Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Электрический глаз - Владимир Андреевич Мезенцев на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Рис. 9. Схематический разрез медной пластинки с «запирающим» слоем.

Следует иметь в виду, что масштабы на этом рисунке совершенно не соответствуют действительности; толщина запирающего слоя на самом деле очень мала — менее одной стотысячной доли сантиметра; слой полупроводника в действительности также очень тонок. Верхняя металлическая пластинка, наложенная на слой полупроводника, служит для того, чтобы было удобно включить пластинку в электрическую цепь.

Если такую пластинку подключить к батарее так, как показано на рисунке 10, то ток через неё не пойдёт, потому что электроны, движущиеся в цепи, должны в этом случае проходить через запирающий слой в направлении от полупроводника к металлу.


Рис. 10. В этом случае тока в цепи нет; «запирающий» слой не пропускает электроны.

А в этом направлении слой для электронов «непроницаем». Напротив, если переключить провода, т. е. соединить нижнюю металлическую пластинку с отрицательным полюсом батареи, а верхнюю — с положительным полюсом (рис. 11), то в цепи пойдёт довольно сильный ток.


Рис. 11. В этом случае в цепи идёт ток, «запирающий» слой пропускает электроны.

Теперь электроны проходят через слой в направлении металл — полупроводник; в этом направлении запирающий слой «прозрачен» для электронов (напомним ещё раз, что за направление тока в цепи принято считать то направление, в котором двигались бы положительные заряды, т. е. направление от положительного полюса батареи к отрицательному полюсу, хотя фактически ток в металлах представляет собой движение отрицательных частиц — электронов; оно происходит в обратном направлении).

Способность такого рода сложных пластинок проводить ток только в одном направлении и «запирать» его в противоположном уже давно используется в технике для превращения переменного тока в постоянный.

Но вот лет двадцать тому назад было обнаружено ещё одно, новое и поразительное, свойство таких пластинок. Оказалось, что если соединить эту пластинку с прибором- для измерения тока и осветить её так, чтобы лучи света действовали на её «запирающий» слой, то в цепи возникнет электрический ток, хотя в ней и нет никакого источника тока! Таким образом, эта пластинка представляет собой фотоэлемент, в котором опять-таки за счёт световой энергии создаётся электрический ток; он тем сильнее, чем сильнее освещён фотоэлемент.

Такого рода фотоэлементы получили название вентильных фотоэлементов (вентильным фотоэлемент называется потому, что он пропускает ток лишь в одном направлении) или фотоэлементов с запирающим слоем. Обычно направление тока в них противоположно тому направлению, в котором через пластинку мот бы проходить ток от внешнего источника (рис. 12).


Рис. 12. Схема устройства вентильного фотоэлемента.

Устройство вентильного фотоэлемента, как можно видеть из этого рисунка, очень простое. На толстую металлическую пластинку наносят тончайший прозрачный слой полупроводника, а сверху, для контакта, закладывают металлическую сетку или покрывают полупроводник тонкой металлической плёнкой. Ясно, что слой полупроводника и верхний слой металла должны быть достаточно тонки — для того, чтобы свет мог проникать сквозь них к запирающему слою.

Первыми фотоэлементами с запирающим слоем были так называемые купроксные фотоэлементы. Они представляют собой слой закиси меди на медной пластинке («купрум» значит «медь»). Такие фотоэлементы чувствительны к видимым лучам и к близким к ним по длине волны тепловым — инфракрасным лунам.

Очень скоро получили широкое распространение и селеновые вентильные фотоэлементы (рис. 13).


Рис. 13. Внешний вид вентильного фотоэлемента.

Чувствительность их к лучам разного цвета очень велика.

А вообще чувствительность вентильных фотоэлементов — купроксных и селеновых — к белому свету примерно такова же, как у лучших фотоэлементов с внешним фотоэлектрическим эффектом.

Выяснение сущности явлений, происходящих в вентильных фотоэлементах, — в основном заслуга советских физиков. Над этим вопросом работали физики школы академика А. Ф. Иоффе в Ленинграде и группа физиков Украинской академии наук в Киеве. В результате этих работ советские учёные перед Отечественной войной создали совершенно новые вентильные фотоэлементы — серно-серебряные и серно-таллиевые. Чувствительность этих приборов при освещении белым светом в десятки раз превосходит чувствительность всех рапсе известных фотоэлементов!

Вентильные фотоэлементы, конечно, гораздо удобнее в обращении, чем фотоэлементы с внешним фотоэффектом. Они не требуют никаких батарей или иных источников тока.

Однако есть у них и свои недостатки. Например, такие фотоэлементы очень трудно сочетать с ламповыми усилителями. Усиливать слабые фотоэлектрические токи, возникающие в них при освещении, практически невозможно. Поэтому вентильные фотоэлементы следует применять только там, где имеется относительно сильный источник света (они применяются, например, в сенситометре — приборе, с помощью которого определяется яркость освещения, а следовательно, и время выдержки, при фотографировании). В этом случае фотоэлектрический ток нет надобности усиливать.

Там же, где слабый первичный фототок необходимо усиливать, лучше пользоваться фотоэлементами с внешним фотоэффектом или вторично-электронными трубками.

Таковы различные типы фотоэлементов. Эти замечательные приборы выпускаются в настоящее время на специальных заводах в массовых количествах.

По плану послевоенной сталинской пятилетки в Советском Союзе изготовлено много сотен тысяч различных фотоэлементов. Они пошли на наши фабрики и заводы, в научно-исследовательские институты, в кинотеатры, в учреждения связи.

Фотоэлемент— верный, порой незаменимый помощник человека. Недаром его называют «электрическим глазом».

Где и как помогают человеку эти необыкновенные глаза — об этом рассказывается в следующей главе.

III. «ЭЛЕКТРИЧЕСКИЕ ГЛАЗА» РАБОТАЮТ

1. «Говорящая» кинолента

Из всех необычайно разнообразных применений фотоэлементов в современной технике наиболее массовым является применение их в звуковом кино.

Ни один звуковой киноаппарат не может работать без фотоэлемента. А между тем, в нашей стране работают десятки тысяч киноустановок. Таким образом, десятки тысяч фотоэлементов изо дня в день служат самому массовому и самому важному виду искусства — кино.

Тридцать лет назад многим казалось, что «озвучить» кино — дело безнадёжное. Не одна попытка получить хороший звук в кино окончилась неудачей. Но вот, в кино были применены «электрические глаза», и «Великий немой» заговорил громко, отчётливо, ясно.

Каким же образом работают в кино фотоэлементы?

Посмотрите на рисунки 14 и 15.


Рис. 14. Отрезок киноленты; слева видна звуковая дорожка.


Рис. 15. Отрезок киноленты; здесь звук записан другим способом.

Оба рисунка изображают отрезок звуковой киноленты. На ней вы видите снимки двух отдельных кинокадров (сцен). Слева от этих кадров идёт так называемая «звуковая дорожка». Она состоит из ряда поперечных чёрточек. На рисунке 14 эти чёрточки одной длины, но разной прозрачности. На рисунке 15, наоборот, все чёрточки чёрные, непрозрачные, но имеют разную длину. Вот на таких звуковых дорожках и записаны все звуки фильма — слова, шум улицы, музыка, пение.

Оба способа записи звука на киноплёнку разработаны нашими советскими учёными П. Г. Тагером, А. Ф. Шориным и В. Д. Охотниковым.

Мы не будем в нашей книжке говорить о том, как именно записываются звуки на киноплёнку. Об этом подробно рассказано в другой брошюре серии «Научно-популярная библиотека»: В. Д. Охотников «В мире застывших звуков». Да и фотоэлемент в процессе записи звука на киноплёнку никакого участия не принимает.

Зато при воспроизведении звука с киноплёнки фотоэлемент совершенно необходим.

Посмотрите на рисунок 16 и вы легко поймёте, каким образом в кино, при демонстрации кинофильма, воспроизводится с помощью фотоэлемента звук.


Рис. 16. Схема воспроизведения звука в кино.

Постоянный по силе свет от лампы собирается увеличительным стеклом-линзой в узкий пучок, который ярко освещает небольшую щель. Эта щель с помощью других линз отображается в сильно уменьшенном виде на звуковой дорожке киноленты. Лента скользит по барабану, в котором против освещённого места имеется отверстие.

Таким образом, луч света проходит через щель, через звуковую дорожку на киноленте и через отверстие — внутрь барабана. Здесь световой пучок падает на фотоэлемент.

На звуковую дорожку попадает пучок света постоянной силы, но пучок, прошедший через ленту и действующий на фотоэлемент, уже не будет постоянным. Напротив, в разные моменты времени сила света его будет больше или меньше, в зависимости от того, прошёл ли он через более светлое или более тёмное место дорожки. Точно так же, если запись звука на дорожке сделана в виде ряда чёрточек одинакового почернения, но разной длины, то сила светового пучка будет больше, если он прошёл через короткую чёрточку, и меньше, если на его пути стояла длинная чёрточка. Таким образом, колебания силы светового пучка, действующего на фотоэлемент, соответствуют колебаниям силы света того пучка, который действовал на плёнку при записи звука. А ток, возникший в фотоэлементе, как вы знаете, соответствует силе этого светового пучка. Поэтому, по мере прохождения ленты по барабану, ток в цепи фотоэлемента будет всё время меняться.

Этот переменный ток усиливается и подаётся в громкоговоритель, устанавливаемый за экраном или рядом с ним. Здесь ток проходит через проволочные катушки, надетые на ножки магнита. Перед магнитом находится упругая металлическая пластинка — мембрана. Магнит становится то сильнее, то слабее в зависимости от силы приходящего от фотоэлемента тока. Он то притягивает к себе мембрану, то опускает её и даёт ей возможность, под влиянием её собственной упругости, выпрямиться, отойти от магнита. Иными словами — мембрана начинает колебаться. А колебания мембраны создают в воздухе так называемые звуковые волны, которые мы и воспринимаем, как звуки[4].

Так фотоэлементы работают в звуковом кино.

Конечно, на самом деле звуковые киноустановки не так просты, как это- может показаться по рисунку. В практике воспроизведения звука приходится преодолевать множество различных затруднений, и современные технические установки звукового кино очень сложны.

2. Снимок передан по проволоке

Во многих городах нашей родины — в Москве, Ленинграде, Киеве, Свердловске и других — на телеграфе вы можете послать в другой город «фототелеграмму».

Что это за телеграмма?

Вы можете принести сюда собственноручно написанный документ, чертёж, рисунок, фотокарточку, и они будут переданы по телеграфу в другой город. Через несколько минут там будет получена точная фотографическая копия с данного документа или рисунка.

В настоящее время фототелеграфом широко пользуются.

Очень часто можно встретить фотоснимки, переданные по фототелеграфу, в газетах. Сделанный, например, где-нибудь на Урале снимок в тот же день появляется в наших центральных газетах. Внизу под снимком обычно указывается: «снимок передан по фототелеграфу».

На первый взгляд возможность передавать изображение по проволоке кажется невероятной. Однако секрет фототелеграфии, как вы увидите, совсем нетрудно понять. Он основан на той же способности фотоэлемента превращать световой сигнал в сигнал электрический.

Представьте себе, что вы в темной комнате осматриваете с карманным фонариком какую-нибудь большую картину. Электрический фонарик освещает только небольшую часть картины, и вы, чтобы разглядеть её всю, последовательно переводите луч фонарика с одного участка картины на другой, пока не обойдёте всю картину.

Примерно так же поступают и при передаче изображений по телеграфу. Принятый для передачи чертёж, документ или снимок укрепляют на барабане, который медленно вращается и в то же время смещается вдоль своей оси, наподобие гайки, которую вы наворачиваете на винт. На этот барабан направляют тонкий пучок световых лучей, который освещает на чертеже или снимке очень маленькое пятнышко — размером всего примерно 0,2X0,2 квадратных миллиметра. Понятно, что при движении барабана эта светящаяся точка будет перемещаться по бумаге, описывая на ней винтовую линию, которая покрывает всю поверхность передаваемого чертежа или документа. Таким образом, световой луч, подобно лучу нашего карманного фонарика, «прощупывает» здесь один за другим все участки чертежа.

Свет, отражённый от поверхности бумаги, попадает на фотоэлемент. Ясно, что количество света, действующего на фотоэлемент, будет зависеть от того, на какое место изображения попал прощупывающий его луч. Когда луч идёт по белой бумаге, то на фотоэлемент попадает значительно больше отражённого света, чем в тот момент, когда луч падает на чёрное место чертежа или рисунка. Но, как мы. знаем, электрический ток в цепи фотоэлемента будет тем сильнее, чем ярче свет, действующий на фотоэлемент. Поэтому в те моменты, когда «прощупывающий» луч проходит через светлые места передаваемого изображения, электрический ток в цепи фотоэлемента сильнее, чем тогда, когда луч попадает на более тёмные места.

Всякое изображение представляет собой совокупность светлых и тёмных точек, расположенных рядом друг с другом. Как мы видим, наше передающее устройство превращает эти точки в ряд более сильных и более слабых электрических сигналов, следующих один после другого. Эти сигналы мы можем передать по проводам или с помощью радиоволн на любое расстояние — в то место, где находится приёмная станция.

Здесь перед нами возникает обратная задача. Нужно сигналы разной силы, следующие друг за другом, превратить в изображение, т. е. в совокупность более светлых и более тёмных точек, расположенных в определённом порядке рядом друг с другом. Для этого прежде всего необходимо электрические сигналы, т. е. токи различной силы, превратить в сигналы световые — в более сильные или более слабые вспышки света.

Как это можно сделать?

Для этого переменный электрический ток, пройдя усилитель, пропускается через особый прибор, так называемый модулятор света. Этот прибор помещается на пути пучка лучей постоянной яркости. В зависимости от силы электрического тока, проходящего через модулятор, меняется прозрачность этого прибора. Благодаря этому и пучок света, проходящий через модулятор, становится переменным по яркости— он будет то ярче, то слабее — в зависимости от силы протекающего через модулятор электрического тока.

Чтобы теперь превратить эту совокупность различных по яркости световых сигналов в изображение, «мигающий» пучок света направляют на фотографическую бумагу, укреплённую на таком же барабане, как и барабан передающей станции.

Этот барабан также вращается и одновременно подвигается вдоль своей оси. Благодаря этому луч света, падающий на бумагу, вычерчивает на ней винтовую линию. Такой линией постепенно покрывается вся поверхность фотобумаги. Но так как яркость падающего луча постоянно меняется, то на бумаге, после её проявления, вместо линии возникает ряд светлых и тёмных точек, которые в точности соответствуют таким же точкам на оригинале.

Таким образом, для того чтобы на приёмной станции мы получили точную копню этого оригинала, нужно только позаботиться о том, чтобы движение обоих барабанов — передающего и принимающего — происходило строго согласованно. Это осуществляется особыми, так называемыми «синхронизирующими» устройствами.

Так с помощью «электрического глаза» производится передача на расстояние неподвижных изображений.

Однако, как ни хорош фототелеграф, всё же он пригоден лишь для передачи неподвижных, «мёртвых» изображений: фотографий, чертежей, рукописей и т. п. А нельзя ли подобным же путём осуществить и передачу «живых», движущихся изображений? Нельзя ли передавать на большие расстояния непосредственное изображение говорящего оратора или играющего актёра, не прибегая к предварительному фотографированию этого актёра или оратора?

Можно. Такая передача «живых» изображений на далёкое расстояние называется телевидением.

Принцип телевидения — тот же, что и фототелеграфии. Изображение передаваемого объекта нужно разложить на очень большое количество светлых и тёмных точек, т. е. превратить его в ряд последовательных световых сигналов разной силы. Эти световые сигналы фотоэлемент превращает в сигналы электрические, которые можно с помощью радиоволн или по проводам передать в нужное место. Там электрические сигналы превращаются в световые, а из последних «собирается» изображение.

Понятно, однако, что технически задача телевидения гораздо сложнее, чем задача фототелеграфии. Живые люди — это не фотография, которую можно положить на вращающийся барабан фототелеграфа. Нужно найти какие-то иные способы «прощупывания» лучом всей изображаемой сцены. Кроме того, весь этот процесс «прощупывания» нужно совершать очень быстро. Чтобы можно было передавать изображения движущихся предметов, нужно, чтобы световой луч пробежал по всему изображению за очень малое время — не больше чем за 1/24 долю секунды. И за это короткое время луч должен «разложить» изображение на много тысяч отдельных точек-сигналов[5].

Тем не менее со всеми этими трудностями советская техника успешно справилась. Сейчас наши станции регулярно ведут телевизионные передачи, а наша промышленность выпускает телевизоры — приборы, дающие возможность непосредственно видеть на экране живые сцены: отрывки пьес, выступающих актёров и т. п.

Если кино когда-то называли «Великим немым», то радио до недавнего времени можно было назвать «Великим слепым». Теперь же фотоэлемент дал возможность заговорить «Великому немому» и прозреть «Великому слепому». С помощью этого прибора мы теперь слышим в кино и видим по радио.

3. «Электрический глаз» видит в темноте

Глаз человека воспринимает, как свет, только излучение с длинами волн, лежащими от 4/100 000 до 8/100 000 сантиметра. Все остальные волны — и более длинные и более короткие — ощущения света не создают. К ним наш глаз не чувствителен, и поэтому, как бы сильно мы ни «осветили» тело этими лучами, оно останется тёмным, невидимым. Однако, как говорилось, некоторые типы фотоэлементов «чувствуют» не только видимые лучи, но и невидимые, например инфракрасные лучи.

Возникает заманчивая мысль: а нельзя ли с помощью таких фотоэлементов построить прибор, который даст возможность видеть предметы, освещённые только инфракрасными лучами, т. е. невидимые нашими глазами? Понятно, какое важное значение имели бы такие приборы, прежде всего в военной технике. Прожекторы, которыми пользуются ночью для наблюдения за противником, имеют один очень серьёзный недостаток: они демаскируют того, кто ими пользуется, выдают противнику его присутствие. Насколько было бы удобнее, если бы мы могли в невидимых лучах наблюдать все предметы так же, как в видимых!

Закрыть прожектор таким стеклом, которое совсем не пропускало бы видимых лучей, но хорошо пропускало бы лучи инфракрасные, нетрудно. Такие стёкла имеются, да и инфракрасных лучей в свете прожектора имеется очень много. Но как превратить невидимое изображение предмета, освещённое этими лучами, в изображение, которое мы могли бы видеть глазами?

Рисунок 17 изображает в очень упрощённом, схематическом виде замечательный прибор, который решает задачу и даёт возможность «видеть в темноте».


Рис. 17. Упрощённая схема прибора, с помощью которого можно видеть в темноте.

Вы видите, что этот прибор представляет собой просто «стаканчик» с двумя плоскими донышками. Воздух из пространства между донышками откачан. На внутреннюю сторону нижнего, наружного, донышка нанесён тонкий слой вещества, «чувствующего» только инфракрасные лучи. Это — катод нашего прибора — фотоэлемента: из него под действием инфракрасных лучей вырываются электроны.

На внутреннюю сторону второго донышка нанесён слой особого вещества — люминофора, который обладает способностью светиться ярким зелёным светом, когда на него падают электроны, летящие с большой скоростью. Этот слой играет роль анода нашего фотоэлемента: он воспринимает электроны, вырванные из катода.

Как и всегда светочувствительный слой — катод — соединяют с отрицательным полюсом батареи, а анод — с её положительным полюсом. Однако в отличие от обычных фотоэлементов, в которых напряжение между катодом и анодом составляет несколько десятков или две-три сотни вольт, здесь применяют напряжение в несколько тысяч или даже десятков тысяч вольт, так что электроны летят к аноду с огромными скоростями.

Перед «стаканчиком» помещают объектив, подобный объективу обычного фотоаппарата или бинокля. Этот объектив создаёт на светочувствительной поверхности наружного донышка изображение тех предметов, которые мы рассматриваем. Но так как мы осветили наш предмет только невидимыми, инфракрасными лучами, то понятно, что изображение это на катоде тоже невидимое — невооружённым глазом мы его не видим. Однако оно существует, и количество электронов, вырываемых из того или иного места катода, будет тем больше, чем сильнее освещено инфракрасными лучами это место. В «светлых» (по отношению к инфракрасным лучам) местах изображения поток электронов, летящих к аноду, будет обильнее, чем в местах «тёмных». Попадая на слой люминофора, эти электроны вызывают его свечение, которое, естественно, будет тем сильнее, чем больше электронов попадёт в данное место слоя.

Таким образом, те места люминофорного слоя, которые находятся против сильно освещённых инфракрасными лучами мест катода, будут светиться сильно, а те места, которые находятся против более «тёмных» мест изображения, будут светиться слабее. Иными словами, невидимое изображение, создаваемое на переднем донышке прибора инфракрасными лучами, превращается в видимое изображение на его заднем донышке!

Такие приборы найдут себе широкое применение не только в военной технике, по и в мирной жизни.

Почему в «ночных биноклях» используются инфракрасные лучи? Нельзя ли использовать и другие невидимые лучи, скажем ультрафиолетовые?

Можно. Можно устроить прибор, с помощью которого вы будете видеть и в ультрафиолетовых лучах. Однако такой «бинокль» будет много хуже — вы увидите хорошо через него только те предметы, которые находятся лишь на близком расстоянии от вас; более далёкие предметы видны не будут. Объясняется это тем, что ультрафиолетовые лучи в сильной степени поглощаются воздухом, а особенно пылью и туманом. Наоборот, для инфракрасных лучей пыль и туман прозрачны.



Поделиться книгой:

На главную
Назад