ЭТОТ ПРАВЫЙ, ЛЕВЫЙ МИР
Перевод с английского
Ю. В. Конобеева
В. А. Павлинчука
Н. С. Работнова
В. В. Филиппова
Под редакцией и с послесловием
Я. А. Смородинского
От автора
«1957 год был, наверное, одним из самых волнующих в истории ядерной физики, — писал Д. Багг в рецензии на книгу по бета-распаду в августовском номере журнала „Нью-сайентист“[1] за 1962 год. — В начале этого года из лаборатории в лабораторию с быстротой молнии передавалась новость: четность не сохраняется! Профессора разводили руками и возбужденно разглагольствовали о спине, о зеркалах, об антимирах; даже студенты чувствовали, что вот-вот должно произойти нечто выдающееся».
Широкая публика тоже понимала, что случилось что-то из ряда вон выходящее. Все стало ясно, когда два американских физика китайского происхождения — Ли Чжэн-дао и Ян Жэнь-нин — были удостоены Нобелевской премии за свою работу, которая привела к ниспровержению четности. Но что такое четность? Как она «пала»? Из-за чего физики так волновались?
К счастью, чтобы понять ответы на эти вопросы, глубоких знаний по физике и математике не требуется, но необходимо четко разбираться в смысле право-левой симметрии и понимать ту роль, которую сыграла эта симметрия в новейшей истории физики и биологии. Нашу книгу мы начнем с вопроса о зеркалах, кажущаяся простота которого обманчива. Изучив природу зеркальных отражений в одном, двух и трех измерениях, мы поговорим о роли симметрии в фокусах и изобразительном искусстве, а затем перейдем к широкому исследованию право-левой симметрии и асимметрии в природе. Кульминационным пунктом нашего исследования будет несохранение четности, и в этой связи мы попытаемся коснуться самых глубоких загадок современной физики.
В 1958 году на конференции в Женеве было сделано сообщение об одном открытии в физике элементарных частиц. Оно устраняло трудность, давно беспокоившую Ричарда Фейнмана, специалиста по квантовой теории (мы встретимся с ним в главе 22). «Новость застала доктора Фейнмана в буфете, — писала „Нью-Йорк таймс“ от 5 сентября 1958 года, — он выскочил из очереди и сплясал джигу».
Наша книга не научит читателя квантовой механике. Она даже не объяснит ему, почему сплясал джигу доктор Фейнман. Но автор надеется, что заключительные главы книги помогут читателю-неспециалисту понять то ликующее настроение, от которого впору пуститься в пляс, охватывающее физика, когда он из макромира политики переносится в микромир элементарных частиц.
Я хотел бы поблагодарить Ричарда Фейнмана (не возлагая на него ни малейшей ответственности за мои ошибки и неточности) за просмотр чернового варианта рукописи и многочисленные полезные предложения, а также Бэнеша Хофмана, который исправил несколько неясных мест в одной из глав.
Некоторые животные, по-видимому, не в состоянии догадаться, что зеркальное отражение — просто иллюзия. Длиннохвостого попугайчика, например, беспредельно зачаровывает собственное отражение в полированных игрушках, положенных в клетку. Трудно предположить, что именно происходит в это время в птичьей голове, но, судя по всему, попугай предполагает, что перед ним другая птица. Собаки и кошки умнее. Они сразу теряют интерес к зеркалам, как только догадываются, что отражения бесплотны. Обезьяна тоже быстро осознает иллюзорность зеркальных образов; благодаря чрезвычайной понятливости она проявляет неослабное любопытство ко всему, что видит. Шимпанзе часами играет с зеркальцем — строит рожи, разглядывает все, что у нее за спиной, изучает и сравнивает предметы и их отражение в зеркале.
Начиная читать эту книгу, лучше всего внимательно посмотреть на себя в зеркало и попытаться почувствовать хоть часть того удивления и любопытства, которое испытывает в этом случае шимпанзе. Представьте себе, что одна из стен вашей комнаты сплошь зеркальная. Вы стоите перед этим огромным зеркалом и смотрите прямо на него. Что собственно вы видите?
На вас в упор глядит ваше точное изображение. Точное? Не совсем. У вашего лица, как и у любого другого, правая и левая половины не совсем одинаковы. Может быть, у вас слева пробор. Может быть, одна бровь выше другой, а на одной из щек шрам или родинка. Рассматривая себя достаточно внимательно, вы наверняка обнаружите такие асимметричные черты и заметите, что у вашего двойника в зеркале все они переставлены слева направо и наоборот. Например, пробор у него справа.
Эта «перестановка» произошла, конечно, и с самой комнатой и со всеми вещами в ней. Это
Ну, не то чтобы все. Стулья, столы и почти все лампы выглядят точно так же, как всегда. Если поднести к зеркалу чашку с блюдцем, в нем появятся обычное блюдце и обычная чашка. Но поднесите к зеркалу часы, и в них вы сразу заметите перемену. Например, цифры расположены на циферблате не «по часовой стрелке», а против. (Это свойство часового циферблата, кстати, часто используется в детективных романах. В одном из них при расследовании таинственного убийства главной уликой служат воспоминания девушки, которая запомнила показания часов. Потом оказывается, что, приоткрыв дверь и быстро взглянув на часы, она не поняла, что видит всего лишь их отражение в зеркале. Поэтому время, конечно, было замечено неправильно.)
Поднесите к зеркалу книгу. Если вы находитесь далеко от него, особых изменений в книге вам не удастся заметить. Подойдите поближе, чтобы различать буквы заглавия, и вы сразу увидите, что они «получаются не такими». Вывернутые наизнанку слова даже прочесть не так-то легко. Вы, может быть, помните, как Алиса, только что попав в Зазеркалье, открыла книгу на столе и наткнулась на знаменитое стихотворение-бессмыслицу. Вот как выглядела первая строфа:
Алиса оказалась достаточно сообразительной девочкой, чтобы понять, что при повторном отражении в зеркале предмет примет свой первоначальный вид, как будто его и не отражали вовсе. «А, это же зазеркальная книжка! — воскликнула она. — Если я теперь поднесу ее к зеркалу, все слова снова „получатся так, как надо“»[2].
Маленьких детей обычно озадачивает и очаровывает странная способность зеркала мгновенно расшифровывать послания, написанные или напечатанные задом наперед. Взрослых людей этим не удивишь. Они настолько свыклись с этой особенностью зеркал, что воспринимают ее как нечто само собой разумеющееся. Они думают, что ничего непонятного тут нет. Так ли это? Все ли тут
Разрешите смутить вас простым вопросом: почему зеркало переставляет только правую и левую стороны всех вещей, а не верх и низ? Подумайте хорошенько. Зеркало имеет абсолютно плоскую и гладкую поверхность. Его левая и правая части ничем не отличаются от верхней и нижней частей. Так почему же оно может переставить вашу левую и правую руки, но не может поменять местами ноги и голову? Каждая строка приведенного выше четырехстишия «перевертыша» (Jabberwocky) читается справа налево. Если вы посмотрите на эти строчки в зеркало, они пойдут слева направо, но верхняя строка останется верхней, а нижняя — нижней. Почему? Зеркало переставляет правую и левую стороны. А что будет, если повернуть его по часовой стрелке на четверть оборота? Перевернется ли отражение вашего лица? Всем, конечно, известно, что ничего подобного не случится. Тогда откуда же это настойчивое загадочное предпочтение правому и левому? Почему зеркало может вывернуть комнату по горизонтали, а опрокинуть ее вверх дном не может?
Я надеюсь, что эти вопросы заставят вас хоть на мгновение почувствовать себя в шкуре той любопытной обезьянки, которая созерцает свое отражение в зеркале. Это действительно «хитрые» вопросы. Проверьте их на своих друзьях. Все шансы за то, что они будут озадачены не меньше вашего. Смущенного смеха и сбивчивых попыток объяснения будет хоть отбавляй, но вряд ли кто даст прямой и четкий ответ. По своему обращению с зеркалами взрослые люди больше похожи на кошек и собак, чем на обезьян. Они считают, что отражение в зеркале объяснений не требует, и не пытаются понять до конца, почему именно так «работает» зеркало.
Положение можно запутать еще больше. Совсем легко сделать зеркало, которое вовсе не переставляет правую и левую стороны. Для этого можно взять, например, два прямоугольных зеркала без рамок и поставить их на стол, как показано на рис. 1. Зеркала должны быть взаимно перпендикулярными и касаться друг друга одним краем. Наклонитесь и посмотрите в такое составное зеркало. Если отражение вашего лица уже или шире обычного, отрегулируйте зеркала, пока лицо не станет нормальным. Но будет ли оно таковым? Подмигните правым глазом. При этом ваш двойник вместо того, чтобы подмигнуть левым глазом — то есть глазом, расположенным напротив вашего правого, — подмигнет своим правым глазом. Отражение в таком зеркале отличается от «нормального» зеркального изображения, но оно является истинным, неперевернутым изображением. Вы впервые видите себя в зеркале
Изготовить зеркало, обладающее описанным свойством, можно и по-другому — слегка изогнув тонкий полированный лист металла (рис. 2). Если вы добьетесь неискаженного изображения, оно будет и неперевернутым. Это легко проверить, моргнув глазом или высунув язык на сторону. Такие изогнутые зеркала были известны уже древним грекам, и Платон описал их в своих диалогах. Про них пишет и древнеримский поэт Лукреций в четвертой книге своей великой научной поэмы «О природе вещей», в главе о зеркалах.
Что случится с вашим отражением, если повернуть одно из таких загадочных зеркал на четверть оборота? Изображение мгновенно перевернется вверх ногами (рис. 3)! Значит, в определенном положении такое зеркало ничего не переставляет в изображении — ни правую сторону с левой, ни верхнюю с нижней. В другом же положении то же самое зеркало меняет местами верх и низ!
Предмет явно заслуживает дальнейшего изучения (так, наверное, говорит себе шимпанзе, размышляя о том, что видит в зеркале). Это изучение мы начнем со следующей главы, где разберемся подробно, что происходит в зеркале с одномерными и двумерными геометрическими фигурами. В процессе изучения придется познакомиться со многими удивительными научными истинами. Некоторые из них будут легковесными, а другие — не такими уж пустячными. Два открытия, принадлежащих к числу выдающихся научных свершений века, тесно связаны с проблемой правого и левого и природой зеркальных отображений. Это ниспровержение закона сохранения четности физиками и открытие биологами спирального строения молекулы, которая несет генетический код. Поэтому в последних главах книги русло нашего исследования приведет читателя к самым глубоким и мало изученным водам океана современной науки.
Мы живем в мире трех измерений, или, как иногда говорят для краткости современные геометры, в 3-пространстве. Каждое твердое тело можно измерить вдоль трех осей: север — юг, восток — запад и верх — низ. (Один приятель рассказывал мне, что у них в колледже преподаватель математики, человек с причудами, объяснял существование этих трех осей следующим образом: сперва он бегом пересекал аудиторию поперек, затем вдоль — по центральному проходу, — а после этого несколько раз подпрыгивал на месте.) Изучением геометрических фигур в 3-пространстве занимается стереометрия. Если мы ограничимся рассмотрением двух измерений, то получим планиметрию, то есть геометрию фигур, начерченных на двумерной поверхности — в 2-пространстве. Можно сделать еще один шаг вниз по этой лестнице и рассмотреть фигуры 1-пространства — одномерные фигуры, которые помещаются на прямой линии. Полезно разобрать природу зеркальных отображений во всех трех перечисленных пространствах.
Начнем с самого простого и познакомимся с Лайнландией, которая состоит из точек, образующих одну-единственную прямую, простирающуюся до бесконечности в обоих направлениях. Забавы ради представим себе, что такая линия населена расой примитивных созданий (жителей Лайнландии), которых мы будем называть одномерцами. Одномерцы мужского пола представляют собой длинные отрезки с «глазом» на одном конце (глаз мы будем изображать просто точкой). Одномерцы женского пола — более короткие отрезки и тоже с глазом на конце. Глаза прорезаются лишь у взрослых одномерцев. Дети — просто маленькие палочки без глаз. Чтобы сделать жизнь одномерцев интереснее, мы должны были бы, конечно, поселить их в мире, состоящем из сложной
А симметричны ли взрослые одномерцы? Нет, потому что мы не можем совмещать их с зеркальными изображениями, перемещая по прямой, — дело в том, что концы у взрослых одномерцев разные. Пусть линия, на которой они живут, простирается с востока на запад. Если взрослый одномерец обращен лицом на восток, его зеркальный двойник будет смотреть на запад. Мы, конечно, можем перевернуть одномерца и точно совместить с изображением, но для этого придется «снять» его с линии и произвести поворот в пространстве более высокой размерности — в двумерном мире. Поскольку, не выходя в пространство высшей размерности, нельзя наложить взрослого одномерца на его зеркальный образ, мы говорим, что эта фигура
Есть и другой способ отличить в Лайнландии симметрию от асимметрии. Если фигура симметрична, то у нее всегда есть точка (только одна) в самом центре, которая делит фигуру на две идентичные половинки, причем одна из них есть отражение другой. Такая точка называется
Пусть в Лайнландии живут только три взрослых одномерца — А, Б и В, причем все они «смотрят» на восток. Если мы получим зеркально обращенную картину одного из них, скажем среднего, то все трое мгновенно заметят перемену. Теперь А и Б «глядят друг на друга», а Б и В «повернуты спинами» один к другому. Но если вся прямая окажется зеркально отраженной, то есть вся «вселенная» одномерцев, то сами они о происшедшей перемене не смогут узнать. В действительности для них просто не имеет смысла говорить о какой-либо перемене. Мы знаем, что направление линии изменилось на обратное, но знаем потому, что живем в 3-пространстве и можем наблюдать положение Лайнландии по отношению к внешнему миру. Но одномерцы не могут представить себе пространство размерности большей чем единица. Они знают только свой собственный мирок, ту единственную прямую, на которой живут. С их точки зрения, никакого изменения не произошло. Только в том случае, когда операции зеркального отражения подвергается какая-то
Во Флатландии, в 2-пространстве планиметрии, все обстоит интереснее, но в отношении зеркальной симметрии предметы ведут себя практически так же, как в Лайнландии. На рис. 5 наш художник дал стилизованное изображение асимметричного двумерца и его отражения в вертикальном зеркале. (Оно изображено объемно, в 3-пространстве, но зеркало двумерца — это всего лишь прямая линия, которую он видит перед собой.) Совместить двумерца с зеркальным изображением невозможно. Если бы мы могли его взять с плоскости, как бумажного солдатика, перевернуть и снова положить в перевернутом виде, то все это можно было бы произвести в 3-пространстве, а не в 2-пространстве Флатландии. Что же произойдет, если держать зеркало над двумерцем или под ним, как показано на рис. 6? В этом случае поменяются местами верх и низ, потому что зеркало перпендикулярно вертикальной оси. Но изображение в зеркале получится таким же, как и прежде; изменится только его положение на плоскости. Мы можем взять любое из зеркальных изображений на рис. 6 и, перевернув, совместить их точка в точку с зеркальным изображением на рис. 5. Где именно помещено зеркало — не имеет ни малейшего значения, так как отражение асимметричного двумерца всегда получается одинаковым.
Нетрудно изобразить разные геометрические фигуры Флатландии, которые являются симметричными и не меняются при отражении в зеркале. Квадраты, окружности, эллипсы, равносторонние и равнобедренные треугольники, значки карточных мастей — бубновой, червонной, пиковой и трефовой — все они при отражении остаются неизменными. В Лайнландии, как мы уже знаем, у каждой симметричной фигуры есть точка, которая делит фигуру на зеркальные половинки. С симметричными фигурами Флатландии то же самое делает
Любая плоская фигура, обладающая
Легко привести примеры и асимметричных плоских фигур. Так, например, фигуры, изображенные на рис. 8, не могут быть соединены со своими зеркальными изображениями. Если вы попытаетесь провести через центр любой из этих фигур линию, которая делила бы фигуру на зеркальные половинки, вы убедитесь, что сделать этого невозможно. Как бы вы ни приставляли зеркало, отражаемая часть вместе с отражением не образует первоначальной фигуры. По этой причине каждую асимметричную фигуру можно рисовать на плоскости двумя способами.
Некоторые заглавные буквы в алфавитах симметричны, а некоторые нет. Вот первое из упражнений, предлагаемых в этой книге (все упражнения перенумерованы и ответы приведены в конце книги):
Упражнение 1. Какие из заглавных букв русского алфавита асимметричны, а какие нет?
Попробуйте ответить на этот вопрос, не пользуясь зеркалом. Помните, что буква симметрична, если можно выбрать по крайней мере одну такую прямую, чтобы она делила букву на зеркальные половинки. Если такой оси симметрии нет, то буква асимметрична. Напечатайте на листке симметричные буквы и поднесите его к зеркалу. Когда буквы выбраны правильно, то всегда можно повернуть листок так, чтобы буквы в зеркале не отличались от обычных. Чтобы добиться этого, для разных букв листок придется поворачивать по-разному, потому что направления осей симметрии у разных букв не всегда совпадают. Буква «А», например, имеет вертикальную ось симметрии. Она не изменится в зеркале, если поднести к нему листок прямо, не поворачивая. Однако у «В» ось симметрии горизонтальная. Поначалу покажется, что отражение существенно отличается от самой буквы, но поверните листок—и вы увидите в зеркале обычное «В». Проверив в зеркале все буквы, которые вы сочтете симметричными, попробуйте провести для каждой из них
Теперь поднесите к зеркалу листок с асимметричными буквами. Если они выбраны правильно, то, как бы вы ни вертели листок, ни одна из этих букв не будет выглядеть в зеркале «как настоящая». Все отражения асимметричных букв «получаются не такими». Рассмотрите эти буквы, и вы убедитесь, что для них невозможно провести оси симметрии. То, что свойства симметрии меняются от буквы к букве, дает возможность проделать ряд забавных фокусов с отражением слов в зеркале, но прежде чем рассказать о них (это будет сделано в гл. 4), мы должны посвятить следующую главу рассмотрению симметрии и асимметрии фигур в 3-пространстве, в том трехмерном мире, где живем мы сами.
В 3-пространстве, так же как в 1-пространстве и 2-пространстве, все фигуры можно разбить на две группы: симметричные и асимметричные. Симметричные пространственные фигуры можно наложить точка за точкой на их зеркальные изображения. С асимметричными пространственными фигурами этого сделать нельзя. Симметричные фигуры в 1-пространстве, если вы помните, имеют
Поясним это утверждение несколькими примерами. Сфера — пространственная фигура, которая, очевидно, полностью сходна со своим зеркальным изображением. Как круг можно рассечь бесчисленным множеством прямых линий, каждая из которых делит его на две зеркальные половинки, так и через центр сферы можно провести бесконечное число плоскостей. Если представлять себе плоскость симметрии как зеркало, то полусфера вместе со своим отражением в зеркале образует фигуру, совпадающую с исходной сферой. Представьте себе разрезанный пополам шарик для настольного тенниса. Если одну из половинок прижать к зеркалу линией разреза, то эта половинка вместе с отражением будет выглядеть как целый шарик. Сфера — не единственная трехмерная фигура, обладающая бесконечным числом плоскостей симметрии. Цилиндрическая сигарета, например, имеет бесконечное множество таких плоскостей, проходящих через ось сигареты плюс еще одна плоскость, которая проходит через центр сигареты и перпендикулярна ее оси. У конусообразного стаканчика с мороженым через ось тоже можно провести бесчисленное множество плоскостей симметрии, но плоскости симметрии, перпендикулярной оси конуса, нет. Чтобы быть симметричным, трехмерный объект
На рис. 10 изображены шесть трехмерных тел. У всех, кроме куба, проведены плоскости симметрии. Изучите изображение куба внимательно и попытайтесь ответить на такой вопрос:
Упражнение 2. Сколько плоскостей симметрии у куба?
Для совмещения симметричного трехмерного предмета со своим зеркальным изображением может потребоваться поворот в 3-пространстве. Предположим, вы подносите к зеркалу конический стаканчик с мороженым. Если держать его, как показано на рис. 11 слева, чтобы плоскость зеркала была параллельна одной из плоскостей симметрии конуса, то можно совместить предмет с изображением, просто сдвинув их вместе. Но если конус направлен вершиной в сторону зеркала (правая часть рис. 11), то в этом случае, как говорят, предмет и отражение будут иметь разную
У асимметричных пространственных объектов нет
Каждая асимметричная фигура имеет зеркального двойника, который во всех деталях совпадает с ней — только «получается не такой». Две асимметричные фигуры, являющиеся зеркальным изображением одна другой, называются
Если составная часть какого-нибудь предмета включает винт или пружину, то он асимметричен; и штопор, и винт, и гайка, все что с винтовой резьбой, асимметричны. Винты обычно делают так, что они ввинчиваются при вращении их по часовой стрелке. Про такие винты говорят, что они с правой резьбой. Для специальных целей изготовляются и винты с левой резьбой. В автомобилях, например, шпильки и гайки, которыми крепятся колеса, с одной стороны автомобиля имеют правую резьбу, а с другой — левую. (Это сделано потому, что при вращении колес гайки по обе стороны автомобиля стремятся раскручиваться.) Разная резьба не дает возможности резьбовому соединению разболтаться. Цоколи электрических лампочек, которые вы покупаете в магазине, имеют правую резьбу, но лампочки, которые до недавнего времени можно было видеть в вагонах нью-йоркского метро, имели левую резьбу! Это была мера против тех, кто выкручивал их и брал себе домой. (Теперь вместо ламп накаливания в метро употребляются лампы дневного света, они вставляются в специальные зажимы.) А слыхали ли вы когда-нибудь о левом штопоре? Попробуйте сделать такой и подшутить над кем-нибудь. Дайте его тому, кто хочет открыть бутылку, и посмотрите, скоро ли он сообразит, почему у него ничего не получается! Если же вращать такой штопор против часовой стрелки, он, конечно, ввернется в пробку не хуже всякого другого.
Упражнение 3. Можете ли вы сказать, почему во всем мире в основном используется правая резьба?
Посмотрите вокруг себя, и вы будете удивлены тем, сколь многие предметы, сделанные человеком, в целом симметричны, хотя бы внешне. В некоторых случаях предметы, кажущиеся симметричными на первый взгляд, при ближайшем рассмотрении таковыми не оказываются. Например, ножницы. Их лезвия могут в принципе пересекаться двумя различными способами — один зеркальное отражение другого. Большинство ножниц сделано с расчетом на то, что человек будет пользоваться ими, держа их в правой руке. Если вы не левша, то знаете, как неудобно стричь ногти на правой руке, держа ножницы в левой. Дело не только в том, что вы правша и левой рукой вам работать вообще неудобно: ножницы сделаны для пользования ими правой рукой, а вы держите их левой. Нажимать при этом на ручки так, чтобы ножницы резали как следует, очень неловко. В связи с этим выпускаются специальные ножницы для портных-левшей и вообще всех «леворуких» людей, которым часто приходится работать с ножницами.
Симметричен ли автомобиль? В общих чертах да, но, присмотревшись к деталям, например к расположению рулевого колеса, мы увидим, что это, конечно, не так. Энантиоморфом американских автомобилей являются, например, английские, которые приспособлены для левостороннего движения, поэтому руль у них справа. А симметричен ли самолет, летящий высоко в небе? Днем — да, но не ночью, когда на его левом крыле загорается зеленый огонь, а на правом — красный. Симметричен ли электрический вентилятор? Нет, потому что его лопасти вырезаны из винтовой поверхности. Если заменить их энантиоморфными лопастями, вентилятор будет гнать воздух назад, а не вперед. Винты самолетов и кораблей также асимметричны. Как вы думаете, симметричен кусок веревки? Может быть. Присмотритесь повнимательнее. Если она состоит из крученых ниток, значит, симметрия отсутствует, скрученная нитка — та же спираль, а в зеркальном отражении она будет закручиваться в другую сторону.
Упражнение 4. Какие из перечисленных ниже предметов асимметричны?
1. Хоккейная клюшка.
2. Спиннинг.
3. Машинка для точки карандашей.
4. Вилка.
5. Серп.
6. Саксофон.
7. Разводной гаечный ключ.
Лист Мёбиуса — хорошо известный топологический курьез — асимметричен. Если вы закрутите полоску бумаги на полоборота и склеите концы, то получите поверхность, у которой только одна сторона и только один край. Но это закручивание на полоборота можно сделать двояким способом — вправо или влево. Изогнете в одну сторону — получите лист Мёбиуса одного типа. Изогнете в другую — получите его энантиоморф.
Простой узел, завязанный на замкнутой веревочной петле, тоже может быть правым и левым. На рис. 12 изображена пара таких энантиоморфных узлов. Как бы вы ни старались, вам не удастся превратить узел в его зеркального близнеца. Обращали ли вы когда-нибудь внимание на то, что, скрещивая руки на груди, вы «завязываете себя» именно в такой узел? Следующий наглядный пример поможет вам понять это. Разложите перед собой на столе или дайте кому-нибудь подержать кусок веревки длиной около метра. Скрестите руки, взяв предварительно веревку за концы; теперь разъедините руки. Раньше у вас они были «завязаны узлом», теперь узел перейдет на веревку. В зависимости от того, как вы сложите руки, получится «правый» или «левый» узел. Отложите в сторону завязанный конец веревки и проделайте то же самое с другим концом, но теперь сложите руки «по-другому». Получившийся узел будет зеркальным отражением первого. Если вы проделаете все это перед зеркалом, то увидите, что ваш энантиоморф в зеркале и руки-то складывает «по-другому» и узел у него получается другой — если у вас левый, то у него правый, и наоборот.
Может быть, теперь, имея за плечами это краткое введение в теорию симметрии отражения, вы сможете ответить на вопрос, заданный в гл. 1: почему зеркало меняет местами правую и левую стороны, а не низ и верх?
Любопытно, что ответ определяется тем фактом, что наши тела, так же как и тела большинства животных, обладают только одной плоскостью симметрии. Она проходит, конечно, вертикально, через центр тела и разделяет его на две зеркальные половинки. Это справедливо только приближенно. В гл. 1 мы говорили, что в каждом лице есть незначительные асимметричные детали. Внутреннее строение тела обнаруживает, конечно, более существенную асимметрию — сердце у нас слева, аппендикс справа и т. д. (В последующих главах мы обсудим асимметрию живых существ более подробно.) Но внешне животные и люди обладают двусторонней симметрией, когда левая половина тела есть зеркальное изображение правой. Между передней и задней сторонами тела такого сходства не существует, нет его и между верхней и нижней частями. По этой причине, а также потому, что благодаря земной гравитации все предметы притягиваются вниз, мы создаем тысячи вещей (стулья, столы, комнаты, здания, автомобили, поезда, самолеты и т. д.), обладающих внешне и в среднем билатеральной симметрией. В зеркале мы видим своего двойника, стоящего посреди комнаты-двойника. Когда мы двигаем правой рукой, он двигает левой. Мы говорим, что зеркало меняет местами правую и левую стороны, лишь потому, что так нам удобнее всего обозначать различие между билатерально симметричной фигурой и ее энантиоморфом. В строгом математическом смысле зеркала «переставляют» не правую и левую, а переднюю и заднюю стороны!
Чтобы понять это, еще раз представьте себя стоящим перед зеркалом во всю стену комнаты. Вы смотрите прямо перед собой, и слева у вас запад, а справа восток. Пошевелите «западной» рукой. При этом у зеркального изображения тоже движется «западная» рука. Подмигните «восточным» глазом. Отражение тоже мигает «восточным» глазом. Голова у вас вверху, а ноги внизу. И у отражения голова вверху, а ноги внизу. Другими словами, оси восток — запад и верх — низ сохраняют свое направление в 3-пространстве. Изменяет свое направление ось вперед — назад, идущая с юга на север и перпендикулярная зеркалу. Вы стоите лицом к северу, отражение — лицом к югу. Проведите на полу мелом линию с юга на север перпендикулярно зеркалу и отметьте на ней точки, последовательно пронумеровав их с севера на юг: 1, 2, 3 и так далее до 10. В зеркале эти точки идут с севера на юг в обратном порядке: 10, 9, 8, 7 — до единицы. Говоря математически, зеркало не изменило оси слева — направо и вверх — вниз, а вот оси вперед — назад оказались направленными в противоположные стороны. Мы говорим, что зеркало меняет местами правую и левую стороны только потому, что при этом представляем самих себя стоящими за зеркалом.
Чтобы понять это яснее, скомандуйте себе «Направо!» и встаньте лицом на восток, касаясь зеркала левым плечом. Как и раньше, зеркало обращает только ось, перпендикулярную его поверхности. Когда вы так стоите, эта ось проходит у вас слева направо.
Представьте зеркало, вделанное в потолок или в пол. Это зеркало, как всегда, переворачивает только ту ось, которая находится под прямым углом к его поверхности. В данном случае это ось верх — низ. Это зеркало не меняет положения в пространстве правой и левой сторон или задней и передней, и вы в нем оказываетесь перевернутыми вверх ногами. Однако, представив себя стоящим на голове за зеркалом, вы заметите, что ваш двойник все-таки двигает правой рукой, когда вы двигаете левой. Хотя зеркало переставляет только верх и низ, вам как билатерально симметричному созданию по-прежнему удобно описывать зазеркальный мир, говоря, что там правое стало левым, и наоборот. Независимо от того как зеркало преобразует ваш мир, при отражении его, представив себя в таком преображенном мире, вы каждый раз видите, что правая и левая стороны у вас поменялись местами, и соответственно описываете происшедшую перемену.
Подведем итоги. Когда мы смотрим прямо в зеркало, то не обнаруживаем решительно никаких изменений ни справа, ни слева, ни вверху, ни внизу. Но отражаемый предмет оказывается «вывернутым» вдоль оси, перпендикулярной плоскости зеркала, при этом асимметричная фигура автоматически заменяется на энантиоморфную. Поскольку сами мы существа билатерально симметричные, то находим удобным называть это взаимопревращением правого в левое. Это просто манера выражаться, способ употребления слов.
«Магические зеркала», описанные в гл. 1, которые дают «неперевернутое» изображение, в действительности меняют направление
Если вам все это покажется запутанным[3], то перечитайте последние семь абзацев несколько раз и все как следует обдумайте и тогда вам станет совершенно ясным, что происходит с асимметричными предметами при их отражении в обычных и магических зеркалах. В качестве разрядки, прежде чем перейти к рассмотрению более серьезных вопросов, мы в следующей главе расскажем о нескольких простых фокусах и трюках, в которых используются некоторые высказанные выше идеи.
Существует много фокусов и «магических» трюков, которые в занимательной форме иллюстрируют принципы симметрии и асимметрии, обсуждавшиеся в предыдущих главах.
Довольно эффектен следующий простой фокус: на листке бумаги нужно написать буквами высотой примерно 1 сантиметр два слова: «ЧАЙ», и «КОФЕ» — одно из них напишите зачерненными буквами, другое — красными. Затем, налив в пробирку воды, подкрашенной синькой, предложите кому-нибудь посмотреть на эти слова через стекло. Попросите его объяснить, почему эта самодельная цилиндрическая линза переворачивает только зачерненные буквы, а красные не переворачивает (рис. 13).