5 фишек. Каждый игрок может брать из выбранной кучки любое число фишек (минимум одну). Он также может брать фишки из двух кучек сразу, но в этом случае нужно брать одинаковое число фишек из каждой кучки.

Игра 9: спасти ферзя

На одну из клеток шахматной доски, например клетку h8, ставится ферзь. Каждый игрок может передвигать ферзя на любое количество клеток влево, вниз или по диагонали (то есть одновременно влево и вниз). Тот, кто поставит ферзя в клетку a1, то есть в левую нижнюю клетку, выигрывает.

Первая игра под названием цзяньшицзы — это игра типа Ним, в которой можно брать фишки из нескольких кучек. Эта возможность до сих пор не рассматривалась, и она существенно осложняет поиск общей выигрышной стратегии. Анализ возможных ходов во второй игре, «Спасти ферзя», позволяет сразу же увидеть, что эта игра аналогична первой. Ходы ферзя нужно рассматривать как взятие фишек: движение в горизонтальном ряду — это взятие фишек из первой кучки, движение в вертикальном ряду — взятие фишек из второй кучки, движение по диагонали — взятие одинакового количества фишек из обеих кучек сразу.

Из этих примеров становится понятно, что порой игры, кажущиеся совершенно разными, на самом деле полностью эквивалентны. Для этого достаточно иметь возможность преобразовать цель и правила одной игры в цель и правила другой. Однако в других случаях происходит обратное. Игры, которые кажутся полностью аналогичными, в действительности очень отличаются, особенно если разбирать их выигрышные стратегии. Рассмотрим еще одну игру, которая, кажется, полностью совпадает с игрой 1, о которой мы говорили выше.

Игра 10: маргаритка

Нарисуем маргаритку с 11 лепестками и поставим по одной фишке на каждом лепестке. На каждом ходу игрок может брать одну или две фишки, причем две фишки можно брать только с соседних лепестков.

Начальная позиция в игре«Маргаритка».

Эта игра очень похожа на первую игру из этой главы, но фишек не 20, а 11. Кажется, что выигрышная стратегия для первого игрока — взять две фишки на первом ходу, затем всегда оставлять число фишек, кратное трем. Однако наложенное ограничение (можно брать не любые две фишки, а только соседние) полностью нейтрализует эту стратегию. Теперь главную роль играет не количество фишек, а их расположение. Фактически исходное число фишек неважно, так как если фишек больше трех, то выигрышная стратегия звучит одинаково для любого числа фишек.

Эта игра уже не относится к семейству игр Ним. Она принадлежит к играм типа Нимбус, и общая стратегия для игр подобного типа неизвестна. Здесь мы рассказали о простейшей из игр такого типа. В нашем конкретном примере можно заметить, что второй игрок всегда будет выигрывать независимо от исходного числа фишек, если будет использовать симметричную стратегию. Попрактиковавшись в этой игре, можно увидеть, что если один из игроков разделит фишки на две одинаковые группы (если все фишки в одной группе находятся рядом, то и во второй они также должны находиться рядом), то будет всегда выигрывать, используя симметричную стратегию. Иными словами, он должен будет повторять для своей группы фишек ходы, которые делает соперник на другой группе фишек, причем положение фишек должно оставаться симметричным. Первый игрок не может разделить фишки на две группы первым ходом. Для этого ему нужно будет взять две фишки, не расположенные рядом друг с другом, что невозможно. Значит, после его хода между фишками образуется промежуток, и второй игрок сможет образовать второй промежуток, разделив фишки на две группы.

«ВАВИЛОН», ИГРА БРУНО ФАЙДУТТИ

Современные абстрактные стратегические игры, несмотря на очевидную простоту, очень сложно анализировать. Хотя для них можно определить существование выигрышной стратегии, найти такую стратегию почти невозможно. Игра «Вавилон» французского автора Бруно Файдутти — наглядный пример подобных игр. На стол кладутся 12 фишек четырех разных цветов, по 3 фишки каждого цвета. Каждый из двух игроков берет одну стопку (изначально все стопки имеют высоту в 1 фишку) и кладет ее поверх другой, соблюдая следующие условия: одну стопку можно поставить на другую, если они имеют одинаковую высоту или же если верхние фишки обеих стопок одинакового цвета. Тот игрок, который не может поставить стопку поверх другой, проигрывает.

Хотя на первый взгляд кажется, будто решение можно найти, рассмотрев частные случаи с последующим обобщением, тщательный компьютерный анализ показывает, что найти стратегию, которую мог бы запомнить и использовать человек, невозможно.

«Вавилон»— игра, созданная Бруно Файдутти.

Игры и псевдоигры

Существуют игры, похожие на те, о которых мы только что говорили. Однако в действительности их нельзя назвать стратегическими играми, так как ни один из игроков не может повлиять на исход партии. Другими словами, выигрышная стратегия содержится в самих правилах, поэтому решения, принимаемые игроками, не имеют значения и не влияют на исход партии. Игры подобного типа, часто встречающиеся среди математических игр, получили название псевдоигр. Найти выигрышную стратегию для таких игр невозможно, так как ее не существует. Вместо этого можно доказать, что результат игры действительно не зависит от решений игроков и что правила однозначно определяют, кто будет всегда выигрывать. Рассмотрим три примера псевдоигр.

Игра 11: только нечетные

На столе лежит 20 фишек. Каждый из двух игроков своим ходом может взять 1, 3 или 5 фишек. Тот, кто забирает последнюю фишку, выигрывает. Какой из игроков имеет преимущество — тот, кто ходит первым или вторым? Что произойдет, если изменится число фишек? Эта игра является стратегической, как предыдущие, или же отличается от них?

Попрактиковавшись в этой игре, мы быстро увидим, что второй игрок всегда выигрывает, и первый игрок никак не может этому помешать. Можно сказать, что второй игрок будет выигрывать даже тогда, когда специально захочет проиграть. В отличие от предыдущих игр в этой игре определяющим условием является начальное число фишек и количество фишек, которое могут забирать игроки на каждом ходу. Значит, в этом случае нельзя говорить о выигрышной стратегии, так как победитель игры определен ее правилами.

Если изначально на столе лежит 20 фишек (или любое другое четное число) и первый игрок берет 1, 3 или 5 фишек (или любое другое нечетное число), то на столе останется нечетное число фишек (если вычесть из четного числа нечетное, получим нечетное). После этого второй игрок также должен взять нечетное количество фишек, и на столе останется четное число фишек (если вычесть из нечетного числа нечетное, получим четное число). Поэтому после хода первого игрока на столе всегда будет оставаться нечетное число фишек, а после хода второго игрока — четное. Так как 0 является четным числом, то побеждать всегда будет второй игрок вне зависимости от того, какие ходы будут совершать оба игрока. Аналогично, если начальное число фишек нечетно, победа всегда будет оставаться за первым игроком.

Игра 12: круги и квадраты

Нарисуем несколько кругов и квадратов, расположив их в ряд. Каждый игрок может убирать две одинаковые фигуры (два круга или два квадрата) и заменять их одним кругом, либо же забирать две разные фигуры и заменять их одним квадратом. Количество фигур будет постоянно уменьшаться, и в конце игры останется только одна. Если останется квадрат, выигрывает первый игрок, если останется круг — второй игрок. Существует ли стратегия, которая позволяет всегда выигрывать? Что произойдет, если изменить начальное число кругов и квадратов? Является ли эта игра стратегической? Рассмотрим начальную позицию, изображенную на рисунке ниже.

Сыграв несколько партий для такой расстановки, мы увидим, что второй игрок, кажется, всегда выигрывает (последней фигурой всегда будет круг). Если изменить число кругов, то кажется, что результат останется прежним. Если изменить число квадратов, то исход игры изменится.

ЕЩЕ НЕСКОЛЬКО ИНТЕРЕСНЫХ ИГР

Замкнуть треугольник. Это стратегическая игра для двух игроков. На листе бумаги нужно нарисовать окружность и обозначить на ней шесть произвольных точек. На каждом ходу игрок соединяет две точки отрезком. Один из игроков использует черный карандаш, второй игрок — красный карандаш. Каждый игрок может соединять любые две точки, кроме уже соединенных. Тот, кто нарисует треугольник со сторонами одного цвета, выигрывает.

Какой из игроков имеет преимущество? Как нужно играть, чтобы всегда выигрывать? Что изменится, если изменить начальное число точек? Можно играть по обратным правилам: тот, кто нарисует треугольник одного цвета, проигрывает. Что произойдет в этом случае?

Плитка шоколада (1). Плитка шоколада состоит из 28 окошек, расположенных в 4 ряда по 7 квадратиков. Первый игрок делит плитку на две части, не ломая ни одно из окошек. Второй игрок берет одну из полученных частей (другая откладывается в сторону) и снова делит ее. На каждом ходу игрок берет одну из двух только что полученных частей и делит ее на две части вдоль линий, разделяющих окошки. Тот, кто не сможет разделить плитку подобным образом, проигрывает.

Как нужно играть, чтобы выигрывать? Что изменится, если плитка будет состоять из 27 окошек, расположенных в 3 ряда по 9?

Плитка шоколада (2). На этот раз плитка состоит из 50 квадратных окошек, расположенных в 5 рядах по 10. Каждый игрок делит плитку (или ее часть) вдоль вертикальной или горизонтальной линии, не ломая ни одно из окошек. На этот раз ни одна из частей не откладывается в сторону, все они продолжают участвовать в игре. Первый игрок, который своим ходом получит одно отдельное окошко, проигрывает.

Как нужно играть, чтобы выигрывать? Что произойдет, если победителем будет объявляться тот, кто первым получит одно отдельное окошко?

Чтобы понять, что на самом деле это не игра и что победитель всегда определяется начальным положением фигур и самими правилами, нужно проанализировать, как меняется число квадратов по ходу партии. После каждого хода число квадратов может либо остаться неизменным (если два круга заменяются одним кругом, или если квадрат и круг заменяются квадратом), либо уменьшиться на два (если два квадрата заменяются одним кругом). Это означает, что если начальное число квадратов четное, то оно останется четным в течение всей партии. Следовательно, квадрат не может остаться последней фигурой, так как единица — нечетное число.

В этой главе мы говорили о стратегических играх, а именно о тех, которые можно полностью проанализировать. Мы увидели, как математика помогает найти выигрышную стратегию для одного из игроков, если такая стратегия существует. Такие эвристические методы, как изучение частных случаев; предположение, что игра завершена, и рассуждение в обратном направлении; использование симметрии, применяются при решении математических задач и полезны при анализе игр подобного типа. Как только для игры найдена выигрышная стратегия, это уже не игра, а решенная математическая задача.

В общих чертах проанализированные игры принадлежат к играм типа Ним, где важно количество фишек, и к играм типа Нимбус, где, помимо количества, также важно расположение фишек, поэтому выигрышные стратегии для игр типа Ним здесь неприменимы. В целом стратегии для игр типа Нимбус определять сложнее.

Глава 3. Игры и азарт

Где заканчивается игра и начинается серьезная математика? <...> Для многих математика смертельно скучна и не имеет ничего общего с играми. Напротив, для большинства математиков это всегда игра, а также многое, многое другое.

Мигель де Гусман

В этой главе речь пойдет о взаимосвязи игр и вероятностей. Она стала очевидной сразу же, как только люди поняли возможность моделирования хаотических, случайных процессов. До этого в математике всегда говорилось о чем-то определенном, правильном, в чем можно быть уверенным. Можно сказать, что, когда были определены способы вычисления вероятностей, в математике началась новая эпоха. Этот раздел математики приобретал все большую важность по мере того, как становились известными все новые и новые области его применения. С приходом XX века предметами изучения и математического моделирования стали не только случайные процессы, но и хаос или нерегулярность фракталов.

Шевалье, который не хотел проигрывать. Азартные игры и появление вероятностей

В реальном мире сложные теории, касающиеся вероятностей, применяются в самых разных областях, так как в нашей жизни неопределенность встречается очень часто. Однако теория вероятностей берет свое начало именно в азартных играх. Можно утверждать, что теория случайных событий, основанная на понятии вероятности, начала формироваться во Франции в середине XVII века, в частности в 1654 году, в переписке Блеза Паскаля и Пьера Ферма, которые обсуждали вопросы, поставленные шевалье де Мере. Этот дворянин, знаток азартных игр, попросил Паскаля объяснить результаты некоторых азартных игр с игральными костями.

Антуан Гомбо, известный как шевалье де Мере (род. в Пуату, 1607—1685), посвятил большую часть жизни азартным играм и их анализу. Его интуитивные догадки много раз оказывались верными. По-видимому, он заработал приличную сумму различными азартными играми, где вероятность выигрыша и проигрыша одинакова. Например, такой считалась игра, где нужно было выбросить минимум одну шестерку броском четырех игральных костей. Однако Мере знал, что в этой игре один из игроков имеет преимущество. Он предложил новую игру, в которой требовалось минимум один раз выбросить две шестерки за 24 броска двух костей. Де Мере полагал, что преимущество одного из игроков здесь будет таким же, что и в исходной игре. Некоторое время спустя он убедился, что в действительности все происходит с точностью до наоборот. Поэтому примерно в 1654 году он обратился к Паскалю, чтобы тот нашел ошибку в его рассуждениях и объяснил, почему в новой игре у него не было преимущества.

Иллюстрация из «Книги игр» Альфонсо X Мудрого, на которой изображена игра в кости.

БЛЕЗ ПАСКАЛЬ (1623-1662)

Несмотря на смерть в раннем возрасте, этот французский ученый, математик и философ внес большой вклад в различные сферы науки и человеческой мысли. Он был вундеркиндом и уже в И лет участвовал в научных встречах, которые организовывал Марен Мерсенн. В 1640 году Паскаль публикует работу «Опыт о конических сечениях», в 1649 году подтверждает результаты работ Торричелли об атмосферном давлении. В 1642 году он сконструировал счетную машину, чтобы помочь отцу, сборщику налогов в Нормандии. Эта машина, получившая название паскалина, — одна из первых рабочих счетных машин. Некоторые экземпляры сохранились до наших дней и демонстрируются в музеях науки и техники. Счетная машина, предназначенная для расчетов в торговле, заинтересовала многих — от королевы Швеции Кристины до философа Готфрида Вильгельма Лейбница, который усовершенствовал машину Паскаля.

С вопросов шевалье де Мере об азартных играх началась переписка Паскаля и Пьера Ферма, в которой впервые формулируется теория вычисления вероятностей (Паскаль называл ее геометрией случайности). В пяти письмах, датированных 1654 годом, анализируются азартные игры, изучением которых до этого уже занимался Джероламо Кардано.

В еще одной работе в этой области, «Трактате об арифметическом треугольнике» (1654), Паскаль проанализировал и доказал свойства арифметического треугольника, известного под названием треугольник Паскаля. Треугольник Паскаля несколько лет спустя использовал Ньютон для определения биномиальных коэффициентов. В 1655 году Паскаль завершает занятия математикой и наукой вообще и удаляется в монастырь, посвятив остаток жизни философии и религии.

ПЬЕР ФЕРМА (1601-1665)

Это один из величайших математиков всех времен, несмотря на то что он не был профессиональным математиком и при жизни ему не удалось опубликовать свои труды, которые стали известны лишь благодаря переписке с великими учеными того времени: Декартом, Мерсенном и Паскалем.

Ферма изучал юриспруденцию и большую часть жизни провел в Тулузе, где приобрел известность как королевский советник парламента (т.е. член высшего суда) этого города. Это позволило ему в свободное время отдаваться подлинному увлечению — математике. Область математики, которая интересовала его сильнее всего и в которую он внес наибольший вклад, — теория чисел. Одна из его теорем (для любого натурального числа n>2 уравнение xn + yn = zn не имеет натуральных решений) была доказана лишь в конце XX века. Он также внес заметный вклад в геометрию и определение экстремумов функций для решения задач оптимизации еще до того, как было создано дифференциальное исчисление. В его переписке 1654 года с Блезом Паскалем впервые предприняты попытки определить понятие вероятности.

Укрощение случайности. Математическое изучение вероятностей

Чтобы познакомиться с понятием вероятности и его основными свойствами, попробуем решить две задачи, предложенные шевалье де Мере. Точная формулировка первой задачи такова: какова вероятность выбросить 6 очков минимум один раз, бросив игральные кости четыре раза? Для решения этой задачи используется собственное свойство вероятности. Оно гласит: вероятность того, что произойдет некоторое событие либо обратное ему, равна 1. Поэтому сначала мы вычислим вероятность того, что ни в одном из бросков игральных костей не выпадет 6. Очевидно, что при броске одного кубика p(не 6) = 5/6. Так как при броске четырех костей каждый бросок не зависит от остальных, можно определить требуемую вероятность перемножением отдельных вероятностей каждого события. Искомая вероятность равна:

(5/6) • (5/6) • (5/6) • (5/6) = (5/6)4 = 625/1296 = 0,482 < 1/2.

Отсюда следует, что вероятность выпадения минимум одной шестерки равна

1 — (625/1296) = 671/1296 = 0,518 > 1/2.

Следовательно, выгоднее ставить на то, что после четырех бросков шестерка выпадет хотя бы один раз, как и предполагал шевалье де Мере.

Аналогичным способом можно решить и вторую задачу: какова вероятность выпадения двух шестерок при броске пары кубиков 24 раза? Сперва мы снова рассчитаем вероятность того, что после 24 бросков две шестерки не выпадут ни разу. При броске двух игральных костей p(не две 6) = 35/36. Следовательно, для 24 бросков получим:

p(не две 6) = (35/36)24 = 0,5086.

Следовательно, вероятность выпадения двух шестерок минимум один раз равна

1 - 0,5086 = 0,4914 < 1/2.

Чтобы решить эти две задачи, которые можно считать первыми задачами теории вероятностей за всю историю, мы использовали несколько базовых определений и свойств теории вероятностей.

Ахиллес и Аякс играют в кости. Одна из самых известных афинских чернофигурных амфор (VI век до н.э.) — еще одно доказательство древности этой азартной игры.

ПЬЕР СИМОН ЛАПЛАС (1749-1827)

Лаплас — один из величайших математиков XVIII века. Он изучал богословие и математику, был профессором Военной академии в Париже и читал лекции в Нормальной школе. Лаплас был членом Французской академии наук и Лондонского королевского общества. Во время Великой французской революции принял руководящее участие в работах комиссии по введению метрической системы. По указу Наполеона он был назначен членом сената и канцлером, а в 1805 году был награжден орденом Почетного легиона. После реставрации Бурбонов Лаплас поддерживал Людовика XVIII, который в 1817 году присвоил ему титул маркиза.

Его основной труд по физике и математике и, возможно, наиболее значительный вклад в науку вообще — книга «Небесная механика» в пяти томах, опубликованных с 1799 по 1825 год. В этом труде Лаплас дополнил более ранние работы Ньютона, Галлея и Эйлера о гравитации и устойчивости Солнечной системы, то есть о неизменности средних расстояний планет от Солнца.

С 1780 года он занимался теорией вероятностей и в 1812 году опубликовал свою главную работу по этой теме — «Аналитическую теорию вероятностей», которая считается первой книгой по теории вероятностей. Успех этого труда побудил его в 1814 году написать «Опыт философии теории вероятностей» — популярное изложение «Аналитической теории вероятностей». В этой книге содержится полная и непротиворечивая аргументация в пользу детерминизма Вселенной. Лаплас писал: «В основе теории вероятностей — только здравый смысл, сведенный до исчисления. Нет никакой другой науки, которая точнее бы отражала наши размышления и результаты которой были бы более полезны».

Далее мы изложим эти свойства и покажем их на примере игры в кости. Многие из этих свойств зародились в уже упоминавшейся переписке Паскаля и Ферма, а затем были сформулированы Лапласом в его трудах по теории вероятностей.

ЗАДАЧА О РАЗДЕЛЕНИИ СТАВОК

Рассмотрим одну из первых задач в теории вероятностей. Роман и Павел играют в азартную игру, выигрывает тот, кто первым наберет 10 очков. В каждом раунде оба имеют равные шансы на победу. Победитель раунда получает 1 очко. После 17-й партии Павел выигрывает со счетом 9:8, после чего игру решено прекратить. Так как никому не удалось набрать 10 очков, игроки решают разделить сделанные ставки. Как справедливо разделить деньги между игроками? «Правильное» решение задачи может зависеть от многих факторов, в том числе не относящихся к математике, поэтому может существовать несколько «допустимых» решений. Однако если мы проанализируем вероятность выигрыша обоих игроков, то сможем справедливо разделить ставки.

До окончания игры нужно сыграть еще максимум две партии. Существует четыре возможных (и равновероятных) результата этих двух партий: (П, П), (П, Р), (Р, П), (Р, Р), где П означает победу Павла, Р — победу Романа. В трех возможных исходах победа останется за Павлом, которому до победы остается всего одно очко, и лишь единственный (последний) исход принесет победу Роману. Поэтому ставки нужно поделить в соотношении 3:1, то есть отдать 3/4 денег Павлу и 1/4 — Роману.

Еще одна задача, о которой идет речь в переписке Паскаля и Ферма, касается азартной игры: нужно решить, как разделить ставки между игроками, если игра прерывается в определенный момент. Эту задачу пытался решить еще Кардано. В его решении разделение ставок зависело от того, сколько очков у каждого игрока, а не от вероятности выигрыша в случае продолжения игры до конца.

Вопросы вычисления. Важен ли порядок?

Вспомним, что вероятность события рассчитывается по следующему правилу: p(события) = число благоприятных исходов/общее число исходов, то есть нужно определить число наблюдений, при которых наступает нужное событие, и разделить его на общее число наблюдений. Иногда подсчитать это отношение очень просто. Например, какова вероятность, что при броске кубика выпадет четное число очков? Из шести возможных исходов лишь три благоприятных (когда выпадает 2, 4 или 6). Следовательно, p(четное) = 3/6 = 0,5. Так как общее число исходов невелико, подсчет можно произвести простым перечислением всех возможных случаев. В других случаях подобные расчеты могут оказаться намного сложнее, поэтому нужно как следует разобраться в ситуации и иметь соответствующие методы для выполнения расчетов. Так, важная часть анализа сложных азартных игр и случайных событий в целом заключается в правильном перечислении всех возможных исходов.

Далее мы проанализируем несколько ситуаций, чтобы показать различные методы расчетов.



Поделиться книгой:

На главную
Назад