Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Значимые фигуры - Йэн Стюарт на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В прошлом тиран Цинь сжигал написанные документы, что привело к гибели классического знания. Позже Чжан Цан, правитель Бэйпина, и Гэн Шоучан, помощник министра сельского хозяйства, прославились своим талантом к вычислениям. Поскольку древние тексты сильно пострадали, Чжан Цан и его люди изготовили новый вариант, удалив плохо сохранившиеся части и заполнив образовавшиеся пробелы. Таким образом, они переработали некоторые части, в результате чего те стали отличаться от старых, сохранившихся частей.

В частности, Лю Хуэй дал доказательства того, что приведенные в книге методы работают; он использовал методики, которые сегодня мы не признали бы строгими, как и методики Архимеда в трактате «О методе». Кроме того, Лю Хуэй привел дополнительные материалы по топографической съемке, которые публиковались и отдельно в виде «Хай дао суань цзин» – «Трактата о морском острове».

* * *

В первой главе «Математики в девяти книгах» объясняется, как вычислять площади полей разной формы: прямоугольных, треугольных, трапецеидальных и круглых. Приведенные в ней правила верны, за исключением правила для круга. Даже здесь предложенный рецепт сам по себе верен: умножить радиус на половину длины окружности. Однако длина окружности вычисляется как утроенный диаметр, то есть, по существу, считается, что π = 3. Если говорить о практической применимости метода, то площадь круга здесь получается меньше реальной менее чем на 5 %.

В конце I в. до н. э. правитель Ван Ман велел астроному и создателю календаря Лю Синю придумать и предложить стандартную меру объема. Лю Синь изготовил очень аккуратный цилиндрический бронзовый сосуд, который и должен был служить стандартной мерой при сравнении. Тысячи копий этого сосуда использовались по всему Китаю. Оригинальный сосуд в настоящее время хранится в пекинском музее, и его размеры позволили некоторым ученым предположить, что Лю Синь, по существу, пользовался числом, близким к π и равным 3,1547. (Как именно можно получить это число с такой точностью при измерении бронзового горшка – непонятно, по крайней мере мне.) В трактате «Сюй шу» (официальная история династии Сюй) содержится утверждение, из которого можно понять, что Лю Синь действительно нашел новое значение числа π. Лю Хуэй замечает, что примерно в это же время придворный астролог Чан Хэн предложил считать π равным квадратному корню из 10, что составляет 3,1622. Ясно, что новые улучшенные значения π носились в воздухе.

В своих комментариях к «Девятикнижию» Лю Хуэй указывает, что традиционное правило «π = 3» ошибочно: вместо длины окружности оно дает периметр вписанного шестиугольника, который очевидно меньше. Затем он вычисляет более точное значение для длины окружности (и косвенно для π). Мало того, он пошел еще дальше и описал вычислительный метод оценки числа π со сколь угодно высокой точностью. Его подход напоминал подход Архимеда: аппроксимировать окружность правильными многоугольниками с 6, 12, 24, 48, 96, … сторонами. Чтобы применить метод исчерпания, Архимед использовал одну последовательность аппроксимирующих многоугольников внутри, вписывая их в окружность, а вторую – снаружи, описывая их около окружности. Ли Хуэй пользовался только вписанными многоугольниками, но в завершение расчета он привел геометрические аргументы в пользу того, чтобы определить как нижнюю, так и верхнюю границы истинного значения π. Этот метод позволяет получить сколь угодно точное приближение к π, не используя ничего сложнее квадратных корней. Для вычисления квадратных корней существует формализованный метод, трудоемкий, но не более сложный, чем умножение в столбик. Умелый расчетчик вполне мог бы за один день получить десять десятичных знаков π.

Позже, около 469 г., Цзу Чунчжи расширил этот расчет и показал, что

3,1415926 < π < 3,1415927.

Результат был записан и сохранился, а вот метод, изложенный, возможно, в его потерянной работе «Чжуй шу» – «Метод интерполяции», до нас не дошел. Вероятно, это было сделано путем продолжения расчетов Лю Хуэя, но заголовок трактата позволяет предположить, что речь шла, скорее, о получении более точного результата из пары приближений, одно из которых слишком мало, а другое – слишком велико. Подобные методы можно найти в математике и сегодня. Не так давно им учили в школах, чтобы использовать таблицы логарифмов. Цзу предложил две простые дроби, приближенно выражающие: это Архимедова дробь 22/7, равная π с точностью до двух знаков после запятой, и 355/113, равная π с точностью до десяти знаков. Первое значение и сегодня широко используется, второе тоже хорошо известно математикам.

* * *

Одна из реконструкций доказательства теоремы Пифагора, принадлежащего Лю Хуэю и восстановленного на базе текстовых указаний в его книге, представляет собой хитроумное и необычное рассечение. Собственно прямоугольный треугольник, о котором идет речь, показан на рисунке черным. Квадрат, построенный на одном из его катетов (светло-серый), рассечен надвое диагональю. Квадрат, построенный на другом катете, разрезан на пять частей: один маленький квадратик (темно-серый), пара симметрично расположенных треугольников (средне-серых) тех же формы и размера, что и первоначальный прямоугольный треугольник, и пара симметрично расположенных треугольников (белых), заполняющих оставшееся место. После этого все семь кусочков собираются воедино и образуют квадрат на гипотенузе.

Для доказательства этой теоремы могут быть использованы и другие рассечения, попроще.


Возможная реконструкция доказательства теоремы Пифагора Лю Хуэем

Древнекитайские математики были нисколько не слабее своих греческих современников, и развитие китайской математики после периода Лю Хуэя видело множество открытий, опередивших появление тех же достижений в европейской математике. К примеру, оценки числа π, полученные Лю Хуэем и Цзу Чунчжи, европейцам удалось превзойти лишь 1000 лет спустя.

Джозеф проверяет, не могли ли некоторые идеи китайских математиков попасть с купцами и торговыми караванами в Индию и Аравию, а затем, возможно, даже в Европу. Если так, то позднейшие достижения, когда европейцы заново открывали математические законы, вполне возможно, не были совершенно независимыми. В Индии в VI в. были китайские дипломаты, и китайские переводы индийских математических и астрономических трактатов сделаны в VII в. Что же до Аравии, то пророк Мухаммед выпустил хадис – изречение с религиозным смыслом, – в котором говорилось: «Ищите знание, даже если до него далеко, как до Китая». В XIV в. арабские путешественники сообщали о прочных торговых связях с Китаем, а марокканский путешественник и ученый Мухаммад ибн Баттута написал о китайских научных и технических достижениях, а также о китайской культуре в книге «Рила» – «Путешествия».

Мы знаем, что идеи из Индии и Аравии проникали в средневековую Европу, о чем говорится в двух следующих главах. Поэтому вполне возможно, что в Европу проникали в какой-то мере и китайские знания. Присутствие иезуитов в Китае в XVII и XVIII вв. отчасти через Конфуция вдохновило философию Лейбница. Можно предположить, что существовала сложная сеть, посредством которой математика, физика и многое другое циркулировало между Грецией, Ближним Востоком, Индией и Китаем. Если это так, то традиционная история западной математики, возможно, нуждается в определенном пересмотре.

3. Dixit Algorismi

Мухаммад аль-Хорезми


Мухаммад ибн Муса аль-ХорезмиРодился: Хорезм (современная Хива, Узбекистан), Персия, ок. 780 г. Умер: ок. 850 г.

После смерти пророка Мухаммеда в 632 г. власть над исламским миром перешла к сменявшим друг друга халифам. В принципе, халифов избирали за их достоинства, так что система правления в халифате не была в строгом смысле монархией. Однако халиф обладал всей полнотой власти. К 654 г., при третьем халифе Усмане, халифат стал крупнейшей в истории империей. Его территория (в терминах современной географии) включала Аравийский полуостров, Северную Африку от Египта через Ливию до восточной части Туниса, Левант, Кавказ и значительную часть Средней Азии, от Ирана через Пакистан и Афганистан до Туркмении.

Первые четыре халифа считаются праведными (рашидун); их сменила династия Омейядов, на смену которой, в свою очередь, пришла династия Аббасидов, которые свергли Омейядов с помощью персов. Центр власти, находившийся первоначально в Дамаске, переместился в Багдад – город, основанный халифом аль-Мансуром в 762 г. Его расположение вблизи от границ Персии отчасти диктовалось необходимостью прибегать к услугам персидских управленцев, понимавших, как взаимодействуют между собой разные области Исламской империи. Был создан пост визиря, позволивший халифу передать другому человеку административную ответственность: визирь, в свою очередь, поручал решение местных вопросов региональным эмирам. Постепенно халиф превратился в номинального главу государства, а реальная власть сосредоточилась в руках визиря, но первые халифы династии Аббасидов пользовались значительной властью.

Примерно в 800 г. Гарун аль-Рашид основал «Байт аль-хикма», или «Дом мудрости», – академию, в которой письменные труды из других культур переводились на арабский язык. Его сын аль-Мамун довел проект отца до логического завершения – собрал в Байт аль-хикма огромную коллекцию греческих рукописей и пригласил многих известных ученых. Багдад, ставший центром науки и торговли, привлекал купцов и ученых мужей даже из таких отдаленных мест, как Китай и Индия. Среди них был и Мухаммад ибн Мусса аль-Хорезми – ключевая фигура в истории математики.

Аль-Хорезми родился в Хорезме или где-то неподалеку от него; Хорезм – это город в Средней Азии, современная Хива в Узбекистане. Главные работы аль-Хорезми относятся ко времени правления аль-Мамуна; он участвовал в сохранении и развитии тех знаний, которые тогда стремительно теряла Европа. Он переводил ключевые рукописи с греческого и санскрита, делал собственные открытия в физике, математике, астрономии и географии и написал серию книг, которые мы сегодня назвали бы научными бестселлерами. Название книги «Об индийском счете», написанной около 825 г., было переведено на латынь как Algoritmi de Numero Indorum; в то время это был практически единственный трактат, распространявший по всей Европе новость, о поразительном способе проведения арифметических расчетов. По пути Algoritmi превратились в Algorismi, и методы расчета с применением десятичных чисел получили название алгоризмов. В XVIII в. это слово изменилось и приобрело сегодняшнюю форму – алгоритм.

Его книгу «Аль-китаб аль-мухтасар фи хисаб аль-джебр ва-ль-мукабала» («Краткая книга об исчислении алгебры и аль-мукабалы»), написанную около 830 г., Роберт Честерский в XII в. перевел на латынь с названием Liber Algebrae et Almucabola. В результате аль-джебр, латинизированное до algebra, стало самостоятельным словом. Теперь оно означает использование таких символов, как x и y, для неизвестных величин, а также методы отыскания этих неизвестных путем решения уравнений, но в самой книге никакие символы не используются.

* * *

«Алгебра» была написана, когда халиф аль-Мамун предложил аль-Хорезми написать популярную книгу о вычислениях. Сам автор описывает ее цель так:

…здесь содержится простейшее и полезнейшее в арифметике, постоянно необходимое людям в случаях наследования, завещаний, раздела имущества, судебных тяжб и торговли и в любых сделках друг с другом или когда речь идет об измерении земель, рытье каналов, геометрических расчетах и других вещей разных сортов и типов.

Все это не слишком похоже на книгу по алгебре. И правда, непосредственно алгебра занимает в ней лишь небольшую часть. Аль-Хорезми начинает с объяснения чисел в очень простых выражениях – единицы, десятки, сотни – на том основании, что «когда я думаю о том, в чем люди обычно нуждаются при расчетах, я понимаю, что это всегда число». Вообще, это не ученый трактат для мужей науки, но популярная математическая книга, практически учебник, который пытается не только информировать, но и обучать обычных читателей. Именно этого хотел халиф, и именно это он получил. Аль-Хорезми не рассматривал свою книгу как результат работы на переднем крае исследовательской математики. Но мы сегодня именно так смотрим на ту ее часть, которая посвящена аль-джебре. Это самый глубокий раздел книги: систематическое развитие методов решения уравнений с некоторой неизвестной величиной.

Собственно термин «аль-джебр», который обычно переводят как «дополнение», относится к приему добавления одного и того же слагаемого к обеим частям уравнения с целью его упрощения. «Аль-мукабала», или «уравновешивание», относится к переносу одного из слагаемых с одной стороны уравнения на другую сторону (но с противоположным знаком) и к сокращению подобных членов в обеих частях уравнения.

К примеру, если уравнение в современной символьной записи выглядит как

x – 3 = 7,

то аль-джебра разрешает нам добавить по 3 к обеим сторонам уравнения и получить

x = 10,

что в данном случае решает уравнение. Если уравнение выглядит как

2x2 + x + 6 = x2 + 18,

то аль-мукабала позволяет нам перенести 6 с левой стороны уравнения на правую, только со знаком минус, и получить

2x2 + x = x2 + 12.

Вторая аль-мукабала позволяет нам перенести x2 из правой части уравнения в левую и вычесть уже его, получив

x2 + x = 12,

что проще, но еще не дает решение уравнения.

Я повторю, что аль-Хорезми не использует никаких символов. Отец алгебры на самом деле не делал ничего из того, что сегодня большинство из нас считает алгеброй. Он все описывал словами. Конкретные числа были единицами, неизвестная величина, которую мы называем x, называлась у него корнем, а наш x2 назывался квадратом. Приведенное уравнение в этих терминах выглядело бы так:

квадрат плюс корень равно двенадцать единиц,

и без всяких символов. Так что следующая задача – объяснить, как от уравнения подобного типа перейти к ответу. Аль-Хорезми подразделяет уравнения на шесть типов, причем типичный случай представляет собой «квадраты и корни равняются числам», то есть что-то вроде x2 + x = 12.


Геометрическое решение уравнений «квадраты и корни равняются числам»

Затем он переходит к анализу каждого типа уравнений по очереди, причем решает их с использованием смеси алгебраических и геометрических методов. Так, чтобы решить уравнение x2 + x = 12, аль-Хорезми рисует квадрат, который должен представлять x2 (левый рисунок). Чтобы прибавить к этому корень x, он пририсовывает к квадрату четыре прямоугольника, каждый со сторонами x и 1/4 (средний рисунок). Получившаяся фигура наводит на мысль «завершить квадрат», присоединив сюда же четыре «уголка» – маленькие квадратики со стороной 1/4 и площадью 1/16. Так что он добавляет 4 × 1/16 = 1/4 к левой части уравнения (правый рисунок). По правилу аль-джебр он должен также прибавить 1/4 и к правой части уравнения то, в результате чего справа становится 12 1/4. Теперь

(x + 1/2)2 = 12 1/4 = 49/4 = (7/2)2.

Извлечем квадратный корень из обеих частей уравнения и получим

x + 1/2 = 7/2,

так что x = 3. Сегодня мы взяли бы еще отрицательный квадратный корень, -7/2, и получили второе решение, x = –4. Отрицательные числа уже начинали появляться в трудах ученых периода аль-Хорезми, но сам он их не упоминает.

Такой подход был бы понятен и вавилонянам, и грекам, поскольку они и сами в свое время занимались примерно тем же. На самом деле существуют сомнения относительно того, был ли аль-Хорезми знаком с «Началами» Евклида. По идее, должен был быть знаком, поскольку аль-Хаджжадж – другой ученый из «Дома мудрости» – перевел Евклида на арабский, когда аль-Хорезми был молодым человеком. Но с другой стороны, основной задачей «Дома мудрости» был именно перевод, и его работники не были обязаны читать труды, переведенные их коллегами. Некоторые историки утверждают, что геометрия аль-Хорезми по стилю не соответствует Евклидовой, и это свидетельствует о том, что ученый не был знаком с оригиналом. Но, я повторяю, «Алгебра» – популярная книга о математике, так что она и не должна была бы следовать аксиоматическому стилю Евклида, даже если бы сам аль-Хорезми знал Евклида назубок. Во всяком случае идея достраивания квадрата восходит еще к вавилонянам и позаимствовать ее можно было из множества разных источников.

Почему же тогда многие историки считают именно аль-Хорезми отцом алгебры? Особенно с учетом того, что он не использует никаких символов? И у него имеется сильный конкурент, грек Диофант. В его «Арифметике» – серии книг о решении уравнений в натуральных или рациональных числах, написанной около 250 г., – символы используются. Один из ответов состоит в том, что главной областью интересов Диофанта была теория чисел да и символы его были, по существу, простыми сокращениями. Однако более глубокий ответ, который мне кажется и более убедительным, заключается в том, что аль-Хорезми часто, хотя и не всегда, приводит универсальные методы решения, тогда как его предшественники, как правило, брали пример с конкретными числами и решали его. Читателю оставалось самому выводить общее правило. Так что результат приведенного выше геометрического решения мог бы выглядеть примерно так: «Возьмите 1, поделите на 2, получится 1/2. возведите ее в квадрат, получится 1/4, затем добавьте по 1/4 к каждой стороне», – и читатель должен будет сам догадаться, что общее правило состоит в том, чтобы заменить первоначальную 1 половинкой коэффициента при x, возвести результат в квадрат, прибавить результат к обеим сторонам уравнения и т. д. Конечно, при обучении преподаватель разъяснил бы решение на таком уровне обобщения и закрепил результат, заставив ученика прорешать множество других примеров.

Иногда аль-Хорезми, кажется, делает ровно то же самое, но, как правило, он подробнее описывает применяемые правила. Так что более глубокая причина того, что именно ему приписывают изобретение алгебры, состоит в том, что он сосредоточился на общих правилах манипулирования алгебраическими выражениями, нежели на конкретных числах, которые они представляют. К примеру, он дает правила раскрытия скобок при их перемножении

(a + bx) (c + dx)

в терминах квадрата x2, корня x и чисел. Мы бы записали это правило символически как

ac + (ad + bc) x + (bd) x2,

и именно это он говорит, словесно, без использования конкретных чисел для a, b, c или d. Он рассказывает читателям, как нужно манипулировать общими выражениями в числах, корнях и квадратах. Эти выражения рассматриваются не как зашифрованные версии какого-то неизвестного числа, но как новый тип математического объекта, выражения с которым можно просчитывать, даже если реальные числа вам неизвестны. Именно этот шаг к абстракции – если мы примем его как таковой – лежит в основе утверждения о том, что аль-Хорезми изобрел алгебру. В «Арифметике» ничего подобного нет.

Другие темы в его книге более прозаичны: там можно найти правила вычисления площадей и объемов таких фигур, как прямоугольник, круг, цилиндр, конус и шар. Здесь аль-Хорезми следует тем же путем, каким двигались математики в индийских и еврейских текстах, и ничего похожего на Архимеда или Евклида вы там не найдете. Заканчивается книга более приземленными вещами: подробным разбором исламских правил наследования имущества, требующих разделения его в разных пропорциях; ничего более сложного с математической точки зрения, чем решение линейных уравнений и арифметика, в этом разделе не встречается.

* * *

Важнейшим трудом аль-Хорезми как на момент написания, так и на протяжении еще нескольких столетий была «Книга об индийском счете», давшая нам, как уже отмечалось, слово «алгоритм». Фраза Dixit Algorismi – «Так говорил аль-Хорезми» – была весьма убедительным аргументом в любом математическом диспуте. Учитель сказал: внимайте его словам.

Под индийским счетом подразумеваются, безусловно, ранние варианты десятичной системы записи чисел, в которой любое число может быть записано как последовательность десяти символов – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Как видно из названия книги, аль-Хорезми признавал первенство индийских математиков в этом вопросе, но его влияние в средневековой Европе было настолько велико, что такую систему исчисления стали называть арабской (иногда ее называли еще индо-арабской системой, что тоже несправедливо по отношению к индусам). Основной вклад арабского мира в эту систему – изобретение собственных символов для обозначения цифр, похожих на индийские, но все же отличных от них, а также распространение этой системы записи и побуждение к ее использованию. Символы же для обозначения десяти цифр не раз менялись с течением времени, и разные регионы современного мира до сих пор пользуются разными их вариантами.

Сегодня алгоритм – это пошаговая процедура вычисления какой-то конкретной величины или получения какого-то конкретного результата с гарантией того, что по получении нужного результата процесс остановится. «Пробуй все числа в случайном порядке, пока какое-нибудь не подойдет» – не алгоритм: если в результате будет получен ответ, это верная процедура, но с тем же успехом процесс может продолжаться вечно и ни к чему не привести. Чтобы описать один из ранних примеров алгоритма, вспомним, что простое число не имеет других делителей, кроме его самого и единицы. Вот первые несколько простых чисел: 2, 3, 5, 7, 11, 13. Любое другое натуральное число больше 1 называется составным. К примеру, 6 – составное число, потому что 6 = 2 × 3. Число 1 считается особым и называется единицей в этом контексте. Решето Эратосфена, придуманное около 250 г. до н. э., представляет собой алгоритм нахождения всех простых чисел вплоть до какого-то конкретного предела. Начните с того, что выпишите все положительные целые числа вплоть до заданного предела. Удалите из списка все числа, кратные 2, кроме 2, затем все числа, кратные следующему оставшемуся числу 3, кроме самого числа 3, затем проделайте то же самое для следующего уцелевшего числа 5 и т. д. После числа шагов, не превышающего заданного предела, процесс завершается: в списке остается ровно то, что нужно: все простые числа до заданного предела.

Алгоритмы в современной жизни приобрели принципиальное значение, потому что компьютеры – это машины, исполняющие алгоритмы. Алгоритмы выкладывают в интернет смешные видео с котиками, рассчитывают ваш кредитный рейтинг, решают, какие книги можно попытаться продать вам, осуществляют миллиарды биржевых сделок с валютой и акциями каждую секунду и пытаются украсть у вас пароль от онлайн-банка. Как ни забавно, из всех работ аль-Хорезми подробнее всего об алгоритмах рассказывается не в трактате «Об индийском счете», хотя любой метод арифметического счета, естественно, представляет собой алгоритм. Больше всего алгоритмов в его алгебраической книге, которая вошла в историю тем, что в ней излагаются общие процедуры решения уравнений. Эти процедуры являются алгоритмами, и именно это делает их такими важными.

* * *

Аль-Хорезми писал не только о математике, но также о географии и астрономии. Его «Китаб сурад аль-ард» («Книга описания Земли») 833 г. дополняет предыдущий классический труд на эту тему – «Географию» Птолемея, написанную около 150 г. Это своего рода набор «сделай сам» для атласа известного на тот момент мира: контуры континентов на трех различных типах координатной решетки с указаниями, где на них следует поместить основные города и другие значительные детали. Кроме того, в книге обсуждаются базовые принципы составления карт. В труде аль-Хорезми список локаций расширен до 2402 объектов, а некоторые данные Птолемея были исправлены; в частности, аль-Хорезми снизил завышенную Птолемеем оценку длины Средиземного моря. Кроме того, если Птолемей показывал Атлантический и Индийский океаны как моря, окруженные со всех сторон сушей, то аль-Хорезми не стал их ограничивать.

Книга «Зидж аль-Синдхинд» («Астрономические таблицы Синдхинда»), датируемая примерно 820 г., содержит более сотни астрономических таблиц, взятых в основном из трудов индийских астрономов. Среди них имеются таблицы движения Солнца, Луны и пяти планет, а также таблицы тригонометрических функций. Считается, что аль-Хорезми писал также о сферической тригонометрии, очень важной для навигации. «Рисала фи истихрадж таких аль-яхуд» («Определение эры евреев и об их праздниках») рассказывает о еврейском календаре и анализирует Метонов цикл – 19-летний период, очень близкий к общему кратному солнечного года и лунного месяца. Вследствие этого солнечный и лунный календари, которые со временем постепенно расходятся, вновь почти выравниваются каждые 19 лет. Этот цикл назван в честь Метона Афинского, который описал его в 432 г. до н. э.

Наряду с достижениями математиков древнего Китая (глава 2) и Индии (глава 4) достижения аль-Хорезми служат дополнительным свидетельством того, что в Средние века, когда наука Европы в основном находилась в состоянии застоя, центр научной и математической деятельности переместился на Восток. Со временем, в эпоху Возрождения, Европа пробудилась вновь, как мы увидим в главе 5. Аль-Хорезми проложил новый путь, и математике уже не суждено было вернуться в прежнее состояние.

4. Новатор бесконечности

Мадхава из Сангамаграмы


Ириннараппилли (или Ириннинавалли) МадхаваРодился: Сангамаграма, Керала, Индия, 1350 г. Умер: Индия, 1425 г.

«Вода урагана Рита весила, как 100 миллионов слонов». Сегодня СМИ часто используют слонов как меру веса, не говоря уже о Бельгии и Уэльсе как мерах площади, олимпийских плавательных бассейнах как мерах объема и лондонских автобусах для измерения длины или высоты. А что вы скажете о таком перечне:

Боги (33), глаза (2), слоны (8), змеи (8), огни (3), качества (3), веды (4), накшатры (27), слоны (8) и руки (2) – мудрые говорят, что такова мера длины окружности, когда диаметр ее равен 900 000 000 000.

Что первым приходит в голову? На самом деле это перевод стихотворения о числе π, написанного около 1400 г. Мадхавой из Сангамаграмы – величайшим, вероятно, средневековым индийским математиком и астрономом. Боги, слоны, змеи и т. п. – это символические обозначения чисел, которые предполагалось рисовать в виде маленьких картинок. Вместе (с конца, по списку) они представляют число

282 743 388 233.

При делении на 90 млрд получается

3,141592653592222…

Это, пожалуй, выглядит более знакомо. Отношение, о котором идет речь, представляет собой геометрическое определение числа π, равного

3,141592653589793…

Эти два числа совпадают до 11-го знака после запятой (округляя 589 до 59 на 10-м и 11-м месте). В то время это было одним из лучших известных приближений. К 1430 г. персидский математик Джамшид аль-Каши побил этот рекорд, получив в своей книге «Мифтах аль-хисаб» («Ключ к арифметике») 16 знаков после запятой.

До нас дошли кое-какие астрономические тексты Мадхавы, но его математические работы известны только в изложении позднейших комментаторов. Вечная проблема приписывания великому основателю и учителю результатов, полученных его интеллектуальными потомками (так, к примеру, все открытое любым членом пифагорейского культа по умолчанию приписывается Пифагору), означает, что мы не можем с полной уверенностью сказать, какие результаты были получены непосредственно Мадхавой. В дальнейшем рассказе я буду принимать слова его последователей на веру.

Его величайшим достижением было введение бесконечных рядов; таким образом были сделаны первые шаги в направлении математического анализа. Он обнаружил то, что известно на Западе как ряд Грегори для функции арктангенса и ведет к выражению числа π в виде бесконечного ряда. Самые впечатляющие его открытия – бесконечные ряды для тригонометрических функций синуса и косинуса, которые на Западе были найдены только Ньютоном, на 200 с лишним лет позже.

* * *

О жизни Мадхавы известно мало. Он жил в селении Сангамаграма, и это название по традиции добавляется к его имени, чтобы отличать от других людей с именем Мадхава, таких как астролог Видья Мадхава. В селении был храм, посвященный одноименному богу. Считается, что располагалось это селение возле современного селения браминов Ириньялакуда. Это недалеко от города Кочина в штате Керала – длинной вытянутой области на южной оконечности Индии, зажатой между Аравийским морем на западе и горной цепью Западные Гаты на востоке. Во времена позднего Средневековья Керала был крупным центром математических исследований. Большинство раннеиндийских математиков происходили из более северных мест, но по неведомой причине Керала в какой-то момент перехватил инициативу. Математику в Древней Индии, как правило, рассматривали как часть астрономии, и Мадхава основал Керальскую школу астрономии и математики.

В эту школу входило большое количество необычайно сведущих математиков. Парамешвара – индийский астроном, который использовал наблюдение затмений для проверки точности вычислительных методов того времени. Он оставил после себя по крайней мере 25 рукописей. Келаллур Нилаканта Сомаяджи в 1501 г. написал значительный астрономический трактат «Тантрасамграха», состоящий из 432 стихов на санскрите, объединенных в восемь глав. В частности, он включает поправки Нилаканты к теории движения Меркурия и Венеры великого индийского математика Арьябхаты. Он написал также обширный комментарий «Арьябхатия бхасья» на другой труд Арьябхаты, в котором обсуждаются алгебра, тригонометрия и бесконечные ряды для тригонометрических функций. Естхадева написал «Юктибхасу» – комментарий к «Тантрасамграхе», в который добавлены доказательства ее основных выводов. Некоторые считают этот текст первым трудом по дифференциальному исчислению. Мельпатур Нараяна Бхаттатир – математический лингвист – расширил в труде «Пркриясарвавом» аксиоматическую систему Панини из 3959 правил для санскритской грамматики. Прославился он «Нараяниямой» – похвальной песней Кришне, которая поется в Индии до сих пор.

* * *

Тригонометрия, или использование треугольников для измерения, восходит еще к древним грекам; особенно много ей занимались Гиппарх, Менелай и Птолемей. Есть две основные области применения тригонометрии в деятельности человека: топография и астрономия. (Позже к этому списку добавилась навигация.) Существенно здесь то, что расстояния зачастую трудно (а в случае астрономических тел просто невозможно) измерять непосредственно, зато углы можно измерять везде, где есть прямая видимость. Тригонометрия дает возможность вычислить длины сторон треугольника по его углам, при условии что хотя бы одна сторона известна. В топографии одна тщательно измеренная доступная база и множество углов ведут к появлению точной карты; то же, с некоторыми нюансами, относится и к астрономии.


Пусть AB - дуга окружности радиуса 1 с центром в точке O. Хорда угла AOB (величина которого составляет 2θ) есть длина отрезка AB. Синус угла AOC (величина которого равна θ) равен длине отрезка AC. Косинус угла θ равен длине отрезка OC, а тангенс - отношению AC/OC.

Греки использовали в своих задачах хорду угла (см. рисунок). Гиппарх в 140 г. до н. э. составил первую таблицу хорд и пользовался ею как в плоской, так и в сферической тригонометрии. Последняя имеет дело с треугольниками, образованными дугами больших кругов на сфере, и это важно в астрономии, поскольку звезды и планеты при наблюдении с Земли кажутся лежащими на небесной сфере – воображаемой сфере, в центре которой находится Земля. Точнее говоря, направления на эти тела соответствуют точкам на любой подобной сфере. Во II в. Птолемей включил таблицы хорд в свой «Альмагест», и его результаты широко использовались на протяжении следующих 1200 лет.

Математики Древней Индии, опираясь на работы греков, добились больших успехов в тригонометрии. Они обнаружили, что удобнее использовать не хорды, а тесно связанные функции синуса (sin) и косинуса (cos), которыми мы пользуемся и сегодня. Синусы впервые появились в «Сурья сиддханта» – серии индийских астрономических текстов, датируемых примерно 400 г.; Ариабхата около 500 г. развил эту идею в своем труде «Ариабхатия». Аналогичные идеи возникли независимо и в Китае. Индийскую традицию продолжили Варахамихира, Брахмагупта и Бхаскара Ачарья, в работах которых имеются полезные аппроксимации функции синуса и некоторые базовые формулы, такие как

sin2θ + cos2θ = 1

у Варахамихиры; по существу, это тригонометрическая интерпретация теоремы Пифагора.

До недавнего времени ученые считали, что после Бхаскара Ачарья в индийской математике наступил застой, во время которого ученые ограничивались лишь комментариями к классическим работам, и лишь после того, как Британия присоединила Индию к своей активно развивающейся империи, там появилась новая математика. Возможно, это было правдой в отношении значительной части Индии, но не в отношении Кералы. Джозеф отмечает, что «качество математики, доступной в текстах [Керальской школы] … настолько высокого уровня в сравнении с тем, что было достигнуто в классический период, что кажется невозможным, чтобы одно произошло от другого». Однако сколько-нибудь сравнимые идеи появились лишь несколькими столетиями позже в Европе, так что никакого правдоподобного «недостающего звена» разглядеть не удается. Достижения Керальской школы, судя по всему, были ее собственными.

Комментарий Естхадевы «Юктибхаса» так описывает ряд, приписываемый Мадхаве:

Первый член есть произведение заданного синуса и радиуса искомой дуги, деленного на косинус этой же дуги. Последующие члены получаются методом повторений, когда первый член последовательно умножается на квадрат синуса и делится на квадрат косинуса. Все члены затем делятся на нечетные числа 1, 3, 5, … Дуга получается прибавлением и вычитанием соответственно членов с нечетными номерами и членов с четными номерами.

В современной нотации и с учетом того, что тангенс угла θ равен синусу этого угла, деленному на его же косинус, получаем

θ = tgθ - 1/3 tg3θ + 1/5 tg5θ - 1/7 tg7θ + ...



Поделиться книгой:

На главную
Назад