Если эта просьба вызовет затруднение, «объясните» сами, что черный и белый цвета имеют разную длину волны, им соответствуют разные коэффициенты преломления и т. д. Удивительно, как много людей попадается на эту удочку, а ларчик, конечно, открывается просто. Слово «КОФЕ» переворачивается нисколько не хуже, чем «ЧАЙ», но этого никто не замечает, поскольку буквы «К», «О», «Ф» и «Е» имеют горизонтальную ось симметрии и при зеркальном обращении сохраняют свой вид.
Известно, что буквы с вертикальной осью симметрии не меняются при отражении в зеркале. Поэтому, поднеся к зеркалу рис. 14, вы увидите, что имя НАТАША не изменилось, а имя ИГОРЬ перевернулось. Можете продемонстрировать это друзьям, сказав, что у вас есть зеркало, которое переворачивает при отражении только текст, напечатанный черным по белому, но не белым по черному!
Многие слова при отражении в зеркале превращаются в другие слова, например «bum» в «mud»[4]. Вырежьте эти три буквы из бумаги (чем крупнее, тем лучше) и наклейте их на стенное зеркало так, чтобы получилось слово «bum». Выключите в комнате свет и направьте на буквы луч электрического фонарика. На противоположной стене появятся теневые изображения букв.
Упражнение 5. Если вы обернетесь и прочтете буквы на стене, что получится: «bum» или «mud»? Теперь если вы посмотрите в зеркало и прочтете отражение теневой надписи на стене, что получится: «bum» или «mud»? Попробуйте ответить на оба вопроса до того, как проведете такой эксперимент.
Билатеральную симметрию человеческого лица можно продемонстрировать вертикально, прижав зеркальце (без рамки) к середине фотографии, снятой в анфас. При этом, конечно, край зеркальца должен проходить по оси симметрии снимка лица. Видимая часть фотографии вместе с отражением выглядит, как лицо на снимке, но не в точности из-за легкой асимметрии черт.
Попробуйте это проделать с собственной фотографией или со снимками друзей, родственников и известных вам личностей в журналах. Иногда очень любопытно видеть, насколько разные получаются лица из двух левых и двух правых половинок. В начале нашего века группа немецких психологов утверждала даже, что два «составных лица», полученных таким образом, отражают две основные стороны в характере изображенного на фотографии человека. Ни один уважающий себя психолог в наше время не принимает эту гипотезу всерьез, но это не помешает вам позабавиться, подвергнув такому «зеркальному анализу» своих приятелей. Слегка отклонив зеркало от вертикали, можно сделать уродливым самое симпатичное лицо.
В вестибюлях гостиниц или учреждений часто встречаются колонны квадратного сечения, выложенные со всех сторон зеркалами. Билатеральная симметрия человеческого тела позволяет проделать забавный фокус, используя такую зеркальную колонну. Встаньте за ней, прижавшись носом к ребру колонны так, чтобы на виду оставалась ровно половина тела. Видимая часть вместе с отражением будет выглядеть как целый человек. (Подвигайтесь немножко из стороны в сторону, пока зрители не скажут вам, что вы выглядите совершенно нормально.) Поднимите ту руку, которая отражается в зеркале и подуйте на палец. Одновременно рукой,
Если вас вызовут на бис, то поднимите ногу, видимую зрителям. «Составной образ» подпрыгнет, дрыгая обеими ногами, как паяц на веревочке. При этом быстро вращайте глазами. Публике покажется, что один глаз у вас вращается по часовой стрелке, а другой против.
Если прижать край зеркала к любой фигуре или к любому узору, полученная составная картина будет обладать билатеральной симметрией. В детстве, наверное, вы забавлялись картинками из чернильных клякс. Капните несколько раз чернилами на листок бумаги, согните его так, чтобы сгиб попадал на кляксу и сожмите половинки. Развернув листок, вы увидите симметричный узор. В известном тесте Роршаха, используемого психиатрами в диагностике, рассматриваются картинки-кляксы, полученные именно таким образом. Линия сгиба листка является, конечно, осью симметрии полученного узора.
Если поставить два зеркала под углом и приложить их к фигуре или рисунку, получится целый ряд последовательных отражений. При подборе различных углов раствора, равных 180°, деленным на целое число, мы получим отражения, образующие необычные узоры с четным числом осей симметрии. Если угол равен 180°/2 = 90°, таких осей будет четыре. Этого еще мало, и картинки получаются неинтересные. Угол 180°/3 = 60° дает поразительно симметричную гексагональную картинку вроде снежинки с шестикратной осью симметрии. Поставьте три зеркала, раздвинутые под углом 60°, на цветную журнальную иллюстрацию и медленно вращайте их, сохраняя раствор угла постоянным. Абстрактный гексагональный узор будет ритмично меняться, сохраняя все время красивую симметрию. В большинстве калейдоскопов зеркала устанавливают именно под углом 60°, а узоры там возникают за счет отражения фигур, случайно образуемых кусочками цветного стекла.
В США в настоящее время широко распространен новый тип калейдоскопа, так называемый телейдоскоп. Вместо цветных стекляшек на его торцах укреплены увеличивающие линзы, которые превращают этот прибор также и в телескоп. Любой вид, наблюдаемый в телейдоскопе, отражается в зеркалах, установленных под углом 180°/4 = 45°[5]. В этом случае получается октагональный рисунок с осью симметрии восьмого порядка. Любопытный трюк, связанный с проблемой правого и левого, можно показать с помощью двух (или больше) пар обычных игральных костей. Если вы сложите три кубика, как показано на рис. 15, и покроете эту колонку монетой, то, осматривая эту колонку с четырех сторон, можно увидеть четыре грани каждого кубика (две грани невидимы). Можете ли вы правильно назвать показание верхней грани каждой игральной кости, изображенной на рис. 15? Поскольку сумма чисел на всех противоположных гранях равна семи, то легко определить, что для нижнего кубика это 6 или 1, для среднего 4 или 3, а для верхнего 5 или 2. Можете ли вы сказать, какое из чисел каждой пары является правильным ответом на вопрос?
Решение этой задачи основывается на том, что грани игральных костей можно занумеровать только двумя способами при условии, что сумма очков на противоположных гранях равна семи. Оба эти способа являются зеркальным отражением друг друга. Если смотреть на кубик, как показано на рис. 16, со стороны граней 1, 2 и 3 (грань 1 сверху), то видно, что числа в порядке возрастания расположены против часовой стрелки. Все игральные кости в настоящее время изготовляются именно так. В прошлые времена в ходу были оба способа. История кубической кости с постоянной суммой очков на противоположных гранях восходит к древнему Египту, где ее изготовляли и в «правой» и в «левой» модификациях.
Так как вы уже знаете, что все современные игральные кости «левые», то назвать верхние цифры кубиков на рис. 15 не составит труда. Посмотрите на две другие грани и попытайтесь представить, где могут находиться единица, двойка и тройка. Немного попрактиковавшись и помня, что сумма очков на противоположных гранях равна семи, а 1, 2 и 3 идут «против часовой стрелки», вы без особого труда решите задачу.
Упражнение 6. Назовите число очков на верхней грани каждого из кубиков на рис. 15.
Обычно и один человек из тысячи не в состоянии правильно угадать верхние грани, когда кубики сложены таким образом[6].
Я видел игроков, которые показывали этот фокус в казино. Кто-нибудь в случайном порядке укладывал столбик из шести или более костей, пока игрок отворачивался. Потом, бросив один только взгляд, он называл все верхние цифры, и их проверяли, снимая кубики по одному. Такое искусство всегда производит впечатление и вызывает споры о том, в каком порядке нумеруются грани игральной кости.
Попробуйте эти фокусы на своих друзьях — они достаточно забавны, и математическая «подкладка» делает их интереснее. А нам предстоит заняться более серьезными вещами. В следующей главе мы рассмотрим роль симметрии отражения в живописи и, как это ни удивительно, в музыке и поэзии.
Симметрия отражения — один из древнейших и самых простых способов создавать изображения, радующие глаз. Примером может служить детский чернильный узор, упомянутый в предыдущей главе. Когда ребенку показывают его впервые, он обычно взвизгивает от восторга, увидев развернутый листок с появившимся на нем симметричным узором, особенно если он сделан не темными чернилами, а разноцветными красками. Почему ребенку кажется, что картинка «красивая»? Ответ очевиден — ему нравится порядок и гармония, появившиеся в случайном узоре. Может быть, причина и в том, что в окружающем мире он также видит много билатерально симметричных вещей? Этого, кроме него, никто не знает, но вполне разумно предположить, что именно билатеральная симметрия в природе, которую ребенок видит столь часто, заставляет его с удовольствием реагировать на такие узоры. Билатеральная симметрия широко встречается в произведениях искусства примитивных цивилизаций и в древней живописи. Она занимала существенное место в древнеегипетском искусстве. Средневековые религиозные картины также часто характеризуются отчетливой билатеральной симметрией.
На современный вкус композиция такой картины скучна, поскольку симметрия слишком очевидна (хотя временами она возрождается в некоторых произведениях и в геометрических рисунках абстракционистов). Посмотрите однако, вокруг и вы увидите бесчисленные примеры симметричных форм и узоров в предметах, созданных человеком. Я говорю не о вещах, симметричных по необходимости, для удобства (двери, окна, стулья и т. д.), а о формах и узорах, которые сделаны симметричными просто потому, что так на них приятнее смотреть. Вазы, лампы, подсвечники, витражи, елочные украшения, серьги, брошки — список бесконечен. Узоры на платьях, обоях, занавесках, коврах часто создаются повторением симметричного рисунка. Марки торговых фирм и различные эмблемы обычно билатерально симметричны. Как указывал Герман Вейль в своей небольшой книге «Симметрия» (1952 год)[7], художники часто полностью жертвуют сходством с природой ради получения по обе стороны вертикальной оси совершенно одинаковых изображений. Поразительным примером является двуглавый орел на гербах царской России и старой Австро-Венгерской монархии.
Заметим, что почти в каждом случае ось симметрии на таких изображениях вертикальна. Мы настолько привыкли к вертикальным осям симметрии в природе, что нас охватило бы непонятное нам смущение, если бы, например, оси симметрии на обоях вдруг повернулись на 90°. Есть, однако, один всем нам знакомый вид, у которого ось симметрии горизонтальна: это деревья и другие растения и предметы, отраженные гладью озера или реки. Когда мы видим такой вид на картине, никакого чувства неловкости она у нас не вызывает: симметрия приятна. Поэтому брошки редко имеют только горизонтальную ось симметрии (если, конечно, они не изображают растения или животных, обладающих такой осью).
Явное предпочтение, которое природа отдает вертикальным осям, объясняется очень просто — сила тяжести направлена сверху вниз. Вследствие этого все в природе стремится равномерно развиться или распространиться в горизонтальной плоскости. Вода разливается во все стороны и образует озера с горизонтальной поверхностью. Озеру все равно, куда разливаться — на восток или на запад, на юг или на север, но оно не может разлиться вверх! Поэтому, если вы сфотографируете озеро и, прежде чем печатать снимок, перевернете негатив, превратив тем самым правое в левое и наоборот, на снимке получится все-таки совершенно обычное озеро. Но, перевернув фотографию вверх ногами, вы заставите воду нарушать закон всемирного тяготения и увидите то, чего в природе никогда не бывает.
Деревья, грубо говоря, имеют ту же симметрию, что и конус, у которого бесконечное число вертикальных плоскостей симметрии и ни одной горизонтальной. Опять-таки все дело, очевидно, в гравитации. Дерево растет, преодолевая силу тяжести. Корни у него в почве, а листья в воздухе, поэтому вершина четко отличается от основания. Поскольку растения пускают корни в почву и не передвигаются с места на место, как животные, то для них неприемлемы понятия «передняя» или «задняя» часть, «левая» или «правая» сторона. Зеркальное отражение дерева, если зеркало держать вертикально, выглядит в точности, как настоящее дерево.
Действительно, по фотографии любого пейзажа трудно даже определить, «вывернут» он или нет, если только в поле зрения не попали какие-нибудь билатерально
В журнале «Нью-Йоркер» за май 1962 года появилась карикатура, изображавшая человека, только что вставшего утром с постели и поднимающего штору на окне. Пейзаж за окном перевернут вверх ногами! Картинка забавна, потому что такое превращение выглядит совершенно нелепо; если бы ландшафт развернулся слева направо, то казался бы совершенно нормальным.
Порой художники и карикатуристы забавляются, рисуя картинку-перевертыш, которая превращается в другую осмысленную картинку, если ее перевернуть. Обычно это вызывает удивление потому, что от перевернутого рисунка никто и не ожидает, что он будет хоть на что-нибудь похож. Обращение картины слева направо — столь обычное явление, что легко себе всякий раз представить, как будет выглядеть изображение, если его преобразовать таким образом. Но почти невозможно, разглядывая перевернутую картину, угадать, что получится, когда она будет висеть нормально.
Во время учебы в колледже мне пришлось однажды жить в меблированной комнате, и репродукции картин на стенах меня очень раздражали. Чтобы они не портили настроение, я перевесил их вверх ногами. Сюжет после этого пропал, а остались только цвет и композиция, и они меня устраивали. К сожалению, моя хозяйка, которой эти картины нравились, возражала столь решительно, что их снова пришлось перевешивать. Мораль всей этой истории в том, что перевертывание реалистической картины на 180° или отражение ее в горизонтальном зеркале (это не совсем одно и то же) меняет ее «художественную ценность». А изменится ли эта эстетическая ценность при рассмотрении отражения картины справа налево? Так и тянет сказать «нет», но, подумав немного, в этом можно усомниться. Небольшая разница в восприятии может объясняться, например, тем, что все мы на Западе привыкли читать слева направо. Некоторые критики-искусствоведы утверждают, что картина при таком отражении проигрывает.
В пользу такого мнения говорят и некоторые экспериментальные факты. Дэвид Эйзендрат младший, нью-йоркский фотограф, изготовил однажды пятьдесят фотографий театральных сцен в двух зеркально симметричных вариантах. Эти двойные фотографии показывались раздельно, и каждый должен был выбрать тот из вариантов, который ему больше нравится. Для сцен, обладающих приближенной право-левой асимметрией, предпочтения какому-нибудь одному варианту оказано не было, но, когда композиция была резко асимметрична, 75% опрошенных предпочли правильную фотографию перевернутой. Все это относится к лицам, читавшим слева направо. Когда те же картинки были показаны людям, читавшим только на иврите (по древнееврейски), то есть справа налево, они, наоборот, выбирали перевернутые фотографии.
Опыты Эйзендрата, а также более ранние работы в том же направлении немецких психологов (в частности, Генриха Вольффлина и Теодоры Хаак) показали, что художественная ценность картины при отражении действительно может снижаться. Если это и так, то такой эффект, во всяком случае, невелик, в чем вы сами можете убедиться, если возьмете книгу с большим числом иллюстраций (лучше, если вы их раньше не видели) и просмотрите ее один раз просто, а другой раз, поднося рисунки к зеркалу, проследив при этом, получается ли проигрыш или выигрыш в эстетическом отношении.
Если серия рисунков есть рассказ в картинках, то наша привычка к чтению слева направо оказывает, конечно, сильнейшее влияние на композицию рисунка. Действие на нем происходит, как правило, тоже слева направо, и персонаж, говорящий первым, помещается левее, чтобы кружки, в которых заключены слова изображенных персонажей, не перепутались. На японских макимоно — длинных складных полосах с рассказом в рисунках — события разворачиваются в противоположном направлении, потому что эти полосы раскладывают справа налево.
Кинофильм легко показать так, чтобы правое и левое поменялись местами. Можно долго смотреть на такую картину, прежде чем перемена станет заметна: вы увидите какое-нибудь объявление, или вывеску, или людей, пожимающих друг другу левые руки. Статуи обычно билатерально симметричны (особенно конные статуи), а в архитектуре симметрия настолько широко развита, что в комментариях не нуждается. Большое значение билатеральная симметрия имеет в рисунке танца. Эстрадно-танцевальная группа мюзик-холла «Радио-сити» в Нью-Йорке иногда показывает номера, в которых каждый элемент перемежается с начала до конца с правого на левое исполнение.
Кинокартины можно обращать не только в пространстве, но и во времени. Такие фильмы смотрятся, как кошмар: люди ходят по улицам спиной вперед, прыгуны в воду вылетают из бассейна и взмывают на вышку и так далее. Испытывали бы мы те же чувства при демонстрации фильма-балета в обратном направлении? Танец «задом наперед» может оказаться приятным зрелищем, хотя и несколько гротескным, особенно если его озвучить обычной музыкой. Может быть, опытный хореограф сможет даже поставить балет-палиндрому, билатерально симметричный во времени, который будет выглядеть в кино одинаково, в каком бы направлении ни пускали пленку.
С первого взгляда кажется, что зеркальная симметрия не должна играть никакой роли в музыке, но ведь мелодия — это определенная последовательность музыкальных нот, расположенных вдоль оси времени, поэтому «отразить мелодию в зеркале» — значит просто проиграть ее наоборот. С помощью магнитофона это легко сделать. В большинстве случаев «музыка наоборот» воспринимается как бессмысленный набор звуков, и слушать ее неприятно. Фортепьянная музыка, проигранная наоборот, оказывается до странности похожей на органную. (Можете ли вы объяснить, почему?) В XV столетии многие композиторы писали каноны[8] (в этих произведениях две мелодии исполняются параллельно), в которых одна мелодия была «зеркальным отражением» другой в указанном смысле. Многие великие композиторы использовали обращение мелодий во времени для достижения разнообразных контрапунктных эффектов.
Музыку можно «перевернуть» и в другом смысле — низкие ноты заменить высокими и наоборот. Если вы представите себе необращенную Алису, которая сидит в Зазеркалье и играет на пианино знакомую ей мелодию, то зазеркальное фортепьяно будет издавать при этом музыку, перевернутую именно во втором смысле. Вы сами можете исполнить такую музыку, если умеете играть на пианино, для этого достаточно перевернуть нотную запись и играть по ней от начала к концу. Однажды Моцарт шутки ради написал канон, в котором вторая мелодия была перевернута и снизу вверх и слева направо. В этом случае для исполнителей дуэта нет даже нужды печатать две мелодии на нотной бумаге: оба голоса могут петь по одному листу, глядя на него с разных сторон. Современный пример такого канона, созданный Уинтропом Паркхерстом, можно найти в его книге «Анатомия музыки».
Поэзию тоже можно представлять себе как последовательность звуков, расположенных вдоль оси времени. Несомненно, многие опытные поэты намеренно использовали симметрию отражения, стремясь получить своеобразные звуковые эффекты. Роберт Браунинг, например, в своем прекрасном широко известном лирическом стихотворении «Ночная встреча» применил внутреннюю рифму типа abccba, чтобы отражение звуков напоминало плеск морских волн.
Если забыть о форме букв и считать, что предложение это ряд символов, расположенных вдоль одной линии, то зеркальным отражением можно пользоваться для получения разного рода забавных вещей. Мы называем палиндромами слова, которые билатерально симметричны, то есть пишутся одинаково в обоих направлениях: радар, ротатор. Малайалам — язык, на котором говорят некоторые народности в Индии. Уассамассау — палиндромическое название болотистой местности в графстве Беркли, Южная Каролина[9]. «Морднилап» (палиндром наоборот) — это слово, которое превращается в другое слово, если его перевернуть, например: live — жить и evil — зло, straw — соломинка и warts — бородавки, dessert — дессерт и stressed — подчеркнутый и т. д. Если симметрией отражения обладает целое предложение, его тоже называют палиндромическим. Написаны тысячи таких предложений. Интересующийся читатель найдет хорошую подборку новых, малоизвестных примеров такого рода в книге Бомобо «Литературные курьезы». Вот два из них:
A man, a plan, a canal, — Panama!
(Человек, план, канал — Панама!)
Straw? No, too stupid a fad. I put soot on warts.
(Соломой? Нет, это слишком глупая причуда. Я мажу сажей бородавки.)[10]
Некоторые считают, что первый палиндром написан американским юмористом Джеймсом Турбером, но это не так. Эта фраза принадлежит Лей Мерсеру, лондонскому составителю языковых задач и загадок, автору многих оригинальных палиндромов.
Палиндромическое число не меняется, если изменить порядок его цифр на обратный. Последним палиндромическим годом был 1881 (это число не меняется также, если его перевернуть или посмотреть на его отражение в зеркале). 1961 не меняется при перевороте, но не является палиндромом. Ближайшим палиндромическим годом будет, конечно, 1991. Если взять какое-нибудь число, изменить порядок его цифр на обратный и сложить с исходным числом, затем ту же процедуру проделать с полученной суммой и так несколько раз повторить ее, то сможем ли мы получить на каком-нибудь этапе этого процесса палиндромическое число? Так, 89 + 98 = 187 — не палиндром. 187 + 781 = 968 — все еще не палиндром. Однако, продолжая «перевертывать и складывать», мы получим в конце концов после 24 сложений палиндром 8 813 200 023 188.
Некоторые считают, что описанная процедура в применении к любому целому числу даст палиндром после конечного числа сложений. Калифорнийский математик Чарльз Тригг сомневается в справедливости этого предположения. Среди чисел меньше 10 000 он нашел 251 число, каждое из которых не дает палиндрома при первых ста сложениях; наименьшее из этих чисел 196. Может быть, найдется читатель, который составит программу для вычислительной машины и проверит число 196, проделав свыше ста сложений. Другой калифорнийский математик, Дьюи Дункан, показал, что в двоичной системе описанный процесс не всегда дает палиндром. Например, если взять за исходное двоичное число 10 110, то из него никогда не получится палиндром. Доказательство этому можно найти в задаче 5 в книге Роланда Спрага «Математический досуг». В десятичной системе этот вопрос остается еще нерешенным.
Особое внимание привлекают палиндромические простые числа. (Простые числа не имеют других делителей, кроме самого себя и единицы. Сама единица тоже простое число.) Норман Гриджмен из Оттавы заметил, что простые палиндромические числа с нечетным числом цифр часто образуют идентичные пары, за исключением средней цифры, которая у них отличается на единицу. Например, среди первых 47 простых палиндром таких пар известно 12:
2 | 919 | 13 831 |
3 | 929 | 13 931 |
181 | 10 501 | 15 451 |
191 | 10 601 | 15 551 |
373 | 11 311 | 16 561 |
383 | 11 411 | 16 661 |
787 | 12 721 | 30 103 |
797 | 12 821 | 30 203 |
Доказано, что простых палиндромических чисел бесконечно много. А является ли число таких пар бесконечным? Гриджмен говорит: «Да», — но этого пока никто не доказал.
Время от времени пишутся палиндромические стихи, в которых порядок слов абсолютно одинаков в обоих направлениях (см., например, упомянутую выше книгу Бомобо), и — значительно реже — палиндромические стихи, в которых «отражаемым элементом» является буква, а не слово. Грэхэм Рейнолдс напечатал три палиндромических стиха в журнале «New Departures» за 1960 год. Вот один из них:
HYMN TO THE MOON[11]
Luna, nul one,
Moon, nemo,
Drown word
In mutual autumn
I go;
Feel fog rob of all life
Fill labor
Go, flee fog
In mutual autumn
I drown
Word; omen; no omen.
O, Luna, nul.
Фредерик Браун написал целый палиндромический рассказик. С разрешения автора мы приводим его здесь полностью. По-моему, эту главу лучше всего кончить рассказом Брауна «Конец».
THE END
Professor Jones had been working on time theory for many years.
«And I have found the key equation», he told his daughter one day. «Time is a field. This machine I have made can manipulate, even reverse, that field».
Pushing a button as he spoke, he said, «This should make time run backward run time make should this», said he, spoke he as button a pushing.
«Field that, reverse even, manipulate can made have I machine this. Field a is time». Day one daughter his told he, «Equation key the found have I and».
Years many for theory time on working been had Jones Professor.
END THE
КОНЕЦ
Профессор Джонс долгие годы разрабатывал теорию времени.
«Я открыл ключевое уравнение, — сказал он однажды дочери. — Время — это поле. Видишь машину, мной построенную. Эта машина изменяет и обращает поле».
Нажимая кнопку, он произнес: «Сейчас время потечет обратно — обратно потечет время сейчас», — произнес он, кнопку нажимая.
«Поле обращает и изменяет машина эта. Построенную мной машину видишь. Поле — это время, — дочери однажды он сказал. — Уравнение ключевое открыл я».
Времени теорию разрабатывал годы долгие Джонс профессор.
КОНЕЦ
Весь космос, то есть «Вселенная пространства и времени» и все то, что в ней находится, обладает по-видимому, в целом сферической симметрией. Мы живем на маленькой планете, которая обращается вокруг Солнца — одной из сотен миллиардов звезд нашей Галактики. Сама Галактика имеет спиральную структуру с длинными рукавами, которые тянутся от центра, как сыплющие искрами хвосты ярмарочного огненного колеса.
Наша Солнечная система помещается в одном из рукавов на расстоянии, превышающем 30 000 световых лет от центра Галактики (световой год — это такое расстояние, которое свет проходит за год, то есть около 10 000 миллиардов километров). Наша Галактика входит в скопление звездных систем — галактик. За его пределами на невообразимо больших расстояниях рассеяны в космосе другие скопления галактик. У астрономов есть веские основания считать, что эти скопления удаляются друг от друга, так что вся Вселенная расширяется, как детский шарик, когда его надувают воздухом.
Симметричны ли при этом сами галактики? Да, даже спиральные галактики симметричны, если их рассматривать как трехмерные структуры. Правда, спираль
Но есть одна «псевдопричина», по которой галактику нельзя наложить на ее зеркальный образ даже «в целом», забыв о структуре; это положение северного и южного полюсов ее магнитного поля.
Известно, что в нашей Галактике существует магнитное поле, хотя и очень слабое. Точная структура этого поля неизвестна, но, по всей вероятности, магнитная ось Галактики почти совпадает с осью вращения. Если помнить о названиях, которые даются противоположным концам магнитной оси, то «левую» и «правую» стороны Галактики уже нельзя перепутать. «Магнитная» Галактика несовместима с зеркальным отражением. Если перевернуть ее так, чтобы спиральные рукава совпали со спиральными рукавами отражения, то северный полюс ее придется на то место, где у отражения южный полюс.
В действительности же, как мы увидим позднее, это ненастоящая асимметрия, а лишь кажущаяся, и вытекает она только из способа, которым мы обозначаем разные концы магнитной оси. Магнитное поле симметрично, но понять его симметрию по-настоящему мы сможем только в гл. 19, разобравшись в природе магнетизма.
Такая же псевдоасимметрия наблюдается и у звезд, подобных нашему Солнцу. Если рассматривать только форму Солнца, тогда оно, очевидно, сферически симметрично. Правда, Солнце вращается, но это не помешает нам совместить его с зеркальным близнецом. Нужно лишь перевернуть отражение, изменив направление оси его вращения, и тогда оно совпадет с оригиналом точка в точку, причем и Солнце и его изображение будут вращаться в одну и ту же сторону. Известно, однако, что у Солнца есть магнитное поле. Его магнитная ось, так же как и у Земли, тесно связана с осью вращения. Если мы повесим на полюса таблички с названиями «северный» и «южный» и не перевесим их на отражении, тогда вращающееся Солнце и его зеркальное отражение уже никак не удастся совместить. Если полюса совпадут, то этого не произойдет с направлениями вращения, а если полюса будут вращаться в одну сторону, то магнитные оси окажутся направленными в разные стороны.
Интересно отметить, что по причинам, пока не известным, магнитная ось Солнца совершает иногда полный «кувырок» — южный его полюс становится северным и наоборот. Поскольку направление вращения Солнца при этом не изменяется, то такой кувырок означает, что Солнце в результате его превращается (в некотором смысле) в своего энантиоморфа!
А как обстоит дело с планетами? Как и Солнце, они сферически симметричны, следовательно, совместимы со своими зеркальными изображениями, если не обращать внимания на детали строения поверхности и направление магнитного поля. У Земли такое поле есть, и его северный и южный полюсы расположены неподалеку от северного и южного полюсов оси вращения нашей планеты. Известно, что, кроме псевдоасимметрии, создаваемой магнитным полем, и форма Земли слегка (правда, очень слабо) асимметрична, грушевидна.
Раньше предполагали, что Земля имеет форму правильного «сплюснутого сфероида», то есть шара, слегка сжатого на полюсах, но точные измерения последних лет показали, что это сплющивание у южного полюса чуть больше, чем у северного. С учетом этой разницы вращающаяся Земля напоминает волчок, поскольку форма «верхней» части у нее отличается от формы «нижней» части; и поэтому Земля несовместима со своим зеркальным изображением, даже если отвлечься от названия магнитных полюсов. Если бы она
Изменение скорости зависит и от того, насколько далеко вы отстоите от центра Земли. Находясь на вершине высокой горы, вы описываете круг большего диаметра, чем стоя у ее подножия. Когда вы спускаетесь с горы, эта окружная скорость уменьшается. Она будет продолжать уменьшаться, если вы начнете спускаться в шахту. Чем глубже вы спускаетесь, тем медленнее вращаетесь. В центре Земли эта скорость обратится в нуль.
Нетрудно видеть, что такое изменение скорости будет в разных полушариях приводить к отклонениям в противоположные стороны. Отклонение будет существенным, конечно, если тело движется с большой скоростью и проходит большие расстояния. При стрельбе из ружья по мишени результирующее отклонение из-за силы Кориолиса оказывается слишком малым, и его можно не учитывать, но, когда на север или на юг летит межконтинентальная ракета, отклонение получается очень значительное, и для точного попадания необходимо принимать его во внимание. Представьте себе ракету, пересекающую северное полушарие на пути к Северному полюсу. По мере ее перелета на север круг, который она описывает вместе с вращающейся Землей, становится все меньше. Из-за инерции ракета стремится
Пролетев, скажем, 500 миль (800
В обоих полушариях движущийся объект отклоняется к востоку, если летит к полюсу, и отклоняется к западу, если летит к экватору. Неудивительно, что сила Кориолиса играет значительную роль в движении атмосферных и океанских течений. Некоторые геологи считают, что реки, текущие в южном полушарии на юг, а в северном — на север, размывают свои восточные берега сильнее, чем западные. Сила Кориолиса, несомненно, сказывается на течении рек, но среди геологов существуют разногласия по вопросу о том, достаточно ли велика сила Кориолиса, чтобы объяснить наблюдаемую разницу в подмыве восточного и западного берегов. Проводились исследования на берегах Миссисипи и других рек, текущих в меридиональном направлении, но результаты получены довольно спорные.
Нерешенным остается также вопрос о том, влияет ли сила Кориолиса на воронку, которая образуется при вертикальном стоке воды. Каждый знает, что, если выпускать воду из ванны, она образует водоворот у горловины спускного отверстия. Широко распространено мнение, что закручивание этого водоворота происходит в разных полушариях в противоположные стороны. Обосновывают это следующим примером: представим себе прямо на Северном полюсе большой круглый бассейн с плоским дном, в центре которого имеется спускное отверстие (рис. 17). Выпускная труба в центре бассейна уходит вертикально в землю. Когда вода течет к отверстию, сила Кориолиса стремится завернуть ее в восточном направлении, показанном стрелками, что и приводит к образованию водоворота с вращением против часовой стрелки. Образовавшись, водоворот усиливается; вполне вероятно, что вода, вытекающая из такой ванны на Северном полюсе, действительно будет стремиться образовать воронку с вращением против часовой стрелки.
На Южном полюсе картина меняется. Вода, правда, по-прежнему отклоняется на восток, но это приводит уже к образованию водоворота с закручиванием по часовой стрелке. Тенденция к образованию водоворота при спуске воды будет сильнее всего проявляться на полюсах, уменьшаясь по мере приближения к экватору, где она исчезает. В южном полушарии вода будет, с нашей точки зрения, вытекать «неправильно». На экваторе вода уподобится ослу между двумя охапками сена — она не будет знать, куда закручиваться.
Нет сомнения в том, что, будь бассейн, расположенный
Несмотря на это, некоторые опыты, по-видимому, показывают, что эффект силы Кориолиса можно заметить. А. Шапиро, физик из Массачусетского технологического института, проводил недавно эксперименты с круглой ванной диаметром шесть футов (1,8
Вне сомнения, именно сила Кориолиса закручивает против часовой стрелки циклоны и торнадо в северном полушарии, а в южном — в противоположную сторону. Что касается воронки в ванне, то это вопрос еще спорный, и необходимо провести более чистые опыты с большими бассейнами, чтобы иметь окончательное суждение по этому вопросу.
Поскольку во Вселенной рассеяны миллиарды галактик и в каждой из них — миллиарды звезд, разумно предположить, что вокруг многих звезд обращаются планеты и на некоторых из них должна быть жизнь. «Печальное зрелище!» — восклицал Томас Карлейль, когда рассуждал о возможности существования миллионов планет во Вселенной. «Если они населены, то сколько там зла и глупости, а если безлюдны — сколько места пропадает!»
В настоящий момент никто не знает, встречается ли жизнь, хоть в какой-то форме, по всей Вселенной или она ограничена только нашей Галактикой или даже нашей Солнечной системой. Мы даже не знаем, существует ли жизнь на Марсе и Венере — ближайших к Земле планетах. Однако быстро приближается время, когда на некоторые из этих вопросов будет получен ответ.
Не пройдет и десятилетия, как по Марсу и Венере поползут наши роботы, передавая на Землю то, что они там «видят». Конечно, космонавты скоро начнут исследовать нашу ближайшую соседку Луну, но условия там слишком суровы, и никто всерьез не ожидает, что на Луне существует хоть какая-то жизнь.
Предположим, что некоторые формы жизни развились на Марсе — условия на этой планете ближе всего к земным. Будут ли эти формы резко отличаться от всего того, например, что в состоянии придумать писатели-фантасты? Или у них будут черты, общие с жизнью, которую мы знаем? На эти темы, конечно, можно лишь фантазировать, но что касается вопросов симметрии, то тут мы можем сделать некоторые обоснованные предположения. На Земле жизнь зародилась в сферически симметричных формах, а потом стала развиваться по двум главным направлениям: образовался мир растений, обладающих симметрией конуса, и мир животных с билатеральной симметрией. Есть веские основания считать, что эволюция на любой планете, раз начавшись, будет происходить подобным же образом.
Простейшие одноклеточные существа плавали в море во взвешенном состоянии без ясно выраженного направления, их постоянно переворачивало, а сферически симметричная форма была естественной. Но, как только эти существа закреплялись за дно моря или за сушу, у них сразу появлялась ось направления верх — низ.
Корень любого растения можно сразу же отличить от его верхней части. Но ни в море, ни в воздухе нет ничего такого, что позволяло бы различать направления справа — налево и вперед — назад. Именно по этой причине все растительные формы имеют в общем-то коническую симметрию: у них нет горизонтальной плоскости симметрии, но зато есть бесчисленное множество вертикальных плоскостей. У дерева, например, есть очевидные вершина и основание, но вряд ли кто отличит у дерева переднюю часть от задней или правую от левой.
Большинство нераспустившихся цветов обладает почти конической симметрией. Плоды иногда бывают сферически симметричными (без учета плодоножки, соединяющей его с растением) — это апельсины, дыни, кокосовые орехи и т. д. Цилиндрическую симметрию (бесконечное множество плоскостей симметрии, проходящих через общую ось, и одна плоскость, перпендикулярная этой оси и делящая ее пополам) имеют такие плоды, как виноград и кабачки; яблоки и груши обладают конической симметрией. (И цилиндрическую и коническую симметрии биологи называют «радиальной симметрией».) Бананы билатерально симметричны. Из-за искривления банан можно разрезать на зеркальные половинки только вдоль одной плоскости.
Существуют ли в растительном мире примеры асимметрии, то есть полного отсутствия плоскостей симметрии? Да, и наиболее разительные примеры такого рода — растения спиральной формы. Как мы узнали из предыдущих глав, спираль нельзя совместить с ее зеркальным изображением. Она, следовательно, может существовать в двух отчетливо различающихся формах: правая спираль, примером которой служит шуруп, врезающийся в дерево, если его вращать по часовой стрелке, и левая спираль — зеркальное изображение правой. Спиральность встречается в растительном мире сплошь и рядом, не только в стеблях и усиках, но и в строении бесчисленного множества зерен, цветов, шишек и листьев, а также в самом расположении листьев на стеблях.
В наиболее правильной форме спиральность проявляется у ползучих и вьющихся растений. Большинство вьющихся растений, поднимаясь по стволам и стеблям других растений, завивается в правую спираль, но известны тысячи видов, вьющихся в противоположную сторону. У некоторых видов существуют и правая, и левая спирали, но обычно направление вращения для данного вида фиксировано и никогда не меняется. Жимолость, например, всегда образует левую спираль, семейство вьюнков (из них широко известен вьюнок пурпурный) — всегда правую. Если два растения одинаковой спиральности переплетаются, обвивая друг друга, то получается довольно правильная двойная «пружина», а если спиральность разная, то образуется безнадежно запутанный клубок. Буйное лево-правое сплетение вьюнка и жимолости, например, всегда пленяло английских поэтов.
В 1617 году Бен Джонсон написал в стихотворении «Очаровательное видение»:
...голубой вьюнок обвил любовно жимолость...
У Шекспира в первой сцене четвертого акта пьесы «Сон в летнюю ночь» королева Титания говорит Основе (голова которого была превращена Пэком в ослиную):
Спи! Я тебя руками обовью...
...Так жимолость душистая с вьюнком[12]
В объятии сплетается двойным венком.
В недавнее время очаровательную песню о любви вьюнка и жимолости написал лондонский поэт Майкл Флэндерс (сам, между прочим, левша), а на музыку эту песню положил его друг Дональд Суонн. Во время посещения Музея естественной истории в Кенсингтоне Флэндерс был поражен экспозицией, рассказывающей о повадках «правых» и «левых» вьющихся растений. Так и родилась его песня «Неудачный союз».
Вьющиеся растения образуют спираль, не только обвиваясь вокруг других предметов. Их стебли скручены в том же направлении. Иногда два или несколько стеблей одного и того же растения свиваются друг с другом, образуя подобие веревки. Бегнониевые[13], например, стремятся образовывать тройные спирали, закрученные вправо, а жимолость — двойные спирали, закрученные влево. Иногда кора на стволах буков, каштанов и других деревьев образует ярко выраженный спиральный узор, который у растений одного и того же вида может завиваться как вправо, так и влево.
Животные, неспособные двигаться самостоятельно и развивающиеся на одном месте, например морские анемоны, обладают обычно радиальной симметрией конического типа, подобно большинству растений. Медленные, малоподвижные животные — иглокожие (морские звезды, морские огурцы) и медузы — точно так же имеют коническую симметрию. Они пассивно плавают в море или лежат на дне, где и пища и опасность приближаются к ним с одинаковой вероятностью со всех сторон. Однако, как только данный вид приобретает способность передвигаться достаточно быстро, у животных этого вида неизбежно появляются свои особенности строения, позволяющие отличить заднюю сторону от передней. В море, например, способность быстро передвигаться в поисках пищи дает животному большое преимущество перед неподвижными и малоподвижными формами жизни. Рот, очевидно, более эффективен, когда он расположен в передней части тела, а не в задней. Одной этой черты — положения рта, — конечно, уже вполне достаточно для того, чтобы отличить переднюю часть тела рыбы от задней (или, как предпочитают говорить биологи,
В то же время сила тяжести вызывает появление различий между верхней и нижней половинами тела, или, если снова обратиться к языку биологов, между